Reference documentation for deal.II version 9.5.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Attributes | List of all members

#include <deal.II/grid/tria_accessor.h>

Inheritance diagram for TriaAccessor< 0, 1, spacedim >:
[legend]

Public Types

enum  VertexKind { left_vertex , interior_vertex , right_vertex }
 
using AccessorData = void
 

Public Member Functions

 TriaAccessor (const Triangulation< 1, spacedim > *tria, const VertexKind vertex_kind, const unsigned int vertex_index)
 
 TriaAccessor (const Triangulation< 1, spacedim > *tria=nullptr, const int=0, const int=0, const AccessorData *=nullptr)
 
template<int structdim2, int dim2, int spacedim2>
 TriaAccessor (const TriaAccessor< structdim2, dim2, spacedim2 > &)
 
template<int structdim2, int dim2, int spacedim2>
 TriaAccessor (const InvalidAccessor< structdim2, dim2, spacedim2 > &)
 
void copy_from (const TriaAccessor &)
 
void copy_from (const TriaAccessorBase< 0, 1, spacedim > &)
 
int index () const
 
const Triangulation< 1, spacedim > & get_triangulation () const
 
bool at_boundary () const
 
types::boundary_id boundary_id () const
 
const Manifold< 1, spacedim > & get_manifold () const
 
types::manifold_id manifold_id () const
 
bool used () const
 
ReferenceCell reference_cell () const
 
unsigned int n_vertices () const
 
unsigned int n_lines () const
 
std_cxx20::ranges::iota_view< unsigned int, unsigned intvertex_indices () const
 
std_cxx20::ranges::iota_view< unsigned int, unsigned intline_indices () const
 
Advancement of iterators
void operator++ () const
 
void operator-- () const
 
bool operator== (const TriaAccessor &) const
 
bool operator!= (const TriaAccessor &) const
 
bool operator< (const TriaAccessor &other) const
 
User data
bool user_flag_set () const
 
void set_user_flag () const
 
void clear_user_flag () const
 
void recursively_set_user_flag () const
 
void recursively_clear_user_flag () const
 
void clear_user_data () const
 
void set_user_pointer (void *p) const
 
void clear_user_pointer () const
 
void * user_pointer () const
 
void recursively_set_user_pointer (void *p) const
 
void recursively_clear_user_pointer () const
 
void set_user_index (const unsigned int p) const
 
void clear_user_index () const
 
unsigned int user_index () const
 
void recursively_set_user_index (const unsigned int p) const
 
void recursively_clear_user_index () const
 
Dealing with boundary indicators
void set_boundary_id (const types::boundary_id) const
 
void set_manifold_id (const types::manifold_id)
 
void set_all_boundary_ids (const types::boundary_id) const
 
void set_all_manifold_ids (const types::manifold_id)
 

Static Public Member Functions

static IteratorState::IteratorStates state ()
 
static int level ()
 
Orientation of sub-objects
static unsigned char combined_face_orientation (const unsigned int face)
 Always return 0.
 
static bool face_orientation (const unsigned int face)
 Always return false.
 
static bool face_flip (const unsigned int face)
 Always return false.
 
static bool face_rotation (const unsigned int face)
 Always return false.
 
static bool line_orientation (const unsigned int line)
 Always return false.
 
Accessing children
static bool has_children ()
 
static unsigned int n_children ()
 
static unsigned int n_active_descendants ()
 
static unsigned int number_of_children ()
 
static unsigned int max_refinement_depth ()
 
static unsigned int child_iterator_to_index (const TriaIterator< TriaAccessor< 0, 1, spacedim > > &)
 Return an invalid unsigned integer.
 
static TriaIterator< TriaAccessor< 0, 1, spacedim > > child (const unsigned int)
 Return an invalid object.
 
static TriaIterator< TriaAccessor< 0, 1, spacedim > > isotropic_child (const unsigned int)
 Return an invalid object.
 
static RefinementCase< 0 > refinement_case ()
 
static int child_index (const unsigned int i)
 Returns -1.
 
static int isotropic_child_index (const unsigned int i)
 Returns -1.
 

