Reference documentation for deal.II version 9.5.0
|
#include <deal.II/base/quadrature_lib.h>
Public Types | |
using | SubQuadrature = Quadrature< dim==0 ? 0 :dim - 1 > |
Public Member Functions | |
QTrianglePolar (const Quadrature< 1 > &radial_quadrature, const Quadrature< 1 > &angular_quadrature) | |
QTrianglePolar (const unsigned int n) | |
Quadrature< spacedim > | compute_affine_transformation (const std::array< Point< spacedim >, dim+1 > &vertices) const |
Quadrature< spacedim > | mapped_quadrature (const std::vector< std::array< Point< spacedim >, dim+1 > > &simplices) const |
bool | operator== (const Quadrature< dim > &p) const |
void | initialize (const std::vector< Point< dim > > &points, const std::vector< double > &weights) |
unsigned int | size () const |
const Point< dim > & | point (const unsigned int i) const |
const std::vector< Point< dim > > & | get_points () const |
double | weight (const unsigned int i) const |
const std::vector< double > & | get_weights () const |
std::size_t | memory_consumption () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
bool | is_tensor_product () const |
const std::array< Quadrature< 1 >, dim > & | get_tensor_basis () const |
Subscriptor functionality | |
Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class. | |
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
unsigned int | n_subscriptions () const |
template<typename StreamType > | |
void | list_subscribers (StreamType &stream) const |
void | list_subscribers () const |
Static Public Member Functions | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Protected Attributes | |
std::vector< Point< dim > > | quadrature_points |
std::vector< double > | weights |
bool | is_tensor_product_flag |
std::unique_ptr< std::array< Quadrature< 1 >, dim > > | tensor_basis |
Private Types | |
using | map_value_type = decltype(counter_map)::value_type |
using | map_iterator = decltype(counter_map)::iterator |
Private Member Functions | |
void | check_no_subscribers () const noexcept |
Private Attributes | |
std::atomic< unsigned int > | counter |
std::map< std::string, unsigned int > | counter_map |
std::vector< std::atomic< bool > * > | validity_pointers |
const std::type_info * | object_info |
Static Private Attributes | |
static std::mutex | mutex |
A quadrature that implements a polar transformation from a square to a triangle to integrate singularities in the origin of the reference simplex. The quadrature is obtained through the following polar transformation:
\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{\hat x}{\sin(\theta)+\cos(\theta)} cos(\theta) \\ \frac{\hat x}{\sin(\theta)+\cos(\theta)} sin(\theta) \end{pmatrix} \qquad \theta \dealcoloneq \frac\pi 2 \hat y \]
Definition at line 682 of file quadrature_lib.h.
|
inherited |
Define an alias for a quadrature that acts on an object of one dimension less. For cells, this would then be a face quadrature. A sub quadrature of a 0-dimensional quadrature is defined as still being 0-dimensional.
Definition at line 130 of file quadrature.h.
|
privateinherited |
The data type used in counter_map.
Definition at line 230 of file subscriptor.h.
|
privateinherited |
The iterator type used in counter_map.
Definition at line 235 of file subscriptor.h.
QTrianglePolar::QTrianglePolar | ( | const Quadrature< 1 > & | radial_quadrature, |
const Quadrature< 1 > & | angular_quadrature | ||
) |
Construct a QTrianglePolar quadrature, with different formulas in the radial and angular directions.
radial_quadrature | Radial quadrature |
angular_quadrature | Angular quadrature |
Definition at line 1292 of file quadrature_lib.cc.
QTrianglePolar::QTrianglePolar | ( | const unsigned int | n | ) |
Call the other constructor, with QGauss<1>(n) for both radial and angular quadrature.
n | Order of QGauss quadrature |
Definition at line 1322 of file quadrature_lib.cc.
|
inherited |
Return an affine transformation of this quadrature, that can be used to integrate on the simplex identified by vertices
.
Both the quadrature point locations and the weights are transformed, so that you can effectively use the resulting quadrature to integrate on the simplex.
The transformation is defined as
\[ x = v_0 + B \hat x \]
where the matrix \(B\) is given by \(B_{ij} = v[j][i]-v[0][i]\).
