233 * #include <deal.II/base/mpi.h>
234 * #include <deal.II/base/function.h>
235 * #include <deal.II/base/parameter_handler.h>
236 * #include <deal.II/base/
point.h>
237 * #include <deal.II/base/quadrature_lib.h>
238 * #include <deal.II/base/symmetric_tensor.h>
239 * #include <deal.II/base/tensor.h>
240 * #include <deal.II/base/timer.h>
241 * #include <deal.II/base/work_stream.h>
242 * #include <deal.II/dofs/dof_renumbering.h>
243 * #include <deal.II/dofs/dof_tools.h>
244 * #include <deal.II/base/quadrature_point_data.h>
245 * #include <deal.II/grid/filtered_iterator.h>
246 * #include <deal.II/grid/grid_generator.h>
247 * #include <deal.II/grid/grid_tools.h>
248 * #include <deal.II/grid/grid_in.h>
249 * #include <deal.II/grid/manifold_lib.h>
250 * #include <deal.II/grid/
tria.h>
251 * #include <deal.II/fe/fe_dgp_monomial.h>
252 * #include <deal.II/fe/fe_q.h>
253 * #include <deal.II/fe/fe_system.h>
254 * #include <deal.II/fe/fe_tools.h>
255 * #include <deal.II/fe/fe_values.h>
256 * #include <deal.II/fe/mapping_q_eulerian.h>
257 * #include <deal.II/lac/block_sparsity_pattern.h>
258 * #include <deal.II/lac/dynamic_sparsity_pattern.h>
259 * #include <deal.II/lac/affine_constraints.h>
260 * #include <deal.II/lac/full_matrix.h>
261 * #include <deal.II/lac/solver_selector.h>
262 * #include <deal.II/lac/trilinos_block_sparse_matrix.h>
263 * #include <deal.II/lac/trilinos_precondition.h>
264 * #include <deal.II/lac/trilinos_sparsity_pattern.h>
265 * #include <deal.II/lac/trilinos_sparse_matrix.h>
266 * #include <deal.II/lac/trilinos_vector.h>
268 * #include <deal.II/lac/packaged_operation.h>
269 * #include <deal.II/lac/trilinos_linear_operator.h>
270 * #include <deal.II/numerics/data_out.h>
271 * #include <deal.II/numerics/vector_tools.h>
272 * #include <deal.II/physics/transformations.h>
273 * #include <deal.II/physics/elasticity/kinematics.h>
274 * #include <deal.II/physics/elasticity/standard_tensors.h>
275 * #include <iostream>
279 * #include <deal.II/grid/grid_out.h>
281 *
namespace ViscoElasStripHole
285 *
namespace Parameters
287 *
struct BoundaryConditions
289 * BoundaryConditions();
291 * std::string driver;
310 * BoundaryConditions::BoundaryConditions()
312 * driver (
"Neumann"),
316 * boundary_id_minus_X (1),
317 * boundary_id_plus_X (2),
318 * boundary_id_minus_Y (3),
319 * boundary_id_plus_Y (4),
320 * boundary_id_minus_Z (5),
321 * boundary_id_plus_Z (6),
322 * boundary_id_hole (10),
323 * manifold_id_hole (10)
327 * prm.enter_subsection(
"Boundary conditions");
329 * prm.declare_entry(
"Driver",
"Dirichlet",
331 *
"Driver boundary condition for the problem");
332 * prm.declare_entry(
"Final stretch",
"2.0",
334 *
"Positive stretch applied length-ways to the strip");
335 * prm.declare_entry(
"Applied pressure",
"0.0",
337 *
"Hydrostatic pressure applied (in the referential configuration) to the interior surface of the hole");
338 * prm.declare_entry(
"Load time",
"2.5",
340 *
"Total time over which the stretch/pressure is ramped up");
342 * prm.leave_subsection();
346 * prm.enter_subsection(
"Boundary conditions");
348 * driver = prm.get(
"Driver");
349 * stretch = prm.get_double(
"Final stretch");
350 * pressure = prm.get_double(
"Applied pressure");
351 * load_time = prm.get_double(
"Load time");
353 * prm.leave_subsection();
357 *
unsigned int poly_degree;
358 *
unsigned int quad_order;
366 * prm.enter_subsection(
"Finite element system");
368 * prm.declare_entry(
"Polynomial degree",
"2",
370 *
"Displacement system polynomial order");
371 * prm.declare_entry(
"Quadrature order",
"3",
373 *
"Gauss quadrature order");
375 * prm.leave_subsection();
379 * prm.enter_subsection(
"Finite element system");
381 * poly_degree = prm.get_integer(
"Polynomial degree");
382 * quad_order = prm.get_integer(
"Quadrature order");
384 * prm.leave_subsection();
391 *
double hole_diameter;
392 *
double hole_division_fraction;
393 *
unsigned int n_repetitions_xy;
394 *
unsigned int n_repetitions_z;
395 *
unsigned int global_refinement;
404 * prm.enter_subsection(
"Geometry");
406 * prm.declare_entry(
"Length",
"100.0",
408 *
"Total sample length");
409 * prm.declare_entry(
"Width",
"50.0",
411 *
"Total sample width");
412 * prm.declare_entry(
"Thickness",
"5.0",
414 *
"Total sample thickness");
415 * prm.declare_entry(
"Hole diameter",
"20.0",
418 * prm.declare_entry(
"Hole division fraction",
"0.5",
420 *
"A geometric factor affecting the discretisation near the hole");
421 * prm.declare_entry(
"Number of subdivisions in cross-section",
"2",
423 *
"A factor defining the number of initial grid subdivisions in the cross-section");
424 * prm.declare_entry(
"Number of subdivisions thickness",
"6",
426 *
"A factor defining the number of initial grid subdivisions through the thickness");
427 * prm.declare_entry(
"Global refinement",
"2",
429 *
"Global refinement level");
430 * prm.declare_entry(
"Grid scale",
"1e-3",
432 *
"Global grid scaling factor");
434 * prm.leave_subsection();
438 * prm.enter_subsection(
"Geometry");
440 * length = prm.get_double(
"Length");
441 * width = prm.get_double(
"Width");
442 * thickness = prm.get_double(
"Thickness");
443 * hole_diameter = prm.get_double(
"Hole diameter");
444 * hole_division_fraction = prm.get_double(
"Hole division fraction");
445 * n_repetitions_xy = prm.get_integer(
"Number of subdivisions in cross-section");
446 * n_repetitions_z = prm.get_integer(
"Number of subdivisions thickness");
447 * global_refinement = prm.get_integer(
"Global refinement");
448 *
scale = prm.get_double(
"Grid scale");
450 * prm.leave_subsection();
465 * prm.enter_subsection(
"Material properties");
467 * prm.declare_entry(
"Poisson's ratio",
"0.4999",
469 *
"Poisson's ratio");
470 * prm.declare_entry(
"Elastic shear modulus",
"80.194e6",
472 *
"Elastic shear modulus");
473 * prm.declare_entry(
"Viscous shear modulus",
"80.194e6",
475 *
"Viscous shear modulus");
476 * prm.declare_entry(
"Viscous relaxation time",
"2.0",
478 *
"Viscous relaxation time");
480 * prm.leave_subsection();
484 * prm.enter_subsection(
"Material properties");
486 * nu_e = prm.get_double(
"Poisson's ratio");
487 * mu_e = prm.get_double(
"Elastic shear modulus");
488 * mu_v = prm.get_double(
"Viscous shear modulus");
489 * tau_v = prm.get_double(
"Viscous relaxation time");
491 * prm.leave_subsection();
493 *
struct LinearSolver
495 * std::string type_lin;
497 *
double max_iterations_lin;
505 * prm.enter_subsection(
"Linear solver");
507 * prm.declare_entry(
"Solver type",
"cg",
509 *
"Type of solver used to solve the linear system");
510 * prm.declare_entry(
"Residual",
"1e-6",
512 *
"Linear solver residual (scaled by residual norm)");
513 * prm.declare_entry(
"Max iteration multiplier",
"1",
515 *
"Linear solver iterations (multiples of the system matrix size)");
517 * prm.leave_subsection();
521 * prm.enter_subsection(
"Linear solver");
523 * type_lin = prm.get(
"Solver type");
524 * tol_lin = prm.get_double(
"Residual");
525 * max_iterations_lin = prm.get_double(
"Max iteration multiplier");
527 * prm.leave_subsection();
529 *
struct NonlinearSolver
531 *
unsigned int max_iterations_NR;
541 * prm.enter_subsection(
"Nonlinear solver");
543 * prm.declare_entry(
"Max iterations Newton-Raphson",
"10",
545 *
"Number of Newton-Raphson iterations allowed");
546 * prm.declare_entry(
"Tolerance displacement",
"1.0e-6",
548 *
"Displacement error tolerance");
549 * prm.declare_entry(
"Tolerance force",
"1.0e-9",
551 *
"Force residual tolerance");
553 * prm.leave_subsection();
557 * prm.enter_subsection(
"Nonlinear solver");
559 * max_iterations_NR = prm.get_integer(
"Max iterations Newton-Raphson");
560 * tol_f = prm.get_double(
"Tolerance force");
561 * tol_u = prm.get_double(
"Tolerance displacement");
563 * prm.leave_subsection();
576 * prm.enter_subsection(
"Time");
578 * prm.declare_entry(
"End time",
"1",