Static Public Attributes

static constexpr unsigned int space_dimension = spacedim
 
static constexpr unsigned int dimension = 1
 
static const unsigned int structure_dimension = 0
 

Protected Attributes

const Triangulation< 1, spacedim > * tria
 
VertexKind vertex_kind
 
unsigned int global_vertex_index
 

Accessing sub-objects

unsigned int vertex_index (const unsigned int i=0) const
 
Point< spacedim > & vertex (const unsigned int i=0) const
 
Point< spacedim > center () const
 
static typename::internal::TriangulationImplementation::Iterators< 1, spacedim >::line_iterator line (const unsigned int)
 
static unsigned int line_index (const unsigned int i)
 
static typename::internal::TriangulationImplementation::Iterators< 1, spacedim >::quad_iterator quad (const unsigned int i)
 
static unsigned int quad_index (const unsigned int i)
 

Detailed Description

template<int spacedim>
class TriaAccessor< 0, 1, spacedim >

This class is a specialization of TriaAccessor<structdim, dim, spacedim> for the case that structdim is zero and dim is one. This class represents vertices in a one-dimensional triangulation that is embedded in a space of dimensionality spacedim (for spacedim==dim==1 the triangulation represents a domain in \({\mathbb R}^\text{dim}\), for spacedim>dim==1 the triangulation is of a manifold embedded in a higher dimensional space).

The current specialization of the TriaAccessor<0,dim,spacedim> class for vertices of a one-dimensional triangulation exists since in the dim == 1 case vertices are also faces.

Definition at line 2328 of file tria_accessor.h.

Member Typedef Documentation

◆ AccessorData

template<int spacedim>
using TriaAccessor< 0, 1, spacedim >::AccessorData = void

Pointer to internal data.

Definition at line 2355 of file tria_accessor.h.

Member Enumeration Documentation

◆ VertexKind

template<int spacedim>
enum TriaAccessor< 0, 1, spacedim >::VertexKind

Whether the vertex represented here is at the left end of the domain, the right end, or in the interior.

Enumerator
left_vertex 

Left vertex.

interior_vertex 

Interior vertex.

right_vertex 

Right vertex.

Definition at line 2361 of file tria_accessor.h.

Constructor & Destructor Documentation

◆ TriaAccessor() [1/4]

template<int spacedim>
TriaAccessor< 0, 1, spacedim >::TriaAccessor ( const Triangulation< 1, spacedim > *  tria,
const VertexKind  vertex_kind,
const unsigned int  vertex_index 
)

Constructor.

Since there is no mapping from vertices to cells, an accessor object for a point has no way to figure out whether it is at the boundary of the domain or not. Consequently, the second argument must be passed by the object that generates this accessor – e.g. a 1d cell that can figure out whether its left or right vertex are at the boundary.

The third argument is the global index of the vertex we point to.

◆ TriaAccessor() [2/4]

template<int spacedim>
TriaAccessor< 0, 1, spacedim >::TriaAccessor ( const Triangulation< 1, spacedim > *  tria = nullptr,
const int  = 0,
const int  = 0,
const AccessorData = nullptr 
)

Constructor. This constructor exists in order to maintain interface compatibility with the other accessor classes. However, it doesn't do anything useful here and so may not actually be called.

◆ TriaAccessor() [3/4]

template<int spacedim>
template<int structdim2, int dim2, int spacedim2>
TriaAccessor< 0, 1, spacedim >::TriaAccessor ( const TriaAccessor< structdim2, dim2, spacedim2 > &  )

Constructor. Should never be called and thus produces an error.

◆ TriaAccessor() [4/4]

template<int spacedim>
template<int structdim2, int dim2, int spacedim2>
TriaAccessor< 0, 1, spacedim >::TriaAccessor ( const InvalidAccessor< structdim2, dim2, spacedim2 > &  )

Constructor. Should never be called and thus produces an error.

Member Function Documentation

◆ copy_from() [1/2]

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::copy_from ( const TriaAccessor< 0, 1, spacedim > &  )

Copy operator. Since this is only called from iterators, do not return anything, since the iterator will return itself.

◆ copy_from() [2/2]

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::copy_from ( const TriaAccessorBase< 0, 1, spacedim > &  )

Copy operator. We need this function to support generic programming, but it just throws an exception because it cannot do the required operations.

◆ state()

template<int spacedim>
static IteratorState::IteratorStates TriaAccessor< 0, 1, spacedim >::state ( )
static

Return the state of the iterator. Since an iterator to points can not be incremented or decremented, its state remains constant, and in particular equal to IteratorState::valid.

◆ level()

template<int spacedim>
static int TriaAccessor< 0, 1, spacedim >::level ( )
static

Level of this object. Vertices have no level, so this function always returns zero.

◆ index()

template<int spacedim>
int TriaAccessor< 0, 1, spacedim >::index ( ) const

Index of this object. Returns the global index of the vertex this object points to.

◆ get_triangulation()

template<int spacedim>
const Triangulation< 1, spacedim > & TriaAccessor< 0, 1, spacedim >::get_triangulation ( ) const

Return a reference to the triangulation which the object pointed to by this class belongs to.

◆ operator++()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::operator++ ( ) const

This operator advances the iterator to the next element. For points, this operation is not defined, so you can't iterate over point iterators.

◆ operator--()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::operator-- ( ) const

This operator moves the iterator to the previous element. For points, this operation is not defined, so you can't iterate over point iterators.

◆ operator==()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::operator== ( const TriaAccessor< 0, 1, spacedim > &  ) const

Compare for equality.

◆ operator!=()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::operator!= ( const TriaAccessor< 0, 1, spacedim > &  ) const

Compare for inequality.

◆ operator<()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::operator< ( const TriaAccessor< 0, 1, spacedim > &  other) const

Comparison operator for accessors. This operator is used when comparing iterators into objects of a triangulation, for example when putting them into a std::map.

This operator simply compares the global index of the vertex the current object points to.

◆ vertex_index()

template<int spacedim>
unsigned int TriaAccessor< 0, 1, spacedim >::vertex_index ( const unsigned int  i = 0) const

Return the global index of i-th vertex of the current object. If i is zero, this returns the index of the current point to which this object refers. Otherwise, it throws an exception.

Note that the returned value is only the index of the geometrical vertex. It has nothing to do with possible degrees of freedom associated with it. For this, see the DoFAccessor::vertex_dof_index functions.

Note
Despite the name, the index returned here is only global in the sense that it is specific to a particular Triangulation object or, in the case the triangulation is actually of type parallel::distributed::Triangulation, specific to that part of the distributed triangulation stored on the current processor.

◆ vertex()

template<int spacedim>
Point< spacedim > & TriaAccessor< 0, 1, spacedim >::vertex ( const unsigned int  i = 0) const

Return a reference to the ith vertex. If i is zero, this returns a reference to the current point to which this object refers. Otherwise, it throws an exception.

◆ center()

template<int spacedim>
Point< spacedim > TriaAccessor< 0, 1, spacedim >::center ( ) const

Return the center of this object, which of course coincides with the location of the vertex this object refers to.

◆ line()

template<int spacedim>
static typename::internal::TriangulationImplementation::Iterators< 1, spacedim >::line_iterator TriaAccessor< 0, 1, spacedim >::line ( const unsigned int  )
static

Pointer to the ith line bounding this object. Will point to an invalid object.

◆ line_index()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::line_index ( const unsigned int  i)
static

Line index of the ith line bounding this object.

Implemented only for structdim>1, otherwise an exception generated.

◆ quad()

template<int spacedim>
static typename::internal::TriangulationImplementation::Iterators< 1, spacedim >::quad_iterator TriaAccessor< 0, 1, spacedim >::quad ( const unsigned int  i)
static

Pointer to the ith quad bounding this object.

◆ quad_index()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::quad_index ( const unsigned int  i)
static

Quad index of the ith quad bounding this object.

Implemented only for structdim>2, otherwise an exception generated.

◆ at_boundary()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::at_boundary ( ) const

Return whether this point is at the boundary of the one-dimensional triangulation we deal with here.

◆ boundary_id()

template<int spacedim>
types::boundary_id TriaAccessor< 0, 1, spacedim >::boundary_id ( ) const

Return the boundary indicator of this object. The convention for one dimensional triangulations is that left end vertices (of each line segment from which the triangulation may be constructed) have boundary indicator zero, and right end vertices have boundary indicator one, unless explicitly set differently.

If the return value is the special value numbers::internal_face_boundary_id, then this object is in the interior of the domain.

See also
Glossary entry on boundary indicators

◆ get_manifold()

template<int spacedim>
const Manifold< 1, spacedim > & TriaAccessor< 0, 1, spacedim >::get_manifold ( ) const

Return a constant reference to the manifold object used for this object.

◆ manifold_id()

template<int spacedim>
types::manifold_id TriaAccessor< 0, 1, spacedim >::manifold_id ( ) const

Return the manifold indicator of this object.

See also
Glossary entry on manifold indicators.

◆ user_flag_set()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::user_flag_set

Read the user flag. See GlossUserFlags for more information.

Definition at line 1809 of file tria_accessor.cc.

◆ set_user_flag()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::set_user_flag

Set the user flag. See GlossUserFlags for more information.

Definition at line 1820 of file tria_accessor.cc.

◆ clear_user_flag()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::clear_user_flag

Clear the user flag. See GlossUserFlags for more information.

Definition at line 1830 of file tria_accessor.cc.

◆ recursively_set_user_flag()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::recursively_set_user_flag

Set the user flag for this and all descendants. See GlossUserFlags for more information.

Definition at line 1840 of file tria_accessor.cc.

◆ recursively_clear_user_flag()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::recursively_clear_user_flag

Clear the user flag for this and all descendants. See GlossUserFlags for more information.

Definition at line 1853 of file tria_accessor.cc.

◆ clear_user_data()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::clear_user_data

Reset the user data to zero, independent if pointer or index. See GlossUserData for more information.

Definition at line 1866 of file tria_accessor.cc.

◆ set_user_pointer()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::set_user_pointer ( void *  p) const

Set the user pointer to p.

Note
User pointers and user indices are mutually exclusive. Therefore, you can only use one of them, unless you call Triangulation::clear_user_data() in between.

See GlossUserData for more information.

Definition at line 1876 of file tria_accessor.cc.

◆ clear_user_pointer()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::clear_user_pointer

Reset the user pointer to a nullptr pointer. See GlossUserData for more information.

Definition at line 1886 of file tria_accessor.cc.

◆ user_pointer()

template<int spacedim>
void * TriaAccessor< 0, 1, spacedim >::user_pointer

Access the value of the user pointer. It is in the responsibility of the user to make sure that the pointer points to something useful. You should use the new style cast operator to maintain a minimum of type safety, e.g.

Note
User pointers and user indices are mutually exclusive. Therefore, you can only use one of them, unless you call Triangulation::clear_user_data() in between. A a=static_cast<A>(cell->user_pointer());.

See GlossUserData for more information.

Definition at line 1896 of file tria_accessor.cc.

◆ recursively_set_user_pointer()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::recursively_set_user_pointer ( void *  p) const

Set the user pointer of this object and all its children to the given value. This is useful for example if all cells of a certain subdomain, or all faces of a certain part of the boundary should have user pointers pointing to objects describing this part of the domain or boundary.

Note that the user pointer is not inherited under mesh refinement, so after mesh refinement there might be cells or faces that don't have user pointers pointing to the describing object. In this case, simply loop over all the elements of the coarsest level that has this information, and use this function to recursively set the user pointer of all finer levels of the triangulation.

Note
User pointers and user indices are mutually exclusive. Therefore, you can only use one of them, unless you call Triangulation::clear_user_data() in between.

See GlossUserData for more information.

Definition at line 1907 of file tria_accessor.cc.

◆ recursively_clear_user_pointer()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::recursively_clear_user_pointer

Clear the user pointer of this object and all of its descendants. The same holds as said for the recursively_set_user_pointer() function. See GlossUserData for more information.

Definition at line 1920 of file tria_accessor.cc.

◆ set_user_index()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::set_user_index ( const unsigned int  p) const

Set the user index to p.

Note
User pointers and user indices are mutually exclusive. Therefore, you can only use one of them, unless you call Triangulation::clear_user_data() in between. See GlossUserData for more information.

Definition at line 1933 of file tria_accessor.cc.

◆ clear_user_index()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::clear_user_index

Reset the user index to 0. See GlossUserData for more information.

Definition at line 1943 of file tria_accessor.cc.

◆ user_index()

template<int spacedim>
unsigned int TriaAccessor< 0, 1, spacedim >::user_index

Access the value of the user index.

Note
User pointers and user indices are mutually exclusive. Therefore, you can only use one of them, unless you call Triangulation::clear_user_data() in between.

See GlossUserData for more information.

Definition at line 1953 of file tria_accessor.cc.

◆ recursively_set_user_index()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::recursively_set_user_index ( const unsigned int  p) const

Set the user index of this object and all its children.

Note that the user index is not inherited under mesh refinement, so after mesh refinement there might be cells or faces that don't have the expected user indices. In this case, simply loop over all the elements of the coarsest level that has this information, and use this function to recursively set the user index of all finer levels of the triangulation.

Note
User pointers and user indices are mutually exclusive. Therefore, you can only use one of them, unless you call Triangulation::clear_user_data() in between.

See GlossUserData for more information.

Definition at line 1964 of file tria_accessor.cc.

◆ recursively_clear_user_index()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::recursively_clear_user_index

Clear the user index of this object and all of its descendants. The same holds as said for the recursively_set_user_index() function.

See GlossUserData for more information.

Definition at line 1977 of file tria_accessor.cc.

◆ combined_face_orientation()

template<int spacedim>
static unsigned char TriaAccessor< 0, 1, spacedim >::combined_face_orientation ( const unsigned int  face)
static

Always return 0.

◆ face_orientation()

template<int spacedim>
static bool TriaAccessor< 0, 1, spacedim >::face_orientation ( const unsigned int  face)
static

Always return false.

◆ face_flip()

template<int spacedim>
static bool TriaAccessor< 0, 1, spacedim >::face_flip ( const unsigned int  face)
static

Always return false.

◆ face_rotation()

template<int spacedim>
static bool TriaAccessor< 0, 1, spacedim >::face_rotation ( const unsigned int  face)
static

Always return false.

◆ line_orientation()

template<int spacedim>
static bool TriaAccessor< 0, 1, spacedim >::line_orientation ( const unsigned int  line)
static

Always return false.

◆ has_children()

template<int spacedim>
static bool TriaAccessor< 0, 1, spacedim >::has_children ( )
static

Test whether the object has children. Always false.

◆ n_children()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::n_children ( )
static

Return the number of immediate children of this object.This is always zero in dimension 0.

◆ n_active_descendants()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::n_active_descendants ( )
static

Compute and return the number of active descendants of this objects. Always zero.

◆ number_of_children()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::number_of_children ( )
static

◆ max_refinement_depth()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::max_refinement_depth ( )
static

Return the number of times that this object is refined. Always 0.

◆ child_iterator_to_index()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::child_iterator_to_index ( const TriaIterator< TriaAccessor< 0, 1, spacedim > > &  )
static

Return an invalid unsigned integer.

◆ child()

template<int spacedim>
static TriaIterator< TriaAccessor< 0, 1, spacedim > > TriaAccessor< 0, 1, spacedim >::child ( const unsigned int  )
static

Return an invalid object.

◆ isotropic_child()

template<int spacedim>
static TriaIterator< TriaAccessor< 0, 1, spacedim > > TriaAccessor< 0, 1, spacedim >::isotropic_child ( const unsigned int  )
static

Return an invalid object.

◆ refinement_case()

template<int spacedim>
static RefinementCase< 0 > TriaAccessor< 0, 1, spacedim >::refinement_case ( )
static

Always return no refinement.

◆ child_index()

template<int spacedim>
static int TriaAccessor< 0, 1, spacedim >::child_index ( const unsigned int  i)
static

Returns -1.

◆ isotropic_child_index()

template<int spacedim>
static int TriaAccessor< 0, 1, spacedim >::isotropic_child_index ( const unsigned int  i)
static

Returns -1.

◆ set_boundary_id()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::set_boundary_id ( const types::boundary_id  ) const

Set the boundary indicator. The same applies as for the boundary_id() function.