The weights are scaled with the absolute value of the determinant of \(B\), that is \(J \dealcoloneq |\text{det}(B)|\). If \(J\) is zero, an empty quadrature is returned. This may happen, in two dimensions, if the three vertices are aligned, or in three dimensions if the four vertices are on the same plane. The present function works also in the codimension one and codimension two case. For instance, when dim=2
and spacedim=3
, we can map the quadrature points so that they live on the physical triangle embedded in the three dimensional space. In such a case, the matrix \(B\) is not square anymore.
[in] | vertices | The vertices of the simplex you wish to integrate on |
Definition at line 643 of file quadrature_lib.cc.
|
inherited |
Given a collection of simplices, this function creates a global quadrature rule on the area covered by the simplices, by mapping the current quadrature on each simplex. A simplex is identified by its vertices, which are stored into an array of Points. Hence, this function can provide quadrature rules on polygons (or polyhedra), as they can be split into simplices.
simplices | A std::vector where each entry is an array of dim+1 points, which identifies the vertices of a simplex. |
Definition at line 660 of file quadrature_lib.cc.
|
inherited |
Test for equality of two quadratures.
Definition at line 317 of file quadrature.cc.
|
inherited |
Set the quadrature points and weights to the values provided in the arguments.
Definition at line 52 of file quadrature.cc.
|
inherited |
Number of quadrature points.
|
inherited |
Return the i
th quadrature point.
|
inherited |
Return a reference to the whole array of quadrature points.
|
inherited |
Return the weight of the i
th quadrature point.
|
inherited |
Return a reference to the whole array of weights.
|
inherited |
Determine an estimate for the memory consumption (in bytes) of this object.
Definition at line 326 of file quadrature.cc.
|
inherited |
Write or read the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.
|
inherited |
This function returns true if the quadrature object is a tensor product of one-dimensional formulas and the quadrature points are sorted lexicographically.
|
inherited |
In case the quadrature formula is a tensor product, this function returns the dim
one-dimensional basis objects. Otherwise, calling this function is not allowed.
For dim
equal to one, we can not return the std::array as a const reference and have to return it by value. In this case, the array will always contain a single element (this
).
Definition at line 338 of file quadrature.cc.
|
inherited |
Subscribes a user of the object by storing the pointer validity
. The subscriber may be identified by text supplied as identifier
.
Definition at line 136 of file subscriptor.cc.
|
inherited |
Unsubscribes a user from the object.
identifier
and the validity
pointer must be the same as the one supplied to subscribe(). Definition at line 156 of file subscriptor.cc.
|
inlineinherited |
Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.
Definition at line 300 of file subscriptor.h.
|
inlineinherited |
List the subscribers to the input stream
.
Definition at line 317 of file subscriptor.h.
|
inherited |
List the subscribers to deallog
.
Definition at line 204 of file subscriptor.cc.
|
privatenoexceptinherited |
Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.
Definition at line 53 of file subscriptor.cc.
|
protectedinherited |
List of quadrature points. To be filled by the constructors of derived classes.
Definition at line 333 of file quadrature.h.
|
protectedinherited |
List of weights of the quadrature points. To be filled by the constructors of derived classes.
Definition at line 339 of file quadrature.h.
|
protectedinherited |
Indicates if this object represents quadrature formula that is a tensor product of one-dimensional formulas. This flag is set if dim==1 or the constructors taking a Quadrature<1> (and possibly a Quadrature<dim-1> object) is called. This implies that the quadrature points are sorted lexicographically.
Definition at line 348 of file quadrature.h.
|
protectedinherited |
Stores the one-dimensional tensor basis objects in case this object can be represented by a tensor product.
Definition at line 354 of file quadrature.h.
|
mutableprivateinherited |
Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).
The creator (and owner) of an object is counted in the map below if HE manages to supply identification.
We use the mutable
keyword in order to allow subscription to constant objects also.
This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic
class template.
Definition at line 219 of file subscriptor.h.
|
mutableprivateinherited |
In this map, we count subscriptions for each different identification string supplied to subscribe().
Definition at line 225 of file subscriptor.h.
|
mutableprivateinherited |
In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.
Definition at line 241 of file subscriptor.h.
|
mutableprivateinherited |
Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.
Definition at line 249 of file subscriptor.h.
|
staticprivateinherited |
A mutex used to ensure data consistency when printing out the list of subscribers.
Definition at line 271 of file subscriptor.h.