Reference documentation for deal.II version 9.5.0
|
#include <deal.II/base/function_lib.h>
Public Types | |
using | time_type = typename FunctionTime< typename numbers::NumberTraits< RangeNumberType >::real_type >::time_type |
Public Member Functions | |
PillowFunction (const double offset=0.) | |
virtual double | value (const Point< dim > &p, const unsigned int component=0) const override |
virtual void | value_list (const std::vector< Point< dim > > &points, std::vector< double > &values, const unsigned int component=0) const override |
virtual Tensor< 1, dim > | gradient (const Point< dim > &p, const unsigned int component=0) const override |
virtual void | gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim > > &gradients, const unsigned int component=0) const override |
virtual double | laplacian (const Point< dim > &p, const unsigned int component=0) const override |
virtual void | laplacian_list (const std::vector< Point< dim > > &points, std::vector< double > &values, const unsigned int component=0) const override |
virtual void | vector_value (const Point< dim > &p, Vector< RangeNumberType > &values) const |
virtual void | value_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const |
virtual void | vector_value_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const |
virtual void | vector_values (const std::vector< Point< dim > > &points, std::vector< std::vector< RangeNumberType > > &values) const |
virtual void | vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients) const |
virtual void | gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients, const unsigned int component=0) const |
virtual void | vector_gradients (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const |
virtual void | vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const |
virtual void | vector_laplacian (const Point< dim > &p, Vector< RangeNumberType > &values) const |
virtual void | laplacian_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const |
virtual void | vector_laplacian_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const |
virtual SymmetricTensor< 2, dim, RangeNumberType > | hessian (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values) const |
virtual void | hessian_list (const std::vector< Point< dim > > &points, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values, const unsigned int component=0) const |
virtual void | vector_hessian_list (const std::vector< Point< dim > > &points, std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &values) const |
virtual std::size_t | memory_consumption () const |
Number | get_time () const |
virtual void | set_time (const Number new_time) |
virtual void | advance_time (const Number delta_t) |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Subscriptor functionality | |
Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class. | |
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
unsigned int | n_subscriptions () const |
template<typename StreamType > | |
void | list_subscribers (StreamType &stream) const |
void | list_subscribers () const |
Static Public Member Functions | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Public Attributes | |
const unsigned int | n_components |
Static Public Attributes | |
static constexpr unsigned int | dimension = dim |
Private Types | |
using | map_value_type = decltype(counter_map)::value_type |
using | map_iterator = decltype(counter_map)::iterator |
Private Member Functions | |
void | check_no_subscribers () const noexcept |
Private Attributes | |
const double | offset |
Number | time |
std::atomic< unsigned int > | counter |
std::map< std::string, unsigned int > | counter_map |
std::vector< std::atomic< bool > * > | validity_pointers |
const std::type_info * | object_info |
Static Private Attributes | |
static std::mutex | mutex |
d-quadratic pillow on the unit hypercube.
This is a function for testing the implementation. It has zero Dirichlet boundary values on the domain \((-1,1)^d\). In the inside, it is the product of \(1-x_i^2\) over all space dimensions.
Providing a non-zero argument to the constructor, the whole function can be offset by a constant.
Together with the function, its derivatives and Laplacian are defined.
Definition at line 152 of file function_lib.h.
|
inherited |
The scalar-valued real type used for representing time.
Definition at line 169 of file function.h.
|
privateinherited |
The data type used in counter_map.
Definition at line 230 of file subscriptor.h.
|
privateinherited |
The iterator type used in counter_map.
Definition at line 235 of file subscriptor.h.
Functions::PillowFunction< dim >::PillowFunction | ( | const double | offset = 0. | ) |
Constructor. Provide a constant that will be added to each function value.
Definition at line 254 of file function_lib.cc.
|
overridevirtual |
The value at a single point.
Reimplemented from Function< dim, RangeNumberType >.
Definition at line 261 of file function_lib.cc.
|
overridevirtual |
Values at multiple points.
Definition at line 280 of file function_lib.cc.
|
overridevirtual |
Gradient at a single point.
Reimplemented from Function< dim, RangeNumberType >.
Definition at line 364 of file function_lib.cc.
|
overridevirtual |
Gradients at multiple points.
Definition at line 389 of file function_lib.cc.
|
overridevirtual |
Laplacian at a single point.
Reimplemented from Function< dim, RangeNumberType >.
Definition at line 313 of file function_lib.cc.
|
overridevirtual |
Laplacian at multiple points.
Definition at line 333 of file function_lib.cc.
|
virtualinherited |
Return all components of a vector-valued function at a given point.
values
shall have the right size beforehand, i.e. n_components.
The default implementation will call value() for each component.
Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, ComponentSelectFunction< dim, RangeNumberType >, VectorFunctionFromScalarFunctionObject< dim, RangeNumberType >, VectorFunctionFromTensorFunction< dim, RangeNumberType >, Functions::IncrementalFunction< dim, RangeNumberType >, and Functions::FEFieldFunction< dim, VectorType, spacedim >.
|
virtualinherited |
Set values
to the point values of the specified component of the function at the points
. It is assumed that values
already has the right size, i.e. the same size as the points
array.