Warning
You should never set the boundary indicator of an interior face (a face not at the boundary of the domain), or set the boundary indicator of an exterior face to numbers::internal_face_boundary_id (this value is reserved for another purpose). Algorithms may not work or produce very confusing results if boundary cells have a boundary indicator of numbers::internal_face_boundary_id or if interior cells have boundary indicators other than numbers::internal_face_boundary_id. Unfortunately, the current object has no means of finding out whether it really is at the boundary of the domain and so cannot determine whether the value you are trying to set makes sense under the current circumstances.
See also
Glossary entry on boundary indicators

◆ set_manifold_id()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::set_manifold_id ( const types::manifold_id  )

Set the manifold indicator of this vertex. This does nothing so far since manifolds are only used to refine and map objects, but vertices are not refined and the mapping is trivial. This function is here only to allow dimension independent programming.

◆ set_all_boundary_ids()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::set_all_boundary_ids ( const types::boundary_id  ) const

Set the boundary indicator of this object and all of its lower- dimensional sub-objects. Since this object only represents a single vertex, there are no lower-dimensional object and this function is equivalent to calling set_boundary_id() with the same argument.

See also
Glossary entry on boundary indicators

◆ used()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::used ( ) const

Return whether the vertex pointed to here is used.

◆ reference_cell()

template<int spacedim>
ReferenceCell TriaAccessor< 0, 1, spacedim >::reference_cell ( ) const

Reference cell type of the current object.

◆ n_vertices()

template<int spacedim>
unsigned int TriaAccessor< 0, 1, spacedim >::n_vertices ( ) const

Number of vertices.

◆ n_lines()

template<int spacedim>
unsigned int TriaAccessor< 0, 1, spacedim >::n_lines ( ) const

Number of lines.

◆ vertex_indices()

template<int spacedim>
std_cxx20::ranges::iota_view< unsigned int, unsigned int > TriaAccessor< 0, 1, spacedim >::vertex_indices ( ) const

Return an object that can be thought of as an array containing all indices from zero to n_vertices().

◆ line_indices()

template<int spacedim>
std_cxx20::ranges::iota_view< unsigned int, unsigned int > TriaAccessor< 0, 1, spacedim >::line_indices ( ) const

Return an object that can be thought of as an array containing all indices from zero to n_lines().

Member Data Documentation

◆ space_dimension

template<int spacedim>
constexpr unsigned int TriaAccessor< 0, 1, spacedim >::space_dimension = spacedim
staticconstexpr

Dimension of the space the object represented by this accessor lives in. For example, if this accessor represents a quad that is part of a two- dimensional surface in four-dimensional space, then this value is four.

Definition at line 2336 of file tria_accessor.h.

◆ dimension

template<int spacedim>
constexpr unsigned int TriaAccessor< 0, 1, spacedim >::dimension = 1
staticconstexpr

Dimensionality of the object that the thing represented by this accessor is part of. For example, if this accessor represents a line that is part of a hexahedron, then this value will be three.

Definition at line 2343 of file tria_accessor.h.

◆ structure_dimension

template<int spacedim>
const unsigned int TriaAccessor< 0, 1, spacedim >::structure_dimension = 0
static

Dimensionality of the current object represented by this accessor. For example, if it is line (irrespective of whether it is part of a 2d or 3d subobject), then this value equals 1.

Definition at line 2350 of file tria_accessor.h.

◆ tria

template<int spacedim>
const Triangulation<1, spacedim>* TriaAccessor< 0, 1, spacedim >::tria
protected

Pointer to the triangulation we operate on.

Definition at line 3050 of file tria_accessor.h.

◆ vertex_kind

template<int spacedim>
VertexKind TriaAccessor< 0, 1, spacedim >::vertex_kind
protected

Whether this is a left end, right end, or interior vertex. This information is provided by the cell at the time of creation.

Definition at line 3056 of file tria_accessor.h.

◆ global_vertex_index

template<int spacedim>
unsigned int TriaAccessor< 0, 1, spacedim >::global_vertex_index
protected

The global vertex index of the vertex this object corresponds to.

Definition at line 3061 of file tria_accessor.h.


The documentation for this class was generated from the following files: