Reference documentation for deal.II version 9.4.1
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
goal_oriented_elastoplasticity.h
Go to the documentation of this file.
1
160 *
161 * @endcode
162 *
163 *
164 * <a name="Includefiles"></a>
165 * <h3>Include files</h3>
166 * The set of include files is not much of a surprise any more at this time:
167 *
168 * @code
169 * #include <deal.II/base/conditional_ostream.h>
170 * #include <deal.II/base/parameter_handler.h>
171 * #include <deal.II/base/utilities.h>
172 * #include <deal.II/base/index_set.h>
173 * #include <deal.II/base/quadrature_lib.h>
174 * #include <deal.II/base/function.h>
175 * #include <deal.II/base/logstream.h>
176 * #include <deal.II/base/timer.h>
177 * #include <deal.II/base/table_handler.h>
178 *
179 * #include <deal.II/lac/vector.h>
180 * #include <deal.II/lac/full_matrix.h>
181 * #include <deal.II/lac/sparsity_tools.h>
182 * #include <deal.II/lac/sparse_matrix.h>
183 * #include <deal.II/lac/dynamic_sparsity_pattern.h>
184 * #include <deal.II/lac/block_sparsity_pattern.h>
185 * #include <deal.II/lac/solver_bicgstab.h>
186 * #include <deal.II/lac/precondition.h>
187 * #include <deal.II/lac/affine_constraints.h>
188 * #include <deal.II/lac/trilinos_sparse_matrix.h>
189 * #include <deal.II/lac/trilinos_block_sparse_matrix.h>
190 * #include <deal.II/lac/trilinos_vector.h>
191 * #include <deal.II/lac/trilinos_precondition.h>
192 * #include <deal.II/lac/trilinos_solver.h>
193 * #include <deal.II/lac/sparse_direct.h>
194 *
195 * #include <deal.II/grid/tria.h>
196 * #include <deal.II/grid/grid_generator.h>
197 * #include <deal.II/grid/grid_refinement.h>
198 * #include <deal.II/grid/grid_tools.h>
199 * #include <deal.II/grid/tria_accessor.h>
200 * #include <deal.II/grid/tria_iterator.h>
201 * #include <deal.II/grid/grid_out.h>
202 * #include <deal.II/grid/manifold_lib.h>
203 *
204 * #include <deal.II/distributed/tria.h>
205 * #include <deal.II/distributed/grid_refinement.h>
206 * #include <deal.II/distributed/solution_transfer.h>
207 *
208 * #include <deal.II/dofs/dof_handler.h>
209 * #include <deal.II/dofs/dof_accessor.h>
210 * #include <deal.II/dofs/dof_renumbering.h>
211 * #include <deal.II/dofs/dof_tools.h>
212 *
213 * #include <deal.II/fe/fe_q.h>
214 * #include <deal.II/fe/fe_system.h>
215 * #include <deal.II/fe/fe_values.h>
216 * #include <deal.II/fe/fe_dgq.h>
217 * #include <deal.II/fe/fe_tools.h>
218 *
219 * #include <deal.II/numerics/vector_tools.h>
220 * #include <deal.II/numerics/matrix_tools.h>
221 * #include <deal.II/numerics/data_out.h>
222 * #include <deal.II/numerics/error_estimator.h>
223 * #include <deal.II/numerics/fe_field_function.h>
224 * #include <deal.II/numerics/solution_transfer.h>
225 *
226 * @endcode
227 *
228 * And here the only two new things among the header files: an include file in
229 * which symmetric tensors of rank 2 and 4 are implemented, as introduced in
230 * the introduction:
231 *
232 * @code
233 * #include <deal.II/base/symmetric_tensor.h>
234 *
235 * @endcode
236 *
237 * And a header that implements filters for iterators looping over all
238 * cells. We will use this when selecting only those cells for output that are
239 * owned by the present process in a %parallel program:
240 *
241 * @code
242 * #include <deal.II/grid/filtered_iterator.h>
243 *
244 * #include <fstream>
245 * #include <iostream>
246 *
247 * @endcode
248 *
249 * This final include file provides the <code>mkdir</code> function
250 * that we will use to create a directory for output files, if necessary:
251 *
252 * @code
253 * #include <sys/stat.h>
254 *
255 * namespace ElastoPlastic
256 * {
257 * using namespace dealii;
258 *
259 * void
261 * const unsigned int n_slices,
262 * const double height,
