Reference documentation for deal.II version 9.5.0
|
#include <deal.II/base/polynomials_barycentric.h>
Public Member Functions | |
BarycentricPolynomial () | |
BarycentricPolynomial (const TableIndices< dim+1 > &powers, const Number coefficient) | |
void | print (std::ostream &out) const |
TableIndices< dim+1 > | degrees () const |
BarycentricPolynomial< dim, Number > | operator- () const |
template<typename Number2 > | |
BarycentricPolynomial< dim, Number > | operator+ (const Number2 &a) const |
template<typename Number2 > | |
BarycentricPolynomial< dim, Number > | operator- (const Number2 &a) const |
template<typename Number2 > | |
BarycentricPolynomial< dim, Number > | operator* (const Number2 &a) const |
template<typename Number2 > | |
BarycentricPolynomial< dim, Number > | operator/ (const Number2 &a) const |
BarycentricPolynomial< dim, Number > | operator+ (const BarycentricPolynomial< dim, Number > &augend) const |
BarycentricPolynomial< dim, Number > | operator- (const BarycentricPolynomial< dim, Number > &augend) const |
BarycentricPolynomial< dim, Number > | operator* (const BarycentricPolynomial< dim, Number > &multiplicand) const |
BarycentricPolynomial< dim, Number > | barycentric_derivative (const unsigned int coordinate) const |
BarycentricPolynomial< dim, Number > | derivative (const unsigned int coordinate) const |
Number | value (const Point< dim > &point) const |
std::size_t | memory_consumption () const |
Static Public Member Functions | |
static BarycentricPolynomial< dim, Number > | monomial (const unsigned int d) |
Static Protected Member Functions | |
static TableIndices< dim+1 > | index_to_indices (const std::size_t &index, const TableIndices< dim+1 > &extent) |
Protected Attributes | |
Table< dim+1, Number > | coefficients |
Polynomial implemented in barycentric coordinates.
Barycentric coordinates are a coordinate system defined on simplices that are particularly easy to work with since they express coordinates in the simplex as convex combinations of the vertices. For example, any point in a triangle can be written as
\[ (x, y) = c_0 (x_0, y_0) + c_1 (x_1, y_1) + c_2 (x_2, y_2). \]
where each value \(c_i\) is the relative weight of each vertex (so the centroid is, in 2d, where each \(c_i = 1/3\)). Since we only consider convex combinations we can rewrite this equation as
\[ (x, y) = (1 - c_1 - c_2) (x_0, y_0) + c_1 (x_1, y_1) + c_2 (x_2, y_2). \]
This results in three polynomials that are equivalent to \(P^1\) in 2d. More exactly, this class implements a polynomial space defined with the basis, in 2d, of
\begin{align*} t_0(x, y) &= 1 - x - y \\ t_1(x, y) &= x \\ t_2(x, y) &= y \end{align*}
and, in 3d,
\begin{align*} t_0(x, y) &= 1 - x - y - z \\ t_1(x, y) &= x \\ t_2(x, y) &= y \\ t_2(x, y) &= z \end{align*}
which is, in practice, a very convenient basis for defining simplex polynomials: for example, the fourth basis function of a TRI6 element is
\[ 4 * t_1(x, y) * t_2(x, y). \]
Barycentric polynomials in dim
-dimensional space have dim + 1
variables in since t_0
can be written in terms of the other monomials.
Monomials can be conveniently constructed with BarycentricPolynomial::monomial().
Definition at line 83 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number >::BarycentricPolynomial |
Constructor for the zero polynomial.
Definition at line 398 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number >::BarycentricPolynomial | ( | const TableIndices< dim+1 > & | powers, |
const Number | coefficient | ||
) |
Constructor for a monomial.
Definition at line 411 of file polynomials_barycentric.h.
|
static |
Return the specified monomial.
Definition at line 427 of file polynomials_barycentric.h.
void BarycentricPolynomial< dim, Number >::print | ( | std::ostream & | out | ) | const |
Print the polynomial to the output stream with lowest-order terms first. For example, the first P6 basis function is printed as -1 * t0^1 + 2 * t0^2
, where t0
is the first barycentric variable, t1
is the second, etc.
Definition at line 439 of file polynomials_barycentric.h.
TableIndices< dim+1 > BarycentricPolynomial< dim, Number >::degrees |
Degree of each barycentric polynomial.
Definition at line 473 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::operator- |
Unary minus.
Definition at line 485 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::operator+ | ( | const Number2 & | a | ) | const |
Add a scalar.
Definition at line 495 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::operator- | ( | const Number2 & | a | ) | const |
Subtract a scalar.
Definition at line 508 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::operator* | ( | const Number2 & | a | ) | const |
Multiply by a scalar.
Definition at line 518 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::operator/ | ( | const Number2 & | a | ) | const |
Divide by a scalar.
Definition at line 540 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::operator+ | ( | const BarycentricPolynomial< dim, Number > & | augend | ) | const |
Add another barycentric polynomial.
Definition at line 550 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::operator- | ( | const BarycentricPolynomial< dim, Number > & | augend | ) | const |
Subtract another barycentric polynomial.
Definition at line 578 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::operator* | ( | const BarycentricPolynomial< dim, Number > & | multiplicand | ) | const |
Multiply by another barycentric polynomial.
Definition at line 588 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::barycentric_derivative | ( | const unsigned int | coordinate | ) | const |
Differentiate in barycentric coordinates.
Definition at line 624 of file polynomials_barycentric.h.
BarycentricPolynomial< dim, Number > BarycentricPolynomial< dim, Number >::derivative | ( | const unsigned int | coordinate | ) | const |
Differentiate in Cartesian coordinates.
Definition at line 654 of file polynomials_barycentric.h.
Number BarycentricPolynomial< dim, Number >::value | ( | const Point< dim > & | point | ) | const |
Evaluate the polynomial.
Definition at line 665 of file polynomials_barycentric.h.
std::size_t BarycentricPolynomial< dim, Number >::memory_consumption |
Return an estimate, in bytes, of the memory usage of the object.
Definition at line 700 of file polynomials_barycentric.h.
|
staticprotected |
Utility function for barycentric polynomials - its convenient to loop over all the indices at once in a dimension-independent way, but we also need to access the actual indices of the underlying Table object. This utility function converts an integral index into the equivalent TableIndices array (which are also the implicitly stored polynomial exponents).
Definition at line 707 of file polynomials_barycentric.h.
|
protected |
Coefficients of the polynomial. The exponents are the integer indexes.
Definition at line 198 of file polynomials_barycentric.h.