581 * prm.declare_entry(
"Time step size",
"0.1",
585 * prm.leave_subsection();
589 * prm.enter_subsection(
"Time");
591 * end_time = prm.get_double(
"End time");
592 * delta_t = prm.get_double(
"Time step size");
594 * prm.leave_subsection();
596 *
struct AllParameters
597 * :
public BoundaryConditions,
601 *
public LinearSolver,
602 *
public NonlinearSolver,
605 * AllParameters(
const std::string &input_file);
611 * AllParameters::AllParameters(
const std::string &input_file)
614 * declare_parameters(prm);
615 * prm.parse_input(input_file);
616 * parse_parameters(prm);
620 * BoundaryConditions::declare_parameters(prm);
621 * FESystem::declare_parameters(prm);
622 * Geometry::declare_parameters(prm);
623 * Materials::declare_parameters(prm);
624 * LinearSolver::declare_parameters(prm);
625 * NonlinearSolver::declare_parameters(prm);
626 * Time::declare_parameters(prm);
630 * BoundaryConditions::parse_parameters(prm);
631 * FESystem::parse_parameters(prm);
632 * Geometry::parse_parameters(prm);
633 * Materials::parse_parameters(prm);
634 * LinearSolver::parse_parameters(prm);
635 * NonlinearSolver::parse_parameters(prm);
636 * Time::parse_parameters(prm);
642 * Time (
const double time_end,
643 *
const double delta_t)
647 * time_end(time_end),
652 *
double current() const
654 *
return time_current;
660 *
double get_delta_t() const
664 *
unsigned int get_timestep() const
670 * time_current += delta_t;
674 *
unsigned int timestep;
675 *
double time_current;
676 *
const double time_end;
677 *
const double delta_t;
680 *
class Material_Compressible_Three_Field_Linear_Viscoelastic
683 * Material_Compressible_Three_Field_Linear_Viscoelastic(
const double mu_e,
686 *
const double tau_v,
689 * kappa((2.0 * mu_e * (1.0 + nu_e)) / (3.0 * (1.0 - 2.0 * nu_e))),
697 *
Assert(kappa > 0, ExcInternalError());
699 * ~Material_Compressible_Three_Field_Linear_Viscoelastic()
704 *
const double &p_tilde)
const
706 *
return get_tau_iso(F) + get_tau_vol(F,p_tilde);
709 *
const double &p_tilde)
const
711 *
return get_Jc_iso(F) + get_Jc_vol(F,p_tilde);
714 * get_dPsi_vol_dJ(
const double &J_tilde)
const
716 *
return (kappa / 2.0) * (J_tilde - 1.0 / J_tilde);
719 * get_d2Psi_vol_dJ2(
const double &J_tilde)
const
721 *
return ( (kappa / 2.0) * (1.0 + 1.0 / (J_tilde * J_tilde)));
733 * Assumes
first-oder backward Euler time discretisation
736 * Q_n_t = (1.0/(1.0 + time.get_delta_t()/tau_v))*(Q_t1 + (time.get_delta_t()/tau_v)*
invert(C_bar));
739 * update_end_timestep()
745 *
const double kappa;
748 *
const double tau_v;
755 *
const double &p_tilde)
const
774 * Elastic Neo-Hookean + Linder2011 eq 47
777 *
return mu_e * b_bar
781 *
const double &p_tilde)
const
784 *
return p_tilde * det_F
799 *
return (2.0 / dim) *
trace(tau_bar)
801 * - (2.0 / dim) * (tau_iso_x_I + I_x_tau_iso)
809 * Elastic Neo-Hookean + Linder2011 eq 56
821 *
virtual ~PointHistory()
824 * setup_lqp (
const Parameters::AllParameters ¶meters,
827 * material.reset(
new Material_Compressible_Three_Field_Linear_Viscoelastic<dim>(
828 * parameters.mu_e, parameters.nu_e,
829 * parameters.mu_v, parameters.tau_v,
835 *
const double &p_tilde)
const
837 *
return material->get_tau(F, p_tilde);
841 *
const double &p_tilde)
const
843 *
return material->get_Jc(F, p_tilde);
846 * get_dPsi_vol_dJ(
const double &J_tilde)
const
848 *
return material->get_dPsi_vol_dJ(J_tilde);
851 * get_d2Psi_vol_dJ2(
const double &J_tilde)
const
853 *
return material->get_d2Psi_vol_dJ2(J_tilde);
857 *
const double &p_tilde,
858 *
const double &J_tilde)
860 * material->update_internal_equilibrium(F,p_tilde,J_tilde);
863 * update_end_timestep()
865 * material->update_end_timestep();
868 * std::shared_ptr< Material_Compressible_Three_Field_Linear_Viscoelastic<dim> > material;
874 * Solid(
const std::string &input_file);
880 *
struct PerTaskData_ASM;
881 *
struct ScratchData_ASM;
886 *
const double half_length,
887 *
const double half_width,
888 *
const double hole_radius,
889 *
const unsigned int n_repetitions_xy = 1,
890 *
const double hole_division_fraction = 0.25);
892 * setup_system(LA::MPI::BlockVector &solution_delta);
894 * determine_component_extractors();
896 * assemble_system(
const LA::MPI::BlockVector &solution_delta);
899 * ScratchData_ASM &scratch,
900 * PerTaskData_ASM &data)
const;
902 * copy_local_to_global_system(
const PerTaskData_ASM &data);
904 * make_constraints(
const int &it_nr);
908 * solve_nonlinear_timestep(LA::MPI::BlockVector &solution_delta);
909 * std::pair<unsigned int, double>
910 * solve_linear_system(LA::MPI::BlockVector &newton_update);
911 * LA::MPI::BlockVector
912 * get_solution_total(
const LA::MPI::BlockVector &solution_delta)
const;
914 * update_end_timestep();
916 * output_results(
const unsigned int timestep,
917 *
const double current_time)
const;
919 * compute_vertex_positions(std::vector<double> &real_time,
920 * std::vector<std::vector<
Point<dim> > > &tracked_vertices,
921 *
const LA::MPI::BlockVector &solution_total)
const;
925 * Parallel communication
933 * Parameters::AllParameters parameters;
938 * PointHistory<dim> > quadrature_point_history;
939 *
const unsigned int degree;
942 *
const unsigned int dofs_per_cell;
946 *
static const unsigned int n_blocks = 3;
947 *
static const unsigned int n_components = dim + 2;
948 *
static const unsigned int first_u_component = 0;
949 *
static const unsigned int p_component = dim;
950 *
static const unsigned int J_component = dim + 1;
962 * std::vector<unsigned int> block_component;
969 * std::vector<IndexSet> all_locally_owned_dofs;
972 * std::vector<IndexSet> locally_owned_partitioning;
973 * std::vector<IndexSet> locally_relevant_partitioning;
974 * std::vector<types::global_dof_index> dofs_per_block;
975 * std::vector<types::global_dof_index> element_indices_u;
976 * std::vector<types::global_dof_index> element_indices_p;
977 * std::vector<types::global_dof_index> element_indices_J;
979 *
const QGauss<dim - 1> qf_face;
980 *
const unsigned int n_q_points;
981 *
const unsigned int n_q_points_f;
983 * LA::BlockSparseMatrix tangent_matrix;
984 * LA::MPI::BlockVector system_rhs;
985 * LA::MPI::BlockVector solution_n;
990 *
norm(1.0), u(1.0), p(1.0), J(1.0)
999 *
void normalise(
const Errors &rhs)
1001 *
if (rhs.norm != 0.0)
1010 *
double norm, u, p, J;
1012 * Errors error_residual, error_residual_0, error_residual_norm, error_update,
1013 * error_update_0, error_update_norm;
1015 * get_error_residual(Errors &error_residual);
1017 * get_error_update(
const LA::MPI::BlockVector &newton_update,
1018 * Errors &error_update);
1019 * std::pair<double, std::pair<double,double> >
1020 * get_error_dilation(
const LA::MPI::BlockVector &solution_total)
const;
1022 * print_conv_header();
1024 * print_conv_footer(
const LA::MPI::BlockVector &solution_delta);
1026 *
template <
int dim>
1027 * Solid<dim>::Solid(
const std::string &input_file)
1029 * mpi_communicator(MPI_COMM_WORLD),
1032 * pcout(std::cout, this_mpi_process == 0),
1033 * parameters(input_file),
1035 * time(parameters.end_time, parameters.delta_t),
1036 * timer(mpi_communicator,
1040 * degree(parameters.poly_degree),
1041 * fe(
FE_Q<dim>(parameters.poly_degree), dim,
1045 * dofs_per_cell (fe.dofs_per_cell),
1046 * u_fe(first_u_component),
1047 * p_fe(p_component),
1048 * J_fe(J_component),
1049 * dofs_per_block(n_blocks),
1050 * qf_cell(parameters.quad_order),
1051 * qf_face(parameters.quad_order),
1052 * n_q_points (qf_cell.size()),
1053 * n_q_points_f (qf_face.size())
1055 *
Assert(dim==2 || dim==3, ExcMessage(
"This problem only works in 2 or 3 space dimensions."));
1056 * determine_component_extractors();
1058 *
template <
int dim>
1059 * Solid<dim>::~Solid()
1061 * dof_handler.clear();
1063 *
template <
int dim>
1064 *
void Solid<dim>::run()
1066 * LA::MPI::BlockVector solution_delta;
1069 * setup_system(solution_delta);
1072 * constraints.
close();
1074 * J_mask (J_component, n_components);
1081 * output_results(time.get_timestep(), time.current());
1086 * Some points
for post-processing
1089 * std::vector<double> real_time;
1090 * real_time.push_back(0);
1091 * std::vector<std::vector<Point<dim> > > tracked_vertices (4);
1094 * p[1] = parameters.length/2.0;
1095 * tracked_vertices[0].push_back(p*parameters.scale);
1099 * p[1] = parameters.hole_diameter/2.0;
1100 * tracked_vertices[1].push_back(p*parameters.scale);
1104 * p[0] = parameters.hole_diameter/2.0;
1105 * tracked_vertices[2].push_back(p*parameters.scale);
1109 * p[0] = parameters.width/2.0;
1110 * tracked_vertices[3].push_back(p*parameters.scale);
1113 *
while (time.current() < time.end()+0.01*time.get_delta_t())
1115 * solve_nonlinear_timestep(solution_delta);
1116 * solution_n += solution_delta;
1117 * solution_delta = 0.0;
1118 * output_results(time.get_timestep(), time.current());
1119 * compute_vertex_positions(real_time,
1121 * get_solution_total(solution_delta));
1122 * update_end_timestep();
1126 * pcout <<
"\n\n*** Spatial position history for tracked vertices ***" << std::endl;
1127 *
for (
unsigned int t=0; t<real_time.size(); ++t)
1132 *
for (
unsigned int p=0; p<tracked_vertices.size(); ++p)
1134 *
for (
unsigned int d=0;
d<dim; ++
d)
1136 * pcout <<
"Point " << p <<
" [" <<
d <<
"]";
1137 *
if (!(p == tracked_vertices.size()-1 && d == dim-1))
1141 * pcout << std::endl;
1144 * pcout << std::setprecision(6);
1145 * pcout << real_time[t] <<
",";
1146 *
for (
unsigned int p=0; p<tracked_vertices.size(); ++p)
1148 *
Assert(tracked_vertices[p].size() == real_time.size(),
1149 * ExcMessage(
"Vertex not tracked at each timestep"));
1150 *
for (
unsigned int d=0;
d<dim; ++
d)
1152 * pcout << tracked_vertices[p][t][
d];
1153 *
if (!(p == tracked_vertices.size()-1 && d == dim-1))
1157 * pcout << std::endl;
1160 *
template <
int dim>
1161 *
struct Solid<dim>::PerTaskData_ASM
1165 * std::vector<types::global_dof_index> local_dof_indices;
1166 * PerTaskData_ASM(
const unsigned int dofs_per_cell)
1169 * cell_rhs(dofs_per_cell),
1170 * local_dof_indices(dofs_per_cell)
1178 *
template <
int dim>
1179 *
struct Solid<dim>::ScratchData_ASM
1181 *
const LA::MPI::BlockVector &solution_total;
1185 * Integration helper
1196 * std::vector<Tensor<2, dim> > solution_grads_u_total;
1197 * std::vector<double> solution_values_p_total;
1198 * std::vector<double> solution_values_J_total;
1205 * std::vector<std::vector<double> > Nx;
1206 * std::vector<std::vector<Tensor<2, dim> > > grad_Nx;
1207 * std::vector<std::vector<SymmetricTensor<2, dim> > > symm_grad_Nx;
1212 *
const LA::MPI::BlockVector &solution_total)
1214 * solution_total (solution_total),
1215 * fe_values_ref(fe_cell, qf_cell, uf_cell),
1216 * fe_face_values_ref(fe_cell, qf_face, uf_face),
1217 * solution_grads_u_total(qf_cell.size()),
1218 * solution_values_p_total(qf_cell.size()),
1219 * solution_values_J_total(qf_cell.size()),
1220 * Nx(qf_cell.size(),
1221 * std::vector<double>(fe_cell.dofs_per_cell)),
1222 * grad_Nx(qf_cell.size(),
1224 * symm_grad_Nx(qf_cell.size(),
1226 * (fe_cell.dofs_per_cell))
1228 * ScratchData_ASM(
const ScratchData_ASM &rhs)
1230 * solution_total (rhs.solution_total),
1231 * fe_values_ref(rhs.fe_values_ref.get_fe(),
1232 * rhs.fe_values_ref.get_quadrature(),
1233 * rhs.fe_values_ref.get_update_flags()),
1234 * fe_face_values_ref(rhs.fe_face_values_ref.get_fe(),
1235 * rhs.fe_face_values_ref.get_quadrature(),
1236 * rhs.fe_face_values_ref.get_update_flags()),
1237 * solution_grads_u_total(rhs.solution_grads_u_total),
1238 * solution_values_p_total(rhs.solution_values_p_total),
1239 * solution_values_J_total(rhs.solution_values_J_total),
1241 * grad_Nx(rhs.grad_Nx),
1242 * symm_grad_Nx(rhs.symm_grad_Nx)
1246 *
const unsigned int n_q_points = solution_grads_u_total.size();
1247 *
const unsigned int n_dofs_per_cell = Nx[0].size();
1249 *
Assert(solution_grads_u_total.size() == n_q_points,
1250 * ExcInternalError());
1251 *
Assert(solution_values_p_total.size() == n_q_points,
1252 * ExcInternalError());
1253 *
Assert(solution_values_J_total.size() == n_q_points,
1254 * ExcInternalError());
1255 *
Assert(Nx.size() == n_q_points,
1256 * ExcInternalError());
1257 *
Assert(grad_Nx.size() == n_q_points,
1258 * ExcInternalError());
1259 *
Assert(symm_grad_Nx.size() == n_q_points,
1260 * ExcInternalError());
1262 *
for (
unsigned int q_point = 0; q_point < n_q_points; ++q_point)
1264 *
Assert( Nx[q_point].size() == n_dofs_per_cell, ExcInternalError());
1265 *
Assert( grad_Nx[q_point].size() == n_dofs_per_cell,
1266 * ExcInternalError());
1267 *
Assert( symm_grad_Nx[q_point].size() == n_dofs_per_cell,
1268 * ExcInternalError());
1270 * solution_grads_u_total[q_point] = 0.0;
1271 * solution_values_p_total[q_point] = 0.0;
1272 * solution_values_J_total[q_point] = 0.0;
1273 *
for (
unsigned int k = 0; k < n_dofs_per_cell; ++k)
1275 * Nx[q_point][k] = 0.0;
1276 * grad_Nx[q_point][k] = 0.0;
1277 * symm_grad_Nx[q_point][k] = 0.0;
1283 *
void Solid<2>::make_grid()
1285 *
const int dim = 2;
1286 *
const double tol = 1
e-12;
1288 * parameters.length/2.0,
1289 * parameters.width/2.0,
1290 * parameters.hole_diameter/2.0,
1291 * parameters.n_repetitions_xy,
1292 * parameters.hole_division_fraction);
1296 * Clear boundary ID
's
1299 * for (typename Triangulation<dim>::active_cell_iterator
1300 * cell = triangulation.begin_active();
1301 * cell != triangulation.end(); ++cell)
1303 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
1304 * if (cell->face(face)->at_boundary())
1306 * cell->face(face)->set_all_boundary_ids(0);
1312 * Set boundary IDs and and manifolds
1315 * const Point<dim> centre (0,0);
1316 * for (typename Triangulation<dim>::active_cell_iterator
1317 * cell = triangulation.begin_active();
1318 * cell != triangulation.end(); ++cell)
1320 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
1321 * if (cell->face(face)->at_boundary())
1328 * if (std::abs(cell->face(face)->center()[0] - 0.0) < tol)
1330 * cell->face(face)->set_boundary_id(parameters.boundary_id_minus_X);
1332 * else if (std::abs(cell->face(face)->center()[0] - parameters.width/2.0) < tol)
1334 * cell->face(face)->set_boundary_id(parameters.boundary_id_plus_X);
1336 * else if (std::abs(cell->face(face)->center()[1] - 0.0) < tol)
1338 * cell->face(face)->set_boundary_id(parameters.boundary_id_minus_Y);
1340 * else if (std::abs(cell->face(face)->center()[1] - parameters.length/2.0) < tol)
1342 * cell->face(face)->set_boundary_id(parameters.boundary_id_plus_Y);
1346 * for (unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_face; ++vertex)
1347 * if (std::abs(cell->vertex(vertex).distance(centre) - parameters.hole_diameter/2.0) < tol)
1349 * cell->face(face)->set_boundary_id(parameters.boundary_id_hole);
1359 * for (unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_face; ++vertex)
1360 * if (std::abs(cell->vertex(vertex).distance(centre) - parameters.hole_diameter/2.0) < tol)
1362 * cell->face(face)->set_manifold_id(parameters.manifold_id_hole);
1367 * static SphericalManifold<dim> spherical_manifold (centre);
1368 * triangulation.set_manifold(parameters.manifold_id_hole,spherical_manifold);
1369 * triangulation.refine_global(parameters.global_refinement);
1370 * GridTools::scale(parameters.scale,triangulation);
1373 * void Solid<3>::make_grid()
1375 * const int dim = 3;
1376 * const double tol = 1e-12;
1377 * Triangulation<2> tria_2d;
1378 * make_2d_quarter_plate_with_hole(tria_2d,
1379 * parameters.length/2.0,
1380 * parameters.width/2.0,
1381 * parameters.hole_diameter/2.0,
1382 * parameters.n_repetitions_xy,
1383 * parameters.hole_division_fraction);
1384 * GridGenerator::extrude_triangulation(tria_2d,
1385 * parameters.n_repetitions_z+1,
1386 * parameters.thickness/2.0,
1391 * Clear boundary ID's
1398 *
for (
unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
1399 *
if (cell->face(face)->at_boundary())
1401 * cell->face(face)->set_all_boundary_ids(0);
1407 * Set boundary IDs and and manifolds
1416 *
for (
unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
1417 *
if (cell->face(face)->at_boundary())
1424 *
if (
std::abs(cell->face(face)->center()[0] - 0.0) < tol)
1426 * cell->face(face)->set_boundary_id(parameters.boundary_id_minus_X);
1428 *
else if (
std::abs(cell->face(face)->center()[0] - parameters.width/2.0) < tol)
1430 * cell->face(face)->set_boundary_id(parameters.boundary_id_plus_X);
1432 *
else if (
std::abs(cell->face(face)->center()[1] - 0.0) < tol)
1434 * cell->face(face)->set_boundary_id(parameters.boundary_id_minus_Y);
1436 *
else if (
std::abs(cell->face(face)->center()[1] - parameters.length/2.0) < tol)
1438 * cell->face(face)->set_boundary_id(parameters.boundary_id_plus_Y);
1440 *
else if (
std::abs(cell->face(face)->center()[2] - 0.0) < tol)
1442 * cell->face(face)->set_boundary_id(parameters.boundary_id_minus_Z);
1444 *
else if (
std::abs(cell->face(face)->center()[2] - parameters.thickness/2.0) < tol)
1446 * cell->face(face)->set_boundary_id(parameters.boundary_id_plus_Z);
1450 *
for (
unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_face; ++vertex)
1454 * Project the cell vertex to the XY plane and
1455 * test the distance from the
cylinder axis
1458 *
Point<dim> vertex_proj = cell->vertex(vertex);
1459 * vertex_proj[2] = 0.0;
1460 *
if (
std::abs(vertex_proj.distance(centre) - parameters.hole_diameter/2.0) < tol)
1462 * cell->face(face)->set_boundary_id(parameters.boundary_id_hole);
1473 *
for (
unsigned int vertex=0; vertex<GeometryInfo<dim>::vertices_per_face; ++vertex)
1477 * Project the cell vertex to the XY plane and
1478 * test the distance from the
cylinder axis
1481 *
Point<dim> vertex_proj = cell->vertex(vertex);
1482 * vertex_proj[2] = 0.0;
1483 *
if (
std::abs(vertex_proj.distance(centre) - parameters.hole_diameter/2.0) < 1
e-12)
1487 * Set manifold ID on face and edges
1490 * cell->face(face)->set_all_manifold_ids(parameters.manifold_id_hole);
1497 *
triangulation.set_manifold(parameters.manifold_id_hole,cylindrical_manifold);
1498 *
triangulation.refine_global(parameters.global_refinement);
1501 *
template <
int dim>
1502 *
void Solid<dim>::make_2d_quarter_plate_with_hole(
Triangulation<2> &tria_2d,
1503 *
const double half_length,
1504 *
const double half_width,
1505 *
const double hole_radius,
1506 *
const unsigned int n_repetitions_xy,
1507 *
const double hole_division_fraction)
1509 *
const double length = 2.0*half_length;
1510 *
const double width = 2.0*half_width;
1511 *
const double hole_diameter = 2.0*hole_radius;
1513 *
const double internal_width = hole_diameter + hole_division_fraction*(width - hole_diameter);
1518 * hole_diameter/2.0,
1519 * internal_width/2.0);
1521 * std::set<typename Triangulation<2>::active_cell_iterator > cells_to_remove;
1523 * cell = tria_plate_hole.begin_active();
1524 * cell != tria_plate_hole.end(); ++cell)
1528 * Remove all cells that are not in the
first quadrant
1531 *
if (cell->center()[0] < 0.0 || cell->center()[1] < 0.0)
1532 * cells_to_remove.insert(cell);
1534 *
Assert(cells_to_remove.size() > 0, ExcInternalError());
1535 *
Assert(cells_to_remove.size() != tria_plate_hole.n_active_cells(), ExcInternalError());
1544 * Subdivide the plate so that we
're left one
1545 * cell to remove (we'll replace
this with the
1546 * plate with the hole) and then make the
1547 * rest of the subdivisions so that we
're left
1548 * with cells with a decent aspect ratio
1551 * std::vector<std::vector<double> > step_sizes;
1553 * std::vector<double> subdivision_width;
1554 * subdivision_width.push_back(internal_width/2.0);
1555 * const double width_remaining = (width - internal_width)/2.0;
1556 * const unsigned int n_subs = static_cast<unsigned int>(std::max(1.0,std::ceil(width_remaining/(internal_width/2.0))));
1557 * Assert(n_subs>0, ExcInternalError());
1558 * for (unsigned int s=0; s<n_subs; ++s)
1559 * subdivision_width.push_back(width_remaining/n_subs);
1560 * step_sizes.push_back(subdivision_width);
1562 * const double sum_half_width = std::accumulate(subdivision_width.begin(), subdivision_width.end(), 0.0);
1563 * (void)sum_half_width;
1564 * Assert(std::abs(sum_half_width-width/2.0) < 1e-12, ExcInternalError());
1567 * std::vector<double> subdivision_length;
1568 * subdivision_length.push_back(internal_width/2.0);
1569 * const double length_remaining = (length - internal_width)/2.0;
1570 * const unsigned int n_subs = static_cast<unsigned int>(std::max(1.0,std::ceil(length_remaining/(internal_width/2.0))));
1571 * Assert(n_subs>0, ExcInternalError());
1572 * for (unsigned int s=0; s<n_subs; ++s)
1573 * subdivision_length.push_back(length_remaining/n_subs);
1574 * step_sizes.push_back(subdivision_length);
1576 * const double sum_half_length = std::accumulate(subdivision_length.begin(), subdivision_length.end(), 0.0);
1577 * (void)sum_half_length;
1578 * Assert(std::abs(sum_half_length-length/2.0) < 1e-12, ExcInternalError());
1581 * GridGenerator::subdivided_hyper_rectangle(tria_plate,
1583 * Point<2>(0.0, 0.0),
1584 * Point<2>(width/2.0, length/2.0));
1586 * std::set<typename Triangulation<2>::active_cell_iterator > cells_to_remove;
1587 * for (typename Triangulation<2>::active_cell_iterator
1588 * cell = tria_plate.begin_active();
1589 * cell != tria_plate.end(); ++cell)
1593 * Remove all cells that are in the first quadrant
1596 * if (cell->center()[0] < internal_width/2.0 && cell->center()[1] < internal_width/2.0)
1597 * cells_to_remove.insert(cell);
1599 * Assert(cells_to_remove.size() > 0, ExcInternalError());
1600 * Assert(cells_to_remove.size() != tria_plate.n_active_cells(), ExcInternalError());
1601 * GridGenerator::create_triangulation_with_removed_cells(tria_plate,cells_to_remove,tria_cut_plate);
1604 * Triangulation<2> tria_2d_not_flat;
1605 * GridGenerator::merge_triangulations(tria_quarter_plate_hole,
1607 * tria_2d_not_flat);
1611 * Attach a manifold to the curved boundary and refine
1612 * Note: We can only guarentee that the vertices sit on
1613 * the curve, so we must test with their position instead
1614 * of the cell centre.
1617 * const Point<2> centre_2d (0,0);
1618 * for (typename Triangulation<2>::active_cell_iterator
1619 * cell = tria_2d_not_flat.begin_active();
1620 * cell != tria_2d_not_flat.end(); ++cell)
1622 * for (unsigned int face=0; face<GeometryInfo<2>::faces_per_cell; ++face)
1623 * if (cell->face(face)->at_boundary())
1624 * for (unsigned int vertex=0; vertex<GeometryInfo<2>::vertices_per_face; ++vertex)
1625 * if (std::abs(cell->vertex(vertex).distance(centre_2d) - hole_diameter/2.0) < 1e-12)
1627 * cell->face(face)->set_manifold_id(10);
1631 * SphericalManifold<2> spherical_manifold_2d (centre_2d);
1632 * tria_2d_not_flat.set_manifold(10,spherical_manifold_2d);
1633 * tria_2d_not_flat.refine_global(std::max (1U, n_repetitions_xy));
1634 * tria_2d_not_flat.reset_manifold(10); // Clear manifold
1636 * GridGenerator::flatten_triangulation(tria_2d_not_flat,tria_2d);
1638 * template <int dim>
1639 * void Solid<dim>::setup_system(LA::MPI::BlockVector &solution_delta)
1641 * timer.enter_subsection("Setup system");
1642 * pcout << "Setting up linear system..." << std::endl;
1646 * Partition triangulation
1649 * GridTools::partition_triangulation (n_mpi_processes,
1652 * block_component = std::vector<unsigned int> (n_components, u_block); // Displacement
1653 * block_component[p_component] = p_block; // Pressure
1654 * block_component[J_component] = J_block; // Dilatation
1655 * dof_handler.distribute_dofs(fe);
1656 * DoFRenumbering::Cuthill_McKee(dof_handler);
1657 * DoFRenumbering::component_wise(dof_handler, block_component);
1661 * Count DoFs in each block
1664 * dofs_per_block = DoFTools::count_dofs_per_fe_block(dof_handler, block_component);
1666 * all_locally_owned_dofs = DoFTools::locally_owned_dofs_per_subdomain (dof_handler);
1667 * std::vector<IndexSet> all_locally_relevant_dofs
1668 * = DoFTools::locally_relevant_dofs_per_subdomain (dof_handler);
1670 * locally_owned_dofs.clear();
1671 * locally_owned_partitioning.clear();
1672 * Assert(all_locally_owned_dofs.size() > this_mpi_process, ExcInternalError());
1673 * locally_owned_dofs = all_locally_owned_dofs[this_mpi_process];
1675 * locally_relevant_dofs.clear();
1676 * locally_relevant_partitioning.clear();
1677 * Assert(all_locally_relevant_dofs.size() > this_mpi_process, ExcInternalError());
1678 * locally_relevant_dofs = all_locally_relevant_dofs[this_mpi_process];
1680 * locally_owned_partitioning.reserve(n_blocks);
1681 * locally_relevant_partitioning.reserve(n_blocks);
1682 * for (unsigned int b=0; b<n_blocks; ++b)
1684 * const types::global_dof_index idx_begin
1685 * = std::accumulate(dofs_per_block.begin(),
1686 * std::next(dofs_per_block.begin(),b), 0);
1687 * const types::global_dof_index idx_end
1688 * = std::accumulate(dofs_per_block.begin(),
1689 * std::next(dofs_per_block.begin(),b+1), 0);
1690 * locally_owned_partitioning.push_back(locally_owned_dofs.get_view(idx_begin, idx_end));
1691 * locally_relevant_partitioning.push_back(locally_relevant_dofs.get_view(idx_begin, idx_end));
1695 * << " Number of active cells: " << triangulation.n_active_cells()
1696 * << " (by partition:";
1697 * for (unsigned int p=0; p<n_mpi_processes; ++p)
1699 * << (p==0 ? ' ' : '+
')
1700 * << (GridTools::count_cells_with_subdomain_association (triangulation,p));
1701 * pcout << ")" << std::endl;
1704 * << " Number of degrees of freedom: " << dof_handler.n_dofs()
1705 * << " (by partition:";
1706 * for (unsigned int p=0; p<n_mpi_processes; ++p)
1708 * << (p==0 ? ' ' : '+
')
1709 * << (DoFTools::count_dofs_with_subdomain_association (dof_handler,p));
1710 * pcout << ")" << std::endl;
1712 * << " Number of degrees of freedom per block: "
1713 * << "[n_u, n_p, n_J] = ["
1714 * << dofs_per_block[u_block] << ", "
1715 * << dofs_per_block[p_block] << ", "
1716 * << dofs_per_block[J_block] << "]"
1720 * Table<2, DoFTools::Coupling> coupling(n_components, n_components);
1721 * for (unsigned int ii = 0; ii < n_components; ++ii)
1722 * for (unsigned int jj = 0; jj < n_components; ++jj)
1723 * if (((ii < p_component) && (jj == J_component))
1724 * || ((ii == J_component) && (jj < p_component))
1725 * || ((ii == p_component) && (jj == p_component)))
1726 * coupling[ii][jj] = DoFTools::none;
1728 * coupling[ii][jj] = DoFTools::always;
1730 * TrilinosWrappers::BlockSparsityPattern bsp (locally_owned_partitioning,
1731 * locally_owned_partitioning,
1732 * locally_relevant_partitioning,
1733 * mpi_communicator);
1734 * DoFTools::make_sparsity_pattern (dof_handler, bsp,
1735 * constraints, false,
1736 * this_mpi_process);
1738 * tangent_matrix.reinit (bsp);
1742 * We then set up storage vectors
1745 * system_rhs.reinit(locally_owned_partitioning,
1746 * mpi_communicator);
1747 * solution_n.reinit(locally_owned_partitioning,
1748 * mpi_communicator);
1749 * solution_delta.reinit(locally_owned_partitioning,
1750 * mpi_communicator);
1752 * timer.leave_subsection();
1754 * template <int dim>
1756 * Solid<dim>::determine_component_extractors()
1758 * element_indices_u.clear();
1759 * element_indices_p.clear();
1760 * element_indices_J.clear();
1761 * for (unsigned int k = 0; k < fe.dofs_per_cell; ++k)
1763 * const unsigned int k_group = fe.system_to_base_index(k).first.first;
1764 * if (k_group == u_block)
1765 * element_indices_u.push_back(k);
1766 * else if (k_group == p_block)
1767 * element_indices_p.push_back(k);
1768 * else if (k_group == J_block)
1769 * element_indices_J.push_back(k);
1772 * Assert(k_group <= J_block, ExcInternalError());
1776 * template <int dim>
1777 * void Solid<dim>::setup_qph()
1779 * pcout << "Setting up quadrature point data..." << std::endl;
1780 * quadrature_point_history.initialize(triangulation.begin_active(),
1781 * triangulation.end(),
1783 * FilteredIterator<typename DoFHandler<dim>::active_cell_iterator>
1784 * cell (IteratorFilters::SubdomainEqualTo(this_mpi_process),
1785 * dof_handler.begin_active()),
1786 * endc (IteratorFilters::SubdomainEqualTo(this_mpi_process),
1787 * dof_handler.end());
1788 * for (; cell!=endc; ++cell)
1790 * Assert(cell->subdomain_id()==this_mpi_process, ExcInternalError());
1791 * const std::vector<std::shared_ptr<PointHistory<dim> > > lqph =
1792 * quadrature_point_history.get_data(cell);
1793 * Assert(lqph.size() == n_q_points, ExcInternalError());
1794 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
1795 * lqph[q_point]->setup_lqp(parameters, time);
1798 * template <int dim>
1800 * Solid<dim>::solve_nonlinear_timestep(LA::MPI::BlockVector &solution_delta)
1802 * pcout << std::endl
1803 * << "Timestep " << time.get_timestep() << " @ "
1804 * << time.current() << "s of "
1805 * << time.end() << "s" << std::endl;
1806 * LA::MPI::BlockVector newton_update(locally_owned_partitioning,
1807 * mpi_communicator);
1808 * error_residual.reset();
1809 * error_residual_0.reset();
1810 * error_residual_norm.reset();
1811 * error_update.reset();
1812 * error_update_0.reset();
1813 * error_update_norm.reset();
1814 * print_conv_header();
1815 * unsigned int newton_iteration = 0;
1816 * for (; newton_iteration < parameters.max_iterations_NR;
1817 * ++newton_iteration)
1819 * pcout << " " << std::setw(2) << newton_iteration << " " << std::flush;
1820 * make_constraints(newton_iteration);
1821 * assemble_system(solution_delta);
1822 * get_error_residual(error_residual);
1823 * if (newton_iteration == 0)
1824 * error_residual_0 = error_residual;
1825 * error_residual_norm = error_residual;
1826 * error_residual_norm.normalise(error_residual_0);
1827 * if (newton_iteration > 0 &&
1828 * (error_update_norm.u <= parameters.tol_u &&
1829 * error_residual_norm.u <= parameters.tol_f) )
1831 * pcout << " CONVERGED! " << std::endl;
1832 * print_conv_footer(solution_delta);
1835 * const std::pair<unsigned int, double>
1836 * lin_solver_output = solve_linear_system(newton_update);
1837 * get_error_update(newton_update, error_update);
1838 * if (newton_iteration == 0)
1839 * error_update_0 = error_update;
1840 * error_update_norm = error_update;
1841 * error_update_norm.normalise(error_update_0);
1842 * solution_delta += newton_update;
1843 * newton_update = 0.0;
1844 * pcout << " | " << std::fixed << std::setprecision(3) << std::setw(7)
1845 * << std::scientific << lin_solver_output.first << " "
1846 * << lin_solver_output.second << " " << error_residual_norm.norm
1847 * << " " << error_residual_norm.u << " "
1848 * << error_residual_norm.p << " " << error_residual_norm.J
1849 * << " " << error_update_norm.norm << " " << error_update_norm.u
1850 * << " " << error_update_norm.p << " " << error_update_norm.J
1851 * << " " << std::endl;
1853 * AssertThrow (newton_iteration <= parameters.max_iterations_NR,
1854 * ExcMessage("No convergence in nonlinear solver!"));
1856 * template <int dim>
1857 * void Solid<dim>::print_conv_header()
1859 * pcout << std::string(132,'_
') << std::endl;
1860 * pcout << " SOLVER STEP "
1861 * << " | LIN_IT LIN_RES RES_NORM "
1862 * << " RES_U RES_P RES_J NU_NORM "
1863 * << " NU_U NU_P NU_J " << std::endl;
1864 * pcout << std::string(132,'_
') << std::endl;
1866 * template <int dim>
1867 * void Solid<dim>::print_conv_footer(const LA::MPI::BlockVector &solution_delta)
1869 * pcout << std::string(132,'_
') << std::endl;
1870 * const std::pair<double,std::pair<double,double> > error_dil = get_error_dilation(get_solution_total(solution_delta));
1871 * pcout << "Relative errors:" << std::endl
1872 * << "Displacement:\t" << error_update.u / error_update_0.u << std::endl
1873 * << "Force: \t\t" << error_residual.u / error_residual_0.u << std::endl
1874 * << "Dilatation:\t" << error_dil.first << std::endl
1875 * << "v / V_0:\t" << error_dil.second.second << " / " << error_dil.second.first
1876 * << " = " << (error_dil.second.second/error_dil.second.first) << std::endl;
1878 * template <int dim>
1879 * std::pair<double,std::pair<double,double> >
1880 * Solid<dim>::get_error_dilation(const LA::MPI::BlockVector &solution_total) const
1882 * double vol_reference = 0.0;
1883 * double vol_current = 0.0;
1884 * double dil_L2_error = 0.0;
1885 * FEValues<dim> fe_values_ref(fe, qf_cell,
1886 * update_values | update_gradients | update_JxW_values);
1887 * std::vector<Tensor<2, dim> > solution_grads_u_total (qf_cell.size());
1888 * std::vector<double> solution_values_J_total (qf_cell.size());
1889 * FilteredIterator<typename DoFHandler<dim>::active_cell_iterator>
1890 * cell (IteratorFilters::SubdomainEqualTo(this_mpi_process),
1891 * dof_handler.begin_active()),
1892 * endc (IteratorFilters::SubdomainEqualTo(this_mpi_process),
1893 * dof_handler.end());
1894 * for (; cell != endc; ++cell)
1896 * Assert(cell->subdomain_id()==this_mpi_process, ExcInternalError());
1897 * fe_values_ref.reinit(cell);
1898 * fe_values_ref[u_fe].get_function_gradients(solution_total,
1899 * solution_grads_u_total);
1900 * fe_values_ref[J_fe].get_function_values(solution_total,
1901 * solution_values_J_total);
1902 * const std::vector<std::shared_ptr<const PointHistory<dim> > > lqph =
1903 * quadrature_point_history.get_data(cell);
1904 * Assert(lqph.size() == n_q_points, ExcInternalError());
1905 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
1907 * const double det_F_qp = determinant(Physics::Elasticity::Kinematics::F(solution_grads_u_total[q_point]));
1908 * const double J_tilde_qp = solution_values_J_total[q_point];
1909 * const double the_error_qp_squared = std::pow((det_F_qp - J_tilde_qp),
1911 * const double JxW = fe_values_ref.JxW(q_point);
1912 * dil_L2_error += the_error_qp_squared * JxW;
1913 * vol_reference += JxW;
1914 * vol_current += det_F_qp * JxW;
1917 * Assert(vol_current > 0.0, ExcInternalError());
1920 * Sum across all porcessors
1923 * dil_L2_error = Utilities::MPI::sum(dil_L2_error,mpi_communicator);
1924 * vol_reference = Utilities::MPI::sum(vol_reference,mpi_communicator);
1925 * vol_current = Utilities::MPI::sum(vol_current,mpi_communicator);
1927 * return std::make_pair(std::sqrt(dil_L2_error),
1928 * std::make_pair(vol_reference,vol_current));
1930 * template <int dim>
1931 * void Solid<dim>::get_error_residual(Errors &error_residual)
1935 * Construct a residual vector that has the values for all of its
1936 * constrained DoFs set to zero.
1939 * LA::MPI::BlockVector error_res (system_rhs);
1940 * constraints.set_zero(error_res);
1941 * error_residual.norm = error_res.l2_norm();
1942 * error_residual.u = error_res.block(u_block).l2_norm();
1943 * error_residual.p = error_res.block(p_block).l2_norm();
1944 * error_residual.J = error_res.block(J_block).l2_norm();
1946 * template <int dim>
1947 * void Solid<dim>::get_error_update(const LA::MPI::BlockVector &newton_update,
1948 * Errors &error_update)
1952 * Construct a update vector that has the values for all of its
1953 * constrained DoFs set to zero.
1956 * LA::MPI::BlockVector error_ud (newton_update);
1957 * constraints.set_zero(error_ud);
1958 * error_update.norm = error_ud.l2_norm();
1959 * error_update.u = error_ud.block(u_block).l2_norm();
1960 * error_update.p = error_ud.block(p_block).l2_norm();
1961 * error_update.J = error_ud.block(J_block).l2_norm();
1963 * template <int dim>
1964 * LA::MPI::BlockVector
1965 * Solid<dim>::get_solution_total(const LA::MPI::BlockVector &solution_delta) const
1969 * Cell interpolation -> Ghosted vector
1972 * LA::MPI::BlockVector solution_total (locally_owned_partitioning,
1973 * locally_relevant_partitioning,
1975 * /*vector_writable = */ false);
1976 * LA::MPI::BlockVector tmp (solution_total);
1977 * solution_total = solution_n;
1978 * tmp = solution_delta;
1979 * solution_total += tmp;
1980 * return solution_total;
1982 * template <int dim>
1983 * void Solid<dim>::assemble_system(const LA::MPI::BlockVector &solution_delta)
1985 * timer.enter_subsection("Assemble system");
1986 * pcout << " ASM_SYS " << std::flush;
1987 * tangent_matrix = 0.0;
1989 * const LA::MPI::BlockVector solution_total(get_solution_total(solution_delta));
1990 * const UpdateFlags uf_cell(update_values |
1991 * update_gradients |
1992 * update_JxW_values);
1993 * const UpdateFlags uf_face(update_values |
1994 * update_normal_vectors |
1995 * update_JxW_values);
1996 * PerTaskData_ASM per_task_data(dofs_per_cell);
1997 * ScratchData_ASM scratch_data(fe, qf_cell, uf_cell, qf_face, uf_face, solution_total);
1999 * FilteredIterator<typename DoFHandler<dim>::active_cell_iterator>
2000 * cell (IteratorFilters::SubdomainEqualTo(this_mpi_process),
2001 * dof_handler.begin_active()),
2002 * endc (IteratorFilters::SubdomainEqualTo(this_mpi_process),
2003 * dof_handler.end());
2004 * for (; cell != endc; ++cell)
2006 * Assert(cell->subdomain_id()==this_mpi_process, ExcInternalError());
2007 * assemble_system_one_cell(cell, scratch_data, per_task_data);
2008 * copy_local_to_global_system(per_task_data);
2010 * tangent_matrix.compress(VectorOperation::add);
2011 * system_rhs.compress(VectorOperation::add);
2012 * timer.leave_subsection();
2014 * template <int dim>
2015 * void Solid<dim>::copy_local_to_global_system(const PerTaskData_ASM &data)
2017 * constraints.distribute_local_to_global(data.cell_matrix, data.cell_rhs,
2018 * data.local_dof_indices,
2019 * tangent_matrix, system_rhs);
2021 * template <int dim>
2023 * Solid<dim>::assemble_system_one_cell(const typename DoFHandler<dim>::active_cell_iterator &cell,
2024 * ScratchData_ASM &scratch,
2025 * PerTaskData_ASM &data) const
2027 * Assert(cell->subdomain_id()==this_mpi_process, ExcInternalError());
2031 * scratch.fe_values_ref.reinit(cell);
2032 * cell->get_dof_indices(data.local_dof_indices);
2033 * const std::vector<std::shared_ptr<const PointHistory<dim> > > lqph =
2034 * quadrature_point_history.get_data(cell);
2035 * Assert(lqph.size() == n_q_points, ExcInternalError());
2039 * Update quadrature point solution
2042 * scratch.fe_values_ref[u_fe].get_function_gradients(scratch.solution_total,
2043 * scratch.solution_grads_u_total);
2044 * scratch.fe_values_ref[p_fe].get_function_values(scratch.solution_total,
2045 * scratch.solution_values_p_total);
2046 * scratch.fe_values_ref[J_fe].get_function_values(scratch.solution_total,
2047 * scratch.solution_values_J_total);
2051 * Update shape functions and their gradients (push-forward)
2054 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
2056 * const Tensor<2, dim> F = Physics::Elasticity::Kinematics::F(scratch.solution_grads_u_total[q_point]);
2057 * const Tensor<2, dim> F_inv = invert(F);
2059 * for (unsigned int k = 0; k < dofs_per_cell; ++k)
2061 * const unsigned int k_group = fe.system_to_base_index(k).first.first;
2062 * if (k_group == u_block)
2064 * scratch.grad_Nx[q_point][k] = scratch.fe_values_ref[u_fe].gradient(k, q_point)
2066 * scratch.symm_grad_Nx[q_point][k] = symmetrize(scratch.grad_Nx[q_point][k]);
2068 * else if (k_group == p_block)
2069 * scratch.Nx[q_point][k] = scratch.fe_values_ref[p_fe].value(k,
2071 * else if (k_group == J_block)
2072 * scratch.Nx[q_point][k] = scratch.fe_values_ref[J_fe].value(k,
2075 * Assert(k_group <= J_block, ExcInternalError());
2078 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
2080 * const SymmetricTensor<2, dim> &I = Physics::Elasticity::StandardTensors<dim>::I;
2081 * const Tensor<2, dim> F = Physics::Elasticity::Kinematics::F(scratch.solution_grads_u_total[q_point]);
2082 * const double det_F = determinant(F);
2083 * const double &p_tilde = scratch.solution_values_p_total[q_point];
2084 * const double &J_tilde = scratch.solution_values_J_total[q_point];
2085 * Assert(det_F > 0, ExcInternalError());
2088 * PointHistory<dim> *lqph_q_point_nc = const_cast<PointHistory<dim>*>(lqph[q_point].get());
2089 * lqph_q_point_nc->update_internal_equilibrium(F,p_tilde,J_tilde);
2092 * const SymmetricTensor<2, dim> tau = lqph[q_point]->get_tau(F,p_tilde);
2093 * const Tensor<2, dim> tau_ns (tau);
2094 * const SymmetricTensor<4, dim> Jc = lqph[q_point]->get_Jc(F,p_tilde);
2095 * const double dPsi_vol_dJ = lqph[q_point]->get_dPsi_vol_dJ(J_tilde);
2096 * const double d2Psi_vol_dJ2 = lqph[q_point]->get_d2Psi_vol_dJ2(J_tilde);
2098 * const std::vector<double> &Nx = scratch.Nx[q_point];
2099 * const std::vector<Tensor<2, dim> > &grad_Nx = scratch.grad_Nx[q_point];
2100 * const std::vector<SymmetricTensor<2, dim> > &symm_grad_Nx = scratch.symm_grad_Nx[q_point];
2101 * const double JxW = scratch.fe_values_ref.JxW(q_point);
2103 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
2105 * const unsigned int component_i = fe.system_to_component_index(i).first;
2106 * const unsigned int i_group = fe.system_to_base_index(i).first.first;
2107 * if (i_group == u_block)
2108 * data.cell_rhs(i) -= (symm_grad_Nx[i] * tau) * JxW;
2109 * else if (i_group == p_block)
2110 * data.cell_rhs(i) -= Nx[i] * (det_F - J_tilde) * JxW;
2111 * else if (i_group == J_block)
2112 * data.cell_rhs(i) -= Nx[i] * (dPsi_vol_dJ - p_tilde) * JxW;
2114 * Assert(i_group <= J_block, ExcInternalError());
2116 * for (unsigned int j = 0; j <= i; ++j)
2118 * const unsigned int component_j = fe.system_to_component_index(j).first;
2119 * const unsigned int j_group = fe.system_to_base_index(j).first.first;
2120 * if ((i_group == u_block) && (j_group == u_block))
2122 * data.cell_matrix(i, j) += symm_grad_Nx[i] * Jc // The material contribution:
2123 * * symm_grad_Nx[j] * JxW;
2124 * if (component_i == component_j) // geometrical stress contribution
2125 * data.cell_matrix(i, j) += grad_Nx[i][component_i] * tau_ns
2126 * * grad_Nx[j][component_j] * JxW;
2128 * else if ((i_group == u_block) && (j_group == p_block))
2130 * data.cell_matrix(i, j) += (symm_grad_Nx[i] * I)
2134 * else if ((i_group == p_block) && (j_group == u_block))
2136 * data.cell_matrix(i, j) += Nx[i] * det_F
2137 * * (symm_grad_Nx[j] * I)
2140 * else if ((i_group == p_block) && (j_group == J_block))
2141 * data.cell_matrix(i, j) -= Nx[i] * Nx[j] * JxW;
2142 * else if ((i_group == J_block) && (j_group == p_block))
2143 * data.cell_matrix(i, j) -= Nx[i] * Nx[j] * JxW;
2144 * else if ((i_group == J_block) && (j_group == J_block))
2145 * data.cell_matrix(i, j) += Nx[i] * d2Psi_vol_dJ2 * Nx[j] * JxW;
2147 * Assert((i_group <= J_block) && (j_group <= J_block),
2148 * ExcInternalError());
2153 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
2154 * for (unsigned int j = i + 1; j < dofs_per_cell; ++j)
2155 * data.cell_matrix(i, j) = data.cell_matrix(j, i);
2157 * if (parameters.driver == "Neumann")
2158 * for (unsigned int face = 0; face < GeometryInfo<dim>::faces_per_cell;
2160 * if (cell->face(face)->at_boundary() == true
2161 * && cell->face(face)->boundary_id() == parameters.boundary_id_plus_Y)
2163 * scratch.fe_face_values_ref.reinit(cell, face);
2164 * for (unsigned int f_q_point = 0; f_q_point < n_q_points_f;
2167 * const Tensor<1, dim> &N =
2168 * scratch.fe_face_values_ref.normal_vector(f_q_point);
2169 * static const double pressure_nom = parameters.pressure
2170 * / (parameters.scale * parameters.scale);
2171 * const double time_ramp = (time.current() < parameters.load_time ?
2172 * time.current() / parameters.load_time : 1.0);
2173 * const double pressure = -pressure_nom * time_ramp;
2174 * const Tensor<1, dim> traction = pressure * N;
2175 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
2177 * const unsigned int i_group =
2178 * fe.system_to_base_index(i).first.first;
2179 * if (i_group == u_block)
2181 * const unsigned int component_i =
2182 * fe.system_to_component_index(i).first;
2184 * scratch.fe_face_values_ref.shape_value(i,
2186 * const double JxW = scratch.fe_face_values_ref.JxW(
2188 * data.cell_rhs(i) += (Ni * traction[component_i])
2195 * template <int dim>
2196 * void Solid<dim>::make_constraints(const int &it_nr)
2198 * pcout << " CST " << std::flush;
2201 * constraints.clear();
2202 * const bool apply_dirichlet_bc = (it_nr == 0);
2203 * const FEValuesExtractors::Scalar x_displacement(0);
2204 * const FEValuesExtractors::Scalar y_displacement(1);
2206 * const int boundary_id = parameters.boundary_id_minus_X;
2207 * if (apply_dirichlet_bc == true)
2208 * VectorTools::interpolate_boundary_values(dof_handler,
2210 * Functions::ZeroFunction<dim>(n_components),
2212 * fe.component_mask(x_displacement));
2214 * VectorTools::interpolate_boundary_values(dof_handler,
2216 * Functions::ZeroFunction<dim>(n_components),
2218 * fe.component_mask(x_displacement));
2221 * const int boundary_id = parameters.boundary_id_minus_Y;
2222 * if (apply_dirichlet_bc == true)
2223 * VectorTools::interpolate_boundary_values(dof_handler,
2225 * Functions::ZeroFunction<dim>(n_components),
2227 * fe.component_mask(y_displacement));
2229 * VectorTools::interpolate_boundary_values(dof_handler,
2231 * Functions::ZeroFunction<dim>(n_components),
2233 * fe.component_mask(y_displacement));
2237 * const FEValuesExtractors::Scalar z_displacement(2);
2239 * const int boundary_id = parameters.boundary_id_minus_Z;
2240 * if (apply_dirichlet_bc == true)
2241 * VectorTools::interpolate_boundary_values(dof_handler,
2243 * Functions::ZeroFunction<dim>(n_components),
2245 * fe.component_mask(z_displacement));
2247 * VectorTools::interpolate_boundary_values(dof_handler,
2249 * Functions::ZeroFunction<dim>(n_components),
2251 * fe.component_mask(z_displacement));
2254 * const int boundary_id = parameters.boundary_id_plus_Z;
2255 * if (apply_dirichlet_bc == true)
2256 * VectorTools::interpolate_boundary_values(dof_handler,
2258 * Functions::ZeroFunction<dim>(n_components),
2260 * fe.component_mask(z_displacement));
2262 * VectorTools::interpolate_boundary_values(dof_handler,
2264 * Functions::ZeroFunction<dim>(n_components),
2266 * fe.component_mask(z_displacement));
2269 * if (parameters.driver == "Dirichlet")
2271 * const int boundary_id = parameters.boundary_id_plus_Y;
2272 * if (apply_dirichlet_bc == true)
2275 * if (time.current() < parameters.load_time+0.01*time.get_delta_t())
2277 * const double delta_length = parameters.length*(parameters.stretch - 1.0)*parameters.scale;
2278 * const unsigned int n_stretch_steps = static_cast<unsigned int>(parameters.load_time/time.get_delta_t());
2279 * const double delta_u_y = delta_length/2.0/n_stretch_steps;
2280 * VectorTools::interpolate_boundary_values(dof_handler,
2282 * Functions::ConstantFunction<dim>(delta_u_y,n_components),
2284 * fe.component_mask(y_displacement));
2287 * VectorTools::interpolate_boundary_values(dof_handler,
2289 * Functions::ZeroFunction<dim>(n_components),
2291 * fe.component_mask(y_displacement));
2294 * VectorTools::interpolate_boundary_values(dof_handler,
2296 * Functions::ZeroFunction<dim>(n_components),
2298 * fe.component_mask(y_displacement));
2300 * constraints.close();
2302 * template <int dim>
2303 * std::pair<unsigned int, double>
2304 * Solid<dim>::solve_linear_system(LA::MPI::BlockVector &newton_update)
2306 * unsigned int lin_it = 0;
2307 * double lin_res = 0.0;
2309 * timer.enter_subsection("Linear solver");
2310 * pcout << " SLV " << std::flush;
2312 * const LA::MPI::Vector &f_u = system_rhs.block(u_block);
2313 * const LA::MPI::Vector &f_p = system_rhs.block(p_block);
2314 * const LA::MPI::Vector &f_J = system_rhs.block(J_block);
2315 * LA::MPI::Vector &d_u = newton_update.block(u_block);
2316 * LA::MPI::Vector &d_p = newton_update.block(p_block);
2317 * LA::MPI::Vector &d_J = newton_update.block(J_block);
2318 * const auto K_uu = linear_operator<LA::MPI::Vector>(tangent_matrix.block(u_block, u_block));
2319 * const auto K_up = linear_operator<LA::MPI::Vector>(tangent_matrix.block(u_block, p_block));
2320 * const auto K_pu = linear_operator<LA::MPI::Vector>(tangent_matrix.block(p_block, u_block));
2321 * const auto K_Jp = linear_operator<LA::MPI::Vector>(tangent_matrix.block(J_block, p_block));
2322 * const auto K_JJ = linear_operator<LA::MPI::Vector>(tangent_matrix.block(J_block, J_block));
2324 * LA::PreconditionJacobi preconditioner_K_Jp_inv;
2325 * preconditioner_K_Jp_inv.initialize(
2326 * tangent_matrix.block(J_block, p_block),
2327 * LA::PreconditionJacobi::AdditionalData());
2328 * ReductionControl solver_control_K_Jp_inv (
2329 * static_cast<unsigned int>(tangent_matrix.block(J_block, p_block).m()
2330 * * parameters.max_iterations_lin),
2332 * ::SolverCG<LA::MPI::Vector> solver_K_Jp_inv (solver_control_K_Jp_inv);
2334 * const auto K_Jp_inv = inverse_operator(K_Jp,
2336 * preconditioner_K_Jp_inv);
2337 * const auto K_pJ_inv = transpose_operator(K_Jp_inv);
2338 * const auto K_pp_bar = K_Jp_inv * K_JJ * K_pJ_inv;
2339 * const auto K_uu_bar_bar = K_up * K_pp_bar * K_pu;
2340 * const auto K_uu_con = K_uu + K_uu_bar_bar;
2342 * LA::PreconditionAMG preconditioner_K_con_inv;
2343 * preconditioner_K_con_inv.initialize(
2344 * tangent_matrix.block(u_block, u_block),
2345 * LA::PreconditionAMG::AdditionalData(
2346 * true /*elliptic*/,
2347 * (parameters.poly_degree > 1 /*higher_order_elements*/)) );
2348 * ReductionControl solver_control_K_con_inv (
2349 * static_cast<unsigned int>(tangent_matrix.block(u_block, u_block).m()
2350 * * parameters.max_iterations_lin),
2351 * 1.0e-30, parameters.tol_lin);
2352 * ::SolverSelector<LA::MPI::Vector> solver_K_con_inv;
2353 * solver_K_con_inv.select(parameters.type_lin);
2354 * solver_K_con_inv.set_control(solver_control_K_con_inv);
2355 * const auto K_uu_con_inv = inverse_operator(K_uu_con,
2357 * preconditioner_K_con_inv);
2359 * d_u = K_uu_con_inv*(f_u - K_up*(K_Jp_inv*f_J - K_pp_bar*f_p));
2360 * lin_it = solver_control_K_con_inv.last_step();
2361 * lin_res = solver_control_K_con_inv.last_value();
2362 * timer.leave_subsection();
2364 * timer.enter_subsection("Linear solver postprocessing");
2365 * d_J = K_pJ_inv*(f_p - K_pu*d_u);
2366 * d_p = K_Jp_inv*(f_J - K_JJ*d_J);
2367 * timer.leave_subsection();
2369 * constraints.distribute(newton_update);
2370 * return std::make_pair(lin_it, lin_res);
2372 * template <int dim>
2374 * Solid<dim>::update_end_timestep ()
2376 * FilteredIterator<typename DoFHandler<dim>::active_cell_iterator>
2377 * cell (IteratorFilters::SubdomainEqualTo(this_mpi_process),
2378 * dof_handler.begin_active()),
2379 * endc (IteratorFilters::SubdomainEqualTo(this_mpi_process),
2380 * dof_handler.end());
2381 * for (; cell != endc; ++cell)
2383 * Assert(cell->subdomain_id()==this_mpi_process, ExcInternalError());
2384 * const std::vector<std::shared_ptr<PointHistory<dim> > > lqph =
2385 * quadrature_point_history.get_data(cell);
2386 * Assert(lqph.size() == n_q_points, ExcInternalError());
2387 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
2388 * lqph[q_point]->update_end_timestep();
2393 * class FilteredDataOut : public DataOut<dim>
2396 * FilteredDataOut (const unsigned int subdomain_id)
2398 * subdomain_id (subdomain_id)
2401 * virtual ~FilteredDataOut() {}
2403 * virtual typename DataOut<dim>::cell_iterator
2406 * auto cell = this->dofs->begin_active();
2407 * while ((cell != this->dofs->end()) &&
2408 * (cell->subdomain_id() != subdomain_id))
2413 * virtual typename DataOut<dim>::cell_iterator
2414 * next_cell (const typename DataOut<dim>::cell_iterator &old_cell)
2416 * if (old_cell != this->dofs->end())
2418 * const IteratorFilters::SubdomainEqualTo predicate(subdomain_id);
2420 * ++(FilteredIterator
2421 * <typename DataOut<dim>::cell_iterator>
2422 * (predicate,old_cell));
2429 * const unsigned int subdomain_id;
2432 * template <int dim>
2433 * void Solid<dim>::output_results(const unsigned int timestep,
2434 * const double current_time) const
2438 * Output -> Ghosted vector
2441 * LA::MPI::BlockVector solution_total (locally_owned_partitioning,
2442 * locally_relevant_partitioning,
2444 * /*vector_writable = */ false);
2445 * LA::MPI::BlockVector residual (locally_owned_partitioning,
2446 * locally_relevant_partitioning,
2448 * /*vector_writable = */ false);
2449 * solution_total = solution_n;
2450 * residual = system_rhs;
2455 * --- Additional data ---
2458 * Vector<double> material_id;
2459 * Vector<double> polynomial_order;
2460 * material_id.reinit(triangulation.n_active_cells());
2461 * polynomial_order.reinit(triangulation.n_active_cells());
2462 * std::vector<types::subdomain_id> partition_int (triangulation.n_active_cells());
2464 * FilteredDataOut<dim> data_out(this_mpi_process);
2465 * std::vector<DataComponentInterpretation::DataComponentInterpretation>
2466 * data_component_interpretation(dim,
2467 * DataComponentInterpretation::component_is_part_of_vector);
2468 * data_component_interpretation.push_back(DataComponentInterpretation::component_is_scalar);
2469 * data_component_interpretation.push_back(DataComponentInterpretation::component_is_scalar);
2471 * GridTools::get_subdomain_association (triangulation, partition_int);
2475 * Can't use filtered iterators here because the cell
2476 * count
"c" is incorrect
for the
parallel case
2479 *
unsigned int c = 0;
2481 * cell = dof_handler.begin_active(),
2482 * endc = dof_handler.end();
2483 *
for (; cell!=endc; ++cell, ++c)
2487 *
material_id(c) =
static_cast<int>(cell->material_id());
2490 * std::vector<std::string> solution_name(n_components,
"solution_");
2491 * std::vector<std::string> residual_name(n_components,
"residual_");
2492 *
for (
unsigned int c=0; c<n_components; ++c)
2494 *
if (block_component[c] == u_block)
2496 * solution_name[c] +=
"u";
2497 * residual_name[c] +=
"u";
2499 *
else if (block_component[c] == p_block)
2501 * solution_name[c] +=
"p";
2502 * residual_name[c] +=
"p";
2504 *
else if (block_component[c] == J_block)
2506 * solution_name[c] +=
"J";
2507 * residual_name[c] +=
"J";
2511 *
Assert(c <= J_block, ExcInternalError());
2515 * data_out.attach_dof_handler(dof_handler);
2516 * data_out.add_data_vector(solution_total,
2519 * data_component_interpretation);
2520 * data_out.add_data_vector(residual,
2523 * data_component_interpretation);
2525 * partition_int.end());
2526 * data_out.add_data_vector (material_id,
"material_id");
2527 * data_out.add_data_vector (partitioning,
"partitioning");
2528 * data_out.build_patches(degree);
2532 *
static std::string get_filename_vtu (
unsigned int process,
2533 *
unsigned int timestep,
2534 *
const unsigned int n_digits = 4)
2536 * std::ostringstream filename_vtu;
2539 * << (std::to_string(dim) +
"d")
2545 *
return filename_vtu.str();
2548 *
static std::string get_filename_pvtu (
unsigned int timestep,
2549 *
const unsigned int n_digits = 4)
2551 * std::ostringstream filename_vtu;
2554 * << (std::to_string(dim) +
"d")
2558 *
return filename_vtu.str();
2561 *
static std::string get_filename_pvd (
void)
2563 * std::ostringstream filename_vtu;
2566 * << (std::to_string(dim) +
"d")
2568 *
return filename_vtu.str();
2574 * Write out main data file
2577 *
const std::string filename_vtu = Filename::get_filename_vtu(this_mpi_process, timestep);
2578 * std::ofstream output(filename_vtu.c_str());
2579 * data_out.write_vtu(output);
2583 * Collection of files written in
parallel
2584 * This next
set of steps should only be performed
2588 *
if (this_mpi_process == 0)
2592 * List of all files written out at
this timestep by all processors
2595 * std::vector<std::string> parallel_filenames_vtu;
2598 * parallel_filenames_vtu.push_back(Filename::get_filename_vtu(p, timestep));
2601 *
const std::string filename_pvtu (Filename::get_filename_pvtu(timestep));
2602 * std::ofstream pvtu_master(filename_pvtu.c_str());
2603 * data_out.write_pvtu_record(pvtu_master,
2604 * parallel_filenames_vtu);
2608 * Time dependent data master file
2611 *
static std::vector<std::pair<double,std::string> > time_and_name_history;
2612 * time_and_name_history.push_back (std::make_pair (current_time,
2614 *
const std::string filename_pvd (Filename::get_filename_pvd());
2615 * std::ofstream pvd_output (filename_pvd.c_str());
2619 *
template <
int dim>
2620 *
void Solid<dim>::compute_vertex_positions(std::vector<double> &real_time,
2621 * std::vector<std::vector<
Point<dim> > > &tracked_vertices,
2622 *
const LA::MPI::BlockVector &solution_total)
const
2624 * real_time.push_back(time.current());
2626 * std::vector<bool> vertex_found (tracked_vertices.size(),
false);
2627 * std::vector<Tensor<1,dim> > vertex_update (tracked_vertices.size());
2631 * dof_handler.begin_active()),
2633 * dof_handler.end());
2634 *
for (; cell != endc; ++cell)
2636 *
Assert(cell->subdomain_id()==this_mpi_process, ExcInternalError());
2637 *
for (
unsigned int v=0; v<GeometryInfo<dim>::vertices_per_cell; ++v)
2639 *
for (
unsigned int p=0; p<tracked_vertices.size(); ++p)
2641 *
if (vertex_found[p] ==
true)
continue;
2643 *
const Point<dim> pt_ref = tracked_vertices[p][0];
2644 *
if (cell->vertex(v).distance(pt_ref) < 1e-6*parameters.scale)
2646 *
for (
unsigned int d=0;
d<dim; ++
d)
2647 * vertex_update[p][d] = solution_total(cell->vertex_dof_index(v,u_block+d));
2649 * vertex_found[p] =
true;
2655 *
for (
unsigned int p=0; p<tracked_vertices.size(); ++p)
2657 *
const int found_on_n_processes =
Utilities::MPI::sum(
int(vertex_found[p]), mpi_communicator);
2658 *
Assert(found_on_n_processes>0, ExcMessage(
"Vertex not found on any processor"));
2660 *
for (
unsigned int d=0;
d<dim; ++
d)
2662 * update /= found_on_n_processes;
2663 * tracked_vertices[p].push_back(tracked_vertices[p][0] + update);
2668 *
int main (
int argc,
char *argv[])
2670 *
using namespace dealii;
2671 *
using namespace ViscoElasStripHole;
2677 *
const unsigned int dim = 2;
2678 * Solid<dim> solid(
"parameters.prm");
2681 *
catch (std::exception &exc)
2685 * std::cerr << std::endl << std::endl
2686 * <<
"----------------------------------------------------"
2688 * std::cerr <<
"Exception on processing: " << std::endl << exc.what()
2689 * << std::endl <<
"Aborting!" << std::endl
2690 * <<
"----------------------------------------------------"
2699 * std::cerr << std::endl << std::endl
2700 * <<
"----------------------------------------------------"
2702 * std::cerr <<
"Unknown exception!" << std::endl <<
"Aborting!"
2704 * <<
"----------------------------------------------------"
__global__ void set(Number *val, const Number s, const size_type N)
#define Assert(cond, exc)
typename ActiveSelector::active_cell_iterator active_cell_iterator
LinearOperator< Range, Domain, Payload > linear_operator(const OperatorExemplar &, const Matrix &)
void write_pvd_record(std::ostream &out, const std::vector< std::pair< double, std::string > > ×_and_names)
void cylinder(Triangulation< dim > &tria, const double radius=1., const double half_length=1.)
void create_triangulation_with_removed_cells(const Triangulation< dim, spacedim > &input_triangulation, const std::set< typename Triangulation< dim, spacedim >::active_cell_iterator > &cells_to_remove, Triangulation< dim, spacedim > &result)
void hyper_cube_with_cylindrical_hole(Triangulation< dim > &triangulation, const double inner_radius=.25, const double outer_radius=.5, const double L=.5, const unsigned int repetitions=1, const bool colorize=false)
void cell_matrix(FullMatrix< double > &M, const FEValuesBase< dim > &fe, const FEValuesBase< dim > &fetest, const ArrayView< const std::vector< double > > &velocity, const double factor=1.)
double norm(const FEValuesBase< dim > &fe, const ArrayView< const std::vector< Tensor< 1, dim > > > &Du)
std::enable_if_t< IsBlockVector< VectorType >::value, unsigned int > n_blocks(const VectorType &vector)
Point< spacedim > point(const gp_Pnt &p, const double tolerance=1e-10)
SymmetricTensor< 2, dim, Number > C(const Tensor< 2, dim, Number > &F)
SymmetricTensor< 2, dim, Number > e(const Tensor< 2, dim, Number > &F)
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
Tensor< 2, dim, Number > F(const Tensor< 2, dim, Number > &Grad_u)
VectorType::value_type * end(VectorType &V)
T sum(const T &t, const MPI_Comm mpi_communicator)
unsigned int n_mpi_processes(const MPI_Comm mpi_communicator)
unsigned int this_mpi_process(const MPI_Comm mpi_communicator)
std::string int_to_string(const unsigned int value, const unsigned int digits=numbers::invalid_unsigned_int)
void run(const Iterator &begin, const std_cxx20::type_identity_t< Iterator > &end, Worker worker, Copier copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const unsigned int queue_length, const unsigned int chunk_size)
::VectorizedArray< Number, width > pow(const ::VectorizedArray< Number, width > &, const Number p)
::VectorizedArray< Number, width > abs(const ::VectorizedArray< Number, width > &)
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation
DEAL_II_HOST constexpr Number determinant(const SymmetricTensor< 2, dim, Number > &)
DEAL_II_HOST constexpr SymmetricTensor< 2, dim, Number > symmetrize(const Tensor< 2, dim, Number > &t)
DEAL_II_HOST constexpr SymmetricTensor< 2, dim, Number > invert(const SymmetricTensor< 2, dim, Number > &)
DEAL_II_HOST constexpr SymmetricTensor< 4, dim, Number > outer_product(const SymmetricTensor< 2, dim, Number > &t1, const SymmetricTensor< 2, dim, Number > &t2)
DEAL_II_HOST constexpr Number trace(const SymmetricTensor< 2, dim2, Number > &)
const ::Triangulation< dim, spacedim > & tria