By default, this function repeatedly calls value() for each point separately, to fill the output array.
Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, and Functions::FEFieldFunction< dim, VectorType, spacedim >.
|
virtualinherited |
Set values
to the point values of the function at the points
. It is assumed that values
already has the right size, i.e. the same size as the points
array, and that all elements be vectors with the same number of components as this function has.
By default, this function repeatedly calls vector_value() for each point separately, to fill the output array.
Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, VectorFunctionFromTensorFunction< dim, RangeNumberType >, ComponentSelectFunction< dim, RangeNumberType >, and Functions::FEFieldFunction< dim, VectorType, spacedim >.
|
virtualinherited |
For each component of the function, fill a vector of values, one for each point.
The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.
|
virtualinherited |
Return the gradient of all components of the function at the given point.
Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, and Functions::FEFieldFunction< dim, VectorType, spacedim >.
|
virtualinherited |
Set gradients
to the gradients of the specified component of the function at the points
. It is assumed that gradients
already has the right size, i.e. the same size as the points
array.
Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >, and Functions::ConstantFunction< dim, RangeNumberType >.
|
virtualinherited |
For each component of the function, fill a vector of gradient values, one for each point.
The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.
|
virtualinherited |
Set gradients
to the gradients of the function at the points
, for all components. It is assumed that gradients
already has the right size, i.e. the same size as the points
array.
The outer loop over gradients
is over the points in the list, the inner loop over the different components of the function.
Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >, and Functions::ConstantFunction< dim, RangeNumberType >.
|
virtualinherited |
Compute the Laplacian of all components at point p
and store them in values
.
Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.
|
virtualinherited |
Compute the Laplacian of one component at a set of points.
Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.
|
virtualinherited |
Compute the Laplacians of all components at a set of points.
Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.
|
virtualinherited |
Compute the Hessian of a given component at point p
, that is the gradient of the gradient of the function.
Reimplemented in Functions::SignedDistance::Plane< dim >, Functions::IdentityFunction< dim, RangeNumberType >, Functions::CSpline< dim >, Functions::CosineFunction< dim >, Functions::Spherical< dim >, Functions::SymbolicFunction< dim, RangeNumberType >, Functions::CoordinateRestriction< dim >, Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, Functions::SignedDistance::Sphere< dim >, and NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >.
|
virtualinherited |
Compute the Hessian of all components at point p
and store them in values
.
|
virtualinherited |
Compute the Hessian of one component at a set of points.
|
virtualinherited |
Compute the Hessians of all components at a set of points.
|
virtualinherited |
Return an estimate for the memory consumption, in bytes, of this object.
This function is virtual and can be overloaded by derived classes.
Reimplemented in Functions::FlowFunction< dim >, Functions::FlowFunction< 2 >, Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, ComponentSelectFunction< dim, RangeNumberType >, Functions::CSpline< dim >, FunctionDerivative< dim >, Functions::JumpFunction< dim >, Functions::InterpolatedTensorProductGridData< dim >, Functions::InterpolatedUniformGridData< dim >, Functions::Polynomial< dim >, and Functions::Spherical< dim >.
|
inherited |
Return the value of the time variable.
|
virtualinherited |
Set the time to new_time
, overwriting the old value.
|
virtualinherited |
Advance the time by the given time step delta_t
.
|
inherited |
Subscribes a user of the object by storing the pointer validity
. The subscriber may be identified by text supplied as identifier
.
Definition at line 136 of file subscriptor.cc.
|
inherited |
Unsubscribes a user from the object.
identifier
and the validity
pointer must be the same as the one supplied to subscribe(). Definition at line 156 of file subscriptor.cc.
|
inlineinherited |
Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.
Definition at line 300 of file subscriptor.h.
|
inlineinherited |
List the subscribers to the input stream
.
Definition at line 317 of file subscriptor.h.
|
inherited |
List the subscribers to deallog
.
Definition at line 204 of file subscriptor.cc.
|
inlineinherited |
Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.
This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.
Definition at line 309 of file subscriptor.h.
|
privatenoexceptinherited |
Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.
Definition at line 53 of file subscriptor.cc.
|
private |
Definition at line 206 of file function_lib.h.
|
staticconstexprinherited |
Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.
Definition at line 159 of file function.h.
|
inherited |
Number of vector components.
Definition at line 164 of file function.h.
|
privateinherited |
Store the present time.
Definition at line 113 of file function_time.h.
|
mutableprivateinherited |
Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).
The creator (and owner) of an object is counted in the map below if HE manages to supply identification.
We use the mutable
keyword in order to allow subscription to constant objects also.
This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic
class template.
Definition at line 219 of file subscriptor.h.
|
mutableprivateinherited |
In this map, we count subscriptions for each different identification string supplied to subscribe().
Definition at line 225 of file subscriptor.h.
|
mutableprivateinherited |
In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.
Definition at line 241 of file subscriptor.h.
|
mutableprivateinherited |
Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.
Definition at line 249 of file subscriptor.h.
|
staticprivateinherited |
A mutex used to ensure data consistency when printing out the list of subscribers.
Definition at line 271 of file subscriptor.h.