#include <deal.II/lac/precondition.h>
|
void | initialize (const MatrixType &A, const std::vector< size_type > &permutation, const std::vector< size_type > &inverse_permutation, const typename BaseClass::AdditionalData ¶meters=typename BaseClass::AdditionalData()) |
|
void | initialize (const MatrixType &A, const AdditionalData &additional_data) |
|
void | initialize (const MatrixType &A, const AdditionalData ¶meters=AdditionalData()) |
|
void | clear () |
|
size_type | m () const |
|
size_type | n () const |
|
template<class VectorType > |
void | vmult (VectorType &, const VectorType &) const |
|
template<class VectorType > |
void | Tvmult (VectorType &, const VectorType &) const |
|
template<class VectorType > |
void | step (VectorType &x, const VectorType &rhs) const |
|
template<class VectorType > |
void | Tstep (VectorType &x, const VectorType &rhs) const |
|
template<class Archive > |
void | serialize (Archive &ar, const unsigned int version) |
|
|
Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.
|
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
|
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
|
unsigned int | n_subscriptions () const |
|
template<typename StreamType > |
void | list_subscribers (StreamType &stream) const |
|
void | list_subscribers () const |
|
template<typename MatrixType = SparseMatrix<double>>
class PreconditionPSOR< MatrixType >
Permuted SOR preconditioner using matrix built-in function. The MatrixType
class used is required to have functions PSOR(VectorType&, const VectorType&, double)
and TPSOR(VectorType&, const VectorType&, double)
.
std::vector<unsigned int> permutation(x.
size());
std::vector<unsigned int> inverse_permutation(x.
size());
precondition.
initialize (
A, permutation, inverse_permutation, .6);
solver.solve (
A, x, b, precondition);
void initialize(const MatrixType &A, const std::vector< size_type > &permutation, const std::vector< size_type > &inverse_permutation, const typename BaseClass::AdditionalData ¶meters=typename BaseClass::AdditionalData())
SmartPointer< const MatrixType, PreconditionRelaxation< MatrixType > > A
Definition at line 1648 of file precondition.h.
◆ PreconditionerType
template<typename MatrixType = SparseMatrix<double>>
using PreconditionPSOR< MatrixType >::PreconditionerType = internal::PreconditionRelaxation::PreconditionPSORImpl<MatrixType> |
|
private |
◆ BaseClass
template<typename MatrixType = SparseMatrix<double>>
◆ size_type
template<typename MatrixType = SparseMatrix<double>>
◆ map_value_type
◆ map_iterator
◆ initialize() [1/3]
template<typename MatrixType = SparseMatrix<double>>
Initialize matrix and relaxation parameter. The matrix is just stored in the preconditioner object.
The permutation vector is stored as a pointer. Therefore, it has to be assured that the lifetime of the vector exceeds the lifetime of the preconditioner.
The relaxation parameter should be larger than zero and smaller than 2 for numerical reasons. It defaults to 1.
◆ initialize() [2/3]
template<typename MatrixType = SparseMatrix<double>>
Initialize matrix and relaxation parameter. The matrix is just stored in the preconditioner object.
For more detail about possible parameters, see the class documentation and the documentation of the PreconditionPSOR::AdditionalData class.
After this function is called the preconditioner is ready to be used (using the vmult
function of derived classes).
◆ initialize() [3/3]
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
Initialize matrix and relaxation parameter. The matrix is just stored in the preconditioner object. The relaxation parameter should be larger than zero and smaller than 2 for numerical reasons. It defaults to 1.
◆ clear()
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
Release the matrix and reset its pointer.
◆ m()
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
Return the dimension of the codomain (or range) space. Note that the matrix is of dimension \(m \times n\).
◆ n()
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
Return the dimension of the domain space. Note that the matrix is of dimension \(m \times n\).
◆ vmult()
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
template<class VectorType >
◆ Tvmult()
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
template<class VectorType >
Apply transpose preconditioner. Since this is a symmetric preconditioner, this function is the same as vmult().
◆ step()
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
template<class VectorType >
Perform one step of the preconditioned Richardson iteration
◆ Tstep()
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
template<class VectorType >
Perform one transposed step of the preconditioned Richardson iteration.
◆ subscribe()
void Subscriptor::subscribe |
( |
std::atomic< bool > *const |
validity, |
|
|
const std::string & |
identifier = "" |
|
) |
| const |
|
inherited |
Subscribes a user of the object by storing the pointer validity
. The subscriber may be identified by text supplied as identifier
.
Definition at line 136 of file subscriptor.cc.
◆ unsubscribe()
void Subscriptor::unsubscribe |
( |
std::atomic< bool > *const |
validity, |
|
|
const std::string & |
identifier = "" |
|
) |
| const |
|
inherited |
Unsubscribes a user from the object.
- Note
- The
identifier
and the validity
pointer must be the same as the one supplied to subscribe().
Definition at line 156 of file subscriptor.cc.
◆ n_subscriptions()
unsigned int Subscriptor::n_subscriptions |
( |
| ) |
const |
|
inlineinherited |
Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.
Definition at line 300 of file subscriptor.h.
◆ list_subscribers() [1/2]
template<typename StreamType >
void Subscriptor::list_subscribers |
( |
StreamType & |
stream | ) |
const |
|
inlineinherited |
List the subscribers to the input stream
.
Definition at line 317 of file subscriptor.h.
◆ list_subscribers() [2/2]
void Subscriptor::list_subscribers |
( |
| ) |
const |
|
inherited |
◆ serialize()
template<class Archive >
void Subscriptor::serialize |
( |
Archive & |
ar, |
|
|
const unsigned int |
version |
|
) |
| |
|
inlineinherited |
Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.
This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.
Definition at line 309 of file subscriptor.h.
◆ check_no_subscribers()
void Subscriptor::check_no_subscribers |
( |
| ) |
const |
|
privatenoexceptinherited |
Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.
- Note
- Since this function is just a consistency check it does nothing in release mode.
-
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.
Definition at line 53 of file subscriptor.cc.
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
◆ relaxation
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
◆ n_iterations
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
Number of smoothing steps to be performed.
Definition at line 515 of file precondition.h.
◆ preconditioner
template<typename MatrixType = SparseMatrix<double>, typename
PreconditionerType = IdentityMatrix>
◆ counter
std::atomic<unsigned int> Subscriptor::counter |
|
mutableprivateinherited |
Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).
The creator (and owner) of an object is counted in the map below if HE manages to supply identification.
We use the mutable
keyword in order to allow subscription to constant objects also.
This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic
class template.
Definition at line 219 of file subscriptor.h.
◆ counter_map
std::map<std::string, unsigned int> Subscriptor::counter_map |
|
mutableprivateinherited |
In this map, we count subscriptions for each different identification string supplied to subscribe().
Definition at line 225 of file subscriptor.h.
◆ validity_pointers
std::vector<std::atomic<bool> *> Subscriptor::validity_pointers |
|
mutableprivateinherited |
In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.
Definition at line 241 of file subscriptor.h.
◆ object_info
const std::type_info* Subscriptor::object_info |
|
mutableprivateinherited |
Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.
Definition at line 249 of file subscriptor.h.
◆ mutex
std::mutex Subscriptor::mutex |
|
staticprivateinherited |
A mutex used to ensure data consistency when printing out the list of subscribers.
Definition at line 271 of file subscriptor.h.
The documentation for this class was generated from the following file: