Reference documentation for deal.II version 9.5.0
|
#include <deal.II/base/polynomials_bernstein.h>
Public Member Functions | |
PolynomialsBernstein (const unsigned int index, const unsigned int degree) | |
number | value (const number x) const |
void | value (const number x, std::vector< number > &values) const |
template<typename Number2 > | |
void | value (const Number2 x, const unsigned int n_derivatives, Number2 *values) const |
template<std::size_t n_entries, typename Number2 > | |
void | values_of_array (const std::array< Number2, n_entries > &points, const unsigned int n_derivatives, std::array< Number2, n_entries > *values) const |
unsigned int | degree () const |
void | scale (const number factor) |
template<typename number2 > | |
void | shift (const number2 offset) |
Polynomial< number > | derivative () const |
Polynomial< number > | primitive () const |
Polynomial< number > & | operator*= (const double s) |
Polynomial< number > & | operator*= (const Polynomial< number > &p) |
Polynomial< number > & | operator+= (const Polynomial< number > &p) |
Polynomial< number > & | operator-= (const Polynomial< number > &p) |
bool | operator== (const Polynomial< number > &p) const |
void | print (std::ostream &out) const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
virtual std::size_t | memory_consumption () const |
Subscriptor functionality | |
Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class. | |
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
unsigned int | n_subscriptions () const |
template<typename StreamType > | |
void | list_subscribers (StreamType &stream) const |
void | list_subscribers () const |
Static Public Member Functions | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Protected Member Functions | |
void | transform_into_standard_form () |
Static Protected Member Functions | |
static void | scale (std::vector< number > &coefficients, const number factor) |
template<typename number2 > | |
static void | shift (std::vector< number > &coefficients, const number2 shift) |
static void | multiply (std::vector< number > &coefficients, const number factor) |
Protected Attributes | |
std::vector< number > | coefficients |
bool | in_lagrange_product_form |
std::vector< number > | lagrange_support_points |
number | lagrange_weight |
Private Types | |
using | map_value_type = decltype(counter_map)::value_type |
using | map_iterator = decltype(counter_map)::iterator |
Private Member Functions | |
void | check_no_subscribers () const noexcept |
Private Attributes | |
std::atomic< unsigned int > | counter |
std::map< std::string, unsigned int > | counter_map |
std::vector< std::atomic< bool > * > | validity_pointers |
const std::type_info * | object_info |
Static Private Attributes | |
static std::mutex | mutex |
This class implements Bernstein basis polynomials of desire degree as described in http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf in the paragraph "Converting from the Bernstein Basis to the Power Basis".
They are used to create the Bernstein finite element FE_Bernstein.
Definition at line 41 of file polynomials_bernstein.h.
|
privateinherited |
The data type used in counter_map.
Definition at line 230 of file subscriptor.h.
|
privateinherited |
The iterator type used in counter_map.
Definition at line 235 of file subscriptor.h.
PolynomialsBernstein< number >::PolynomialsBernstein | ( | const unsigned int | index, |
const unsigned int | degree | ||
) |
Construct the index
-th Bernstein Polynomial of degree degree
.
\begin{align*} B_{\text{index}, \text{degree}} (t) &= \text{binom}(\text{degree}, \text{index}) \cdot t^{\text{index}} \cdot (1 - t)^{\text{degree} - \text{index}} \\ &= \sum_{i = \text{index}}^\text{degree} \cdot (-1)^{i - \text{index}} \cdot \text{binom}(\text{degree}, i) \cdot \text{binom}(i, \text{index}) \cdot t^i \end{align*}
index | |
degree |
Definition at line 45 of file polynomials_bernstein.cc.
|
inlineinherited |
Return the value of this polynomial at the given point.
This function uses the most numerically stable evaluation algorithm for the provided form of the polynomial. If the polynomial is in the product form of roots, the evaluation is based on products of the form (x - x_i), whereas the Horner scheme is used for polynomials in the coefficient form.
Definition at line 817 of file polynomial.h.
|
inherited |
Return the values and the derivatives of the Polynomial at point x
. values[i], i=0,...,values.size()-1
includes the i
th derivative. The number of derivatives to be computed is thus determined by the size of the array passed.
This function uses the Horner scheme for numerical stability of the evaluation for polynomials in the coefficient form or the product of terms involving the roots if that representation is used.
Definition at line 101 of file polynomial.cc.
|
inlineinherited |
Return the values and the derivatives of the Polynomial at point x
. values[i], i=0,...,n_derivatives
includes the i
th derivative. The number of derivatives to be computed is determined by n_derivatives
and values
has to provide sufficient space for n_derivatives
+ 1 values.
This function uses the most numerically stable evaluation algorithm for the provided form of the polynomial. If the polynomial is in the product form of roots, the evaluation is based on products of the form (x - x_i), whereas the Horner scheme is used for polynomials in the coefficient form.
The template type Number2
must implement arithmetic operations such as additions or multiplication with the type number
of the polynomial, and must be convertible from number
by operator=
.
Definition at line 847 of file polynomial.h.
|
inlineinherited |
Similar to the function above, but evaluate the polynomials on several positions at once, as described by the array argument points
. This function is can be faster than the other function when the same polynomial should be evaluated on several positions at once, e.g., the x,y,z coordinates of a point for tensor-product polynomials.
The template type Number2
must implement arithmetic operations such as additions or multiplication with the type number
of the polynomial, and must be convertible from number
by operator=
.
Definition at line 861 of file polynomial.h.
|
inlineinherited |
Degree of the polynomial. This is the degree reflected by the number of coefficients provided by the constructor. Leading non-zero coefficients are not treated separately.
Definition at line 800 of file polynomial.h.
|
inherited |
Scale the abscissa of the polynomial. Given the polynomial p(t) and the scaling t = ax, then the result of this operation is the polynomial q, such that q(x) = p(t).
The operation is performed in place.
Definition at line 166 of file polynomial.cc.
|
staticprotectedinherited |
This function performs the actual scaling.
Definition at line 149 of file polynomial.cc.
|
inherited |
Shift the abscissa oft the polynomial. Given the polynomial p(t) and the shift t = x + a, then the result of this operation is the polynomial q, such that q(x) = p(t).
The template parameter allows to compute the new coefficients with higher accuracy, since all computations are performed with type number2
. This may be necessary, since this operation involves a big number of additions. On a Sun Sparc Ultra with Solaris 2.8, the difference between double
and long double
was not significant, though.
The operation is performed in place, i.e. the coefficients of the present object are changed.
Definition at line 440 of file polynomial.cc.
|
staticprotectedinherited |
This function performs the actual shift
Definition at line 378 of file polynomial.cc.
|
inherited |
Compute the derivative of a polynomial.
Definition at line 459 of file polynomial.cc.
|
inherited |
Compute the primitive of a polynomial. the coefficient of the zero order term of the polynomial is zero.
Definition at line 488 of file polynomial.cc.
|
inherited |
Multiply with a scalar.
Definition at line 204 of file polynomial.cc.
|
inherited |
Multiply with another polynomial.
Definition at line 222 of file polynomial.cc.
|
inherited |
Add a second polynomial.
Definition at line 269 of file polynomial.cc.
|
inherited |
Subtract a second polynomial.
Definition at line 311 of file polynomial.cc.
|
inherited |
Test for equality of two polynomials.
Definition at line 347 of file polynomial.cc.
|
inherited |
Print coefficients.
Definition at line 515 of file polynomial.cc.
|
inlineinherited |
Write or read the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.
Definition at line 1018 of file polynomial.h.
|
virtualinherited |
Return an estimate (in bytes) for the memory consumption of this object.
Definition at line 534 of file polynomial.cc.
|
staticprotectedinherited |
Multiply polynomial by a factor.
Definition at line 191 of file polynomial.cc.
|
protectedinherited |
Transform polynomial form of product of linear factors into standard form, \(\sum_i a_i x^i\). Deletes all data structures related to the product form.
Definition at line 112 of file polynomial.cc.
|
inherited |
Subscribes a user of the object by storing the pointer validity
. The subscriber may be identified by text supplied as identifier
.
Definition at line 136 of file subscriptor.cc.
|
inherited |
Unsubscribes a user from the object.
identifier
and the validity
pointer must be the same as the one supplied to subscribe(). Definition at line 156 of file subscriptor.cc.
|
inlineinherited |
Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.
Definition at line 300 of file subscriptor.h.
|
inlineinherited |
List the subscribers to the input stream
.
Definition at line 317 of file subscriptor.h.
|
inherited |
List the subscribers to deallog
.
Definition at line 204 of file subscriptor.cc.
|
privatenoexceptinherited |
Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.
Definition at line 53 of file subscriptor.cc.
|
protectedinherited |
Coefficients of the polynomial \(\sum_i a_i x^i\). This vector is filled by the constructor of this class and may be passed down by derived classes.
This vector cannot be constant since we want to allow copying of polynomials.
Definition at line 302 of file polynomial.h.
|
protectedinherited |
Stores whether the polynomial is in Lagrange product form, i.e., constructed as a product \((x-x_0) (x-x_1) \ldots (x-x_n)/c\), or not.
Definition at line 308 of file polynomial.h.
|
protectedinherited |
If the polynomial is in Lagrange product form, i.e., constructed as a product \((x-x_0) (x-x_1) \ldots (x-x_n)/c\), store the shifts \(x_i\).
Definition at line 314 of file polynomial.h.
|
protectedinherited |
If the polynomial is in Lagrange product form, i.e., constructed as a product \((x-x_0) (x-x_1) \ldots (x-x_n)/c\), store the weight c.
Definition at line 320 of file polynomial.h.
|
mutableprivateinherited |
Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).
The creator (and owner) of an object is counted in the map below if HE manages to supply identification.
We use the mutable
keyword in order to allow subscription to constant objects also.
This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic
class template.
Definition at line 219 of file subscriptor.h.
|
mutableprivateinherited |
In this map, we count subscriptions for each different identification string supplied to subscribe().
Definition at line 225 of file subscriptor.h.
|
mutableprivateinherited |
In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.
Definition at line 241 of file subscriptor.h.
|
mutableprivateinherited |
Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.
Definition at line 249 of file subscriptor.h.
|
staticprivateinherited |
A mutex used to ensure data consistency when printing out the list of subscribers.
Definition at line 271 of file subscriptor.h.