263 * Triangulation<3,3> &result)
264 * {
265 * @endcode
266 *
267 * Assert (input.n_levels() == 1,
268 * ExcMessage ("The input triangulations must be coarse meshes."));
269 *
270 * @code
271 * Assert(result.n_cells()==0, ExcMessage("resultin Triangulation need to be empty upon calling extrude_triangulation."));
272 * Assert(height>0, ExcMessage("The height in extrude_triangulation needs to be positive."));
273 * Assert(n_slices>=2, ExcMessage("The number of slices in extrude_triangulation needs to be at least 2."));
274 *
275 * std::vector<Point<3> > points(n_slices*input.n_used_vertices());
276 * std::vector<CellData<3> > cells;
277 * cells.reserve((n_slices-1)*input.n_active_cells());
278 *
279 * for (unsigned int slice=0; slice<n_slices; ++slice)
280 * {
281 * for (unsigned int i=0; i<input.n_vertices(); ++i)
282 *
283 * {
284 * if (input.get_used_vertices()[i])
285 * {
286 * const Point<2> &v = input.get_vertices()[i];
287 * points[i+slice*input.n_vertices()](0) = v(0);
288 * points[i+slice*input.n_vertices()](1) = v(1);
289 * points[i+slice*input.n_vertices()](2) = height * slice / (n_slices-1);
290 * }
291 * }
292 * }
293 *
295 * cell = input.begin_active(); cell != input.end(); ++cell)
296 * {
297 * for (unsigned int slice=0; slice<n_slices-1; ++slice)
298 * {
299 * CellData<3> this_cell;
300 * for (unsigned int v=0; v<GeometryInfo<2>::vertices_per_cell; ++v)
301 * {
302 * this_cell.vertices[v]
303 * = cell->vertex_index(v)+slice*input.n_used_vertices();
305 * = cell->vertex_index(v)+(slice+1)*input.n_used_vertices();
306 * }
307 *
308 * this_cell.material_id = cell->material_id();
309 * cells.push_back(this_cell);
310 * }
311 * }
312 *
313 * SubCellData s;
314 * types::boundary_id bid=0;
315 * s.boundary_quads.reserve(input.n_active_lines()*(n_slices-1) + input.n_active_cells()*2);
317 * cell = input.begin_active(); cell != input.end(); ++cell)
318 * {
319 * CellData<2> quad;
320 * for (unsigned int f=0; f<4; ++f)
321 * if (cell->at_boundary(f))
322 * {
323 * quad.boundary_id = cell->face(f)->boundary_id();
324 * bid = std::max(bid, quad.boundary_id);
325 * for (unsigned int slice=0; slice<n_slices-1; ++slice)
326 * {
327 * quad.vertices[0] = cell->face(f)->vertex_index(0)+slice*input.n_used_vertices();
328 * quad.vertices[1] = cell->face(f)->vertex_index(1)+slice*input.n_used_vertices();
329 * quad.vertices[2] = cell->face(f)->vertex_index(0)+(slice+1)*input.n_used_vertices();
330 * quad.vertices[3] = cell->face(f)->vertex_index(1)+(slice+1)*input.n_used_vertices();
331 * s.boundary_quads.push_back(quad);
332 * }
333 * }
334 * }
335 *
337 * cell = input.begin_active(); cell != input.end(); ++cell)
338 * {
339 * CellData<2> quad;
340 * quad.boundary_id = bid + 1;
341 * quad.vertices[0] = cell->vertex_index(0);
342 * quad.vertices[1] = cell->vertex_index(1);
343 * quad.vertices[2] = cell->vertex_index(2);
344 * quad.vertices[3] = cell->vertex_index(3);
345 * s.boundary_quads.push_back(quad);
346 *
347 * quad.boundary_id = bid + 2;
348 * for (int i=0; i<4; ++i)
349 * quad.vertices[i] += (n_slices-1)*input.n_used_vertices();
350 * s.boundary_quads.push_back(quad);
351 * }
352 *
353 * result.create_triangulation (points,
354 * cells,
355 * s);
356 * }
357 *
358 * namespace Evaluation
359 * {
360 *
361 *
362 * template <int dim>
363 * double get_von_Mises_stress(const SymmetricTensor<2, dim> &stress)
364 * {
365 *
366 * @endcode
367 *
368 * if (dim == 2)
369 * {
370 * von_Mises_stress = std::sqrt( stress[0][0]*stress[0][0]
371 * + stress[1][1]*stress[1][1]
372 * - stress[0][0]*stress[1][1]
373 * + 3*stress[0][1]*stress[0][1]);
374 * }else if (dim == 3)
375 * {
376 * von_Mises_stress = std::sqrt( stress[0][0]*stress[0][0]
377 * + stress[1][1]*stress[1][1]
378 * + stress[2][2]*stress[2][2]
379 * - stress[0][0]*stress[1][1]
380 * - stress[1][1]*stress[2][2]
381 * - stress[0][0]*stress[2][2]
382 * + 3*( stress[0][1]*stress[0][1]
383 * +stress[1][2]*stress[1][2]
384 * +stress[0][2]*stress[0][2]) );
385 * }
386 *
387
388 *
389 * -----------------------------------------------
390 * "Perforated_strip_tension"
391 * plane stress
392 * const double von_Mises_stress = std::sqrt( stress[0][0]*stress[0][0]
393 * + stress[1][1]*stress[1][1]
394 * - stress[0][0]*stress[1][1]
395 * + 3*stress[0][1]*stress[0][1]);
396 * -----------------------------------------------
397 * otherwise
398 * plane strain / 3d case
399 *
400 * @code
401 * const double von_Mises_stress = std::sqrt(1.5) * (deviator(stress)).norm();
402 * @endcode
403 *
404 * -----------------------------------------------
405 *
406
407 *
408 *
409
410 *
411 *
412
413 *
414 *
415 * @code
416 * return von_Mises_stress;
417 * }
418 *
419 *
420 * template <int dim>
421 * class PointValuesEvaluation
422 * {
423 * public:
424 * PointValuesEvaluation (const Point<dim> &evaluation_point);
425 *
426 * void compute (const DoFHandler<dim> &dof_handler,
427 * const Vector<double> &solution,
428 * Vector<double> &point_values);
429 *
430 * DeclException1 (ExcEvaluationPointNotFound,
431 * Point<dim>,
432 * << "The evaluation point " << arg1
433 * << " was not found among the vertices of the present grid.");
434 * private:
435 * const Point<dim> evaluation_point;
436 * };
437 *
438 *
439 * template <int dim>
440 * PointValuesEvaluation<dim>::
441 * PointValuesEvaluation (const Point<dim> &evaluation_point)
442 * :
443 * evaluation_point (evaluation_point)
444 * {}
445 *
446 *
447 *
448 * template <int dim>
449 * void
450 * PointValuesEvaluation<dim>::
451 * compute (const DoFHandler<dim> &dof_handler,
452 * const Vector<double> &solution,
453 * Vector<double> &point_values)
454 * {
455 * const unsigned int dofs_per_vertex = dof_handler.get_fe().dofs_per_vertex;
456 * AssertThrow (point_values.size() == dofs_per_vertex,
457 * ExcDimensionMismatch (point_values.size(), dofs_per_vertex));
458 * point_values = 1e20;
459 *
461 * cell = dof_handler.begin_active(),
462 * endc = dof_handler.end();
463 * bool evaluation_point_found = false;
464 * for (; (cell!=endc) && !evaluation_point_found; ++cell)
465 * {
466 * if (cell->is_locally_owned() && !evaluation_point_found)
467 * for (unsigned int vertex=0;
468 * vertex<GeometryInfo<dim>::vertices_per_cell;
469 * ++vertex)
470 * {
471 * if (cell->vertex(vertex).distance (evaluation_point)
472 * <
473 * cell->diameter() * 1e-8)
474 * {
475 * for (unsigned int id=0; id!=dofs_per_vertex; ++id)
476 * {
477 * point_values[id] = solution(cell->vertex_dof_index(vertex,id));
478 * }
479 *
480 * evaluation_point_found = true;
481 * break;
482 * }
483 * }
484 * }
485 *
486 * AssertThrow (evaluation_point_found,
487 * ExcEvaluationPointNotFound(evaluation_point));
488 * }
489 *
490 *
491 * }
492 *
493 * @endcode
494 *
495 *
496 * <a name="ThecodePointHistorycodeclass"></a>
497 * <h3>The <code>PointHistory</code> class</h3>
498 *
499
500 *
501 * As was mentioned in the introduction, we have to store the old stress in
502 * quadrature point so that we can compute the residual forces at this point
503 * during the next time step. This alone would not warrant a structure with
504 * only one member, but in more complicated applications, we would have to
505 * store more information in quadrature points as well, such as the history
506 * variables of plasticity, etc. In essence, we have to store everything
507 * that affects the present state of the material here, which in plasticity
508 * is determined by the deformation history variables.
509 *
510
511 *
512 * We will not give this class any meaningful functionality beyond being
513 * able to store data, i.e. there are no constructors, destructors, or other
514 * member functions. In such cases of `dumb' classes, we usually opt to
515 * declare them as <code>struct</code> rather than <code>class</code>, to
516 * indicate that they are closer to C-style structures than C++-style
517 * classes.
518 *
519 * @code
520 * template <int dim>
521 * struct PointHistory
522 * {
523 * SymmetricTensor<2,dim> old_stress;
524 * SymmetricTensor<2,dim> old_strain;
525 * Point<dim> point;
526 * };
527 *
528 *
529 * @endcode
530 *
531 *
532 * <a name="ThecodeConstitutiveLawcodeclasstemplate"></a>
533 * <h3>The <code>ConstitutiveLaw</code> class template</h3>
534 *
535
536 *
537 * This class provides an interface for a constitutive law, i.e., for the
538 * relationship between strain @f$\varepsilon(\mathbf u)@f$ and stress
539 * @f$\sigma@f$. In this example we are using an elastoplastic material behavior
540 * with linear, isotropic hardening. Such materials are characterized by
541 * Young's modulus @f$E@f$, Poisson's ratio @f$\nu@f$, the initial yield stress
542 * @f$\sigma_0@f$ and the isotropic hardening parameter @f$\gamma@f$. For @f$\gamma =
543 * 0@f$ we obtain perfect elastoplastic behavior.
544 *
545
546 *
547 * As explained in the paper that describes this program, the first Newton
548 * steps are solved with a completely elastic material model to avoid having
549 * to deal with both nonlinearities (plasticity and contact) at once. To this
550 * end, this class has a function <code>set_sigma_0()</code> that we use later
551 * on to simply set @f$\sigma_0@f$ to a very large value -- essentially
552 * guaranteeing that the actual stress will not exceed it, and thereby
553 * producing an elastic material. When we are ready to use a plastic model, we
554 * set @f$\sigma_0@f$ back to its proper value, using the same function. As a
555 * result of this approach, we need to leave <code>sigma_0</code> as the only
556 * non-const member variable of this class.
557 *
558 * @code
559 * template <int dim>
560 * class ConstitutiveLaw
561 * {
562 * public:
563 * ConstitutiveLaw (const double E,
564 * const double nu,
565 * const double sigma_0,
566 * const double gamma);
567 *
568 * void
569 * set_sigma_0 (double sigma_zero);
570 *
571 * bool
572 * get_stress_strain_tensor (const SymmetricTensor<2, dim> &strain_tensor,
573 * SymmetricTensor<4, dim> &stress_strain_tensor) const;
574 *
575 * bool
576 * get_grad_stress_strain_tensor (const SymmetricTensor<2, dim> &strain_tensor,
577 * const std::vector<Tensor<2, dim> > &point_hessian,
578 * Tensor<5, dim> &stress_strain_tensor_grad) const;
579 *
580 * void
581 * get_linearized_stress_strain_tensors (const SymmetricTensor<2, dim> &strain_tensor,
582 * SymmetricTensor<4, dim> &stress_strain_tensor_linearized,
583 * SymmetricTensor<4, dim> &stress_strain_tensor) const;
584 *
585 * private:
586 * const double kappa;
587 * const double mu;
588 * double sigma_0;
589 * const double gamma;
590 *
591 * const SymmetricTensor<4, dim> stress_strain_tensor_kappa;
592 * const SymmetricTensor<4, dim> stress_strain_tensor_mu;
593 * };
594 *
595 * @endcode
596 *
597 * The constructor of the ConstitutiveLaw class sets the required material
598 * parameter for our deformable body. Material parameters for elastic
599 * isotropic media can be defined in a variety of ways, such as the pair @f$E,
600 * \nu@f$ (elastic modulus and Poisson's number), using the Lame parameters
601 * @f$\lambda,mu@f$ or several other commonly used conventions. Here, the
602 * constructor takes a description of material parameters in the form of
603 * @f$E,\nu@f$, but since this turns out to these are not the coefficients that
604 * appear in the equations of the plastic projector, we immediately convert
605 * them into the more suitable set @f$\kappa,\mu@f$ of bulk and shear moduli. In
606 * addition, the constructor takes @f$\sigma_0@f$ (the yield stress absent any
607 * plastic strain) and @f$\gamma@f$ (the hardening parameter) as arguments. In
608 * this constructor, we also compute the two principal components of the
609 * stress-strain relation and its linearization.
610 *
611 * @code
612 * template <int dim>
613 * ConstitutiveLaw<dim>::ConstitutiveLaw (double E,
614 * double nu,
615 * double sigma_0,
616 * double gamma)
617 * :
618 * @endcode
619 *
620 * --------------------
621 * Plane stress
622 * kappa (((E*(1+2*nu)) / (std::pow((1+nu),2))) / (3 * (1 - 2 * (nu / (1+nu))))),
623 * mu (((E*(1+2*nu)) / (std::pow((1+nu),2))) / (2 * (1 + (nu / (1+nu))))),
624 * --------------------
625 * 3d and plane strain
626 *
627 * @code
628 * kappa (E / (3 * (1 - 2 * nu))),
629 * mu (E / (2 * (1 + nu))),
630 * @endcode
631 *
632 * --------------------
633 *
634 * @code
635 * sigma_0(sigma_0),
636 * gamma(gamma),
637 * stress_strain_tensor_kappa (kappa
638 * * outer_product(unit_symmetric_tensor<dim>(),
639 * unit_symmetric_tensor<dim>())),
640 * stress_strain_tensor_mu (2 * mu
641 * * (identity_tensor<dim>()
642 * - outer_product(unit_symmetric_tensor<dim>(),
643 * unit_symmetric_tensor<dim>()) / 3.0))
644 * {}
645 *
646 *
647 * template <int dim>
648 * void
649 * ConstitutiveLaw<dim>::set_sigma_0 (double sigma_zero)
650 * {
651 * sigma_0 = sigma_zero;
652 * }
653 *
654 *
655 * @endcode
656 *
657 *
658 * <a name="ConstitutiveLawget_stress_strain_tensor"></a>
659 * <h4>ConstitutiveLaw::get_stress_strain_tensor</h4>
660 *
661
662 *
663 * This is the principal component of the constitutive law. It projects the
664 * deviatoric part of the stresses in a quadrature point back to the yield
665 * stress (i.e., the original yield stress @f$\sigma_0@f$ plus the term that
666 * describes linear isotropic hardening). We need this function to calculate
667 * the nonlinear residual in PlasticityContactProblem::residual_nl_system. The
668 * computations follow the formulas laid out in the introduction.
669 *
670
671 *
672 * The function returns whether the quadrature point is plastic to allow for
673 * some statistics downstream on how many of the quadrature points are
674 * plastic and how many are elastic.
675 *
676 * @code
677 * template <int dim>
678 * bool
679 * ConstitutiveLaw<dim>::
680 * get_stress_strain_tensor (const SymmetricTensor<2, dim> &strain_tensor,
681 * SymmetricTensor<4, dim> &stress_strain_tensor) const
682 * {
683 * SymmetricTensor<2, dim> stress_tensor;
684 * stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)
685 * * strain_tensor;
686 *
687 * @endcode
688 *
689 * const SymmetricTensor<2, dim> deviator_stress_tensor = deviator(stress_tensor);
690 * const double deviator_stress_tensor_norm = deviator_stress_tensor.norm();
691 *
692 * @code
693 * const double von_Mises_stress = Evaluation::get_von_Mises_stress(stress_tensor);
694 *
695 * stress_strain_tensor = stress_strain_tensor_mu;
696 * if (von_Mises_stress > sigma_0)
697 * {
698 * const double beta = sigma_0 / von_Mises_stress;
699 * stress_strain_tensor *= (gamma + (1 - gamma) * beta);
700 * }
701 *
702 * stress_strain_tensor += stress_strain_tensor_kappa;
703 *
704 * return (von_Mises_stress > sigma_0);
705 * }
706 *
707 *
708 * template <int dim>
709 * bool
710 * ConstitutiveLaw<dim>::
711 * get_grad_stress_strain_tensor (const SymmetricTensor<2, dim> &strain_tensor,
712 * const std::vector<Tensor<2, dim> > &point_hessian,
713 * Tensor<5, dim> &stress_strain_tensor_grad) const
714 * {
715 * SymmetricTensor<2, dim> stress_tensor;
716 * stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)
717 * * strain_tensor;
718 *
719 * const double von_Mises_stress = Evaluation::get_von_Mises_stress(stress_tensor);
720 *
721 * if (von_Mises_stress > sigma_0)
722 * {
723 * const SymmetricTensor<2, dim> deviator_strain_tensor = deviator(strain_tensor);
724 * const double deviator_strain_tensor_norm = deviator_strain_tensor.norm();
725 * const double multiplier = -(1-gamma)*sigma_0/(2*mu*std::pow(deviator_strain_tensor_norm,3));
726 *
727 * Vector<double> multiplier_vector(dim);
728 * multiplier_vector = 0;
729 *
730 * for (unsigned int i=0; i!=dim; ++i)
731 * for (unsigned int m=0; m!=dim; ++m)
732 * for (unsigned int n=0; n!=dim; ++n)
733 * {
734 * multiplier_vector(i) += deviator_strain_tensor[m][n] *
735 * ( 0.5*( point_hessian[m][n][i] + point_hessian[n][m][i] )
736 * + ( m==n && dim==2 ? -1/dim*(point_hessian[0][0][i]
737 * + point_hessian[1][1][i]) : 0 )
738 * + ( m==n && dim==3 ? -1/dim*(point_hessian[0][0][i]
739 * + point_hessian[1][1][i]
740 * + point_hessian[2][2][i]) : 0 ) );
741 * }
742 *
743 * @endcode
744 *
745 * -----------------------------------------------
746 * "Perforated_strip_tension"
747 * plane stress
748 * const double VM_factor = std::sqrt(2);
749 * -----------------------------------------------
750 * otherwise
751 * plane strain / 3d case
752 *
753 * @code
754 * const double VM_factor = std::sqrt(1.5);
755 * @endcode
756 *
757 * -----------------------------------------------
758 *
759
760 *
761 *
762 * @code
763 * for (unsigned int i=0; i!=dim; ++i)
764 * for (unsigned int j=0; j!=dim; ++j)
765 * for (unsigned int k=0; k!=dim; ++k)
766 * for (unsigned int l=0; l!=dim; ++l)
767 * for (unsigned int m=0; m!=dim; ++m)
768 * {
769 * stress_strain_tensor_grad[i][j][k][l][m] = 1/VM_factor
770 * * multiplier
771 * * stress_strain_tensor_mu[i][j][k][l]
772 * * multiplier_vector(m);
773 * }
774 *
775 * }
776 * else
777 * {
778 * stress_strain_tensor_grad = 0;
779 * }
780 *
781 * return (von_Mises_stress > sigma_0);
782 * }
783 *
784 *
785 * @endcode
786 *
787 *
788 * <a name="ConstitutiveLawget_linearized_stress_strain_tensors"></a>
789 * <h4>ConstitutiveLaw::get_linearized_stress_strain_tensors</h4>
790 *
791
792 *
793 * This function returns the linearized stress strain tensor, linearized
794 * around the solution @f$u^{i-1}@f$ of the previous Newton step @f$i-1@f$. The
795 * parameter <code>strain_tensor</code> (commonly denoted
796 * @f$\varepsilon(u^{i-1})@f$) must be passed as an argument, and serves as the
797 * linearization point. The function returns the derivative of the nonlinear
798 * constitutive law in the variable stress_strain_tensor, as well as the
799 * stress-strain tensor of the linearized problem in
800 * stress_strain_tensor_linearized. See
801 * PlasticityContactProblem::assemble_nl_system where this function is used.
802 *
803 * @code
804 * template <int dim>
805 * void
806 * ConstitutiveLaw<dim>::
807 * get_linearized_stress_strain_tensors (const SymmetricTensor<2, dim> &strain_tensor,
808 * SymmetricTensor<4, dim> &stress_strain_tensor_linearized,
809 * SymmetricTensor<4, dim> &stress_strain_tensor) const
810 * {
811 * SymmetricTensor<2, dim> stress_tensor;
812 * stress_tensor = (stress_strain_tensor_kappa + stress_strain_tensor_mu)
813 * * strain_tensor;
814 *
815 * stress_strain_tensor = stress_strain_tensor_mu;
816 * stress_strain_tensor_linearized = stress_strain_tensor_mu;
817 *
818 * SymmetricTensor<2, dim> deviator_stress_tensor = deviator(stress_tensor);
819 * const double deviator_stress_tensor_norm = deviator_stress_tensor.norm();
820 * const double von_Mises_stress = Evaluation::get_von_Mises_stress(stress_tensor);
821 *
822 * if (von_Mises_stress > sigma_0)
823 * {
824 * const double beta = sigma_0 / von_Mises_stress;
825 * stress_strain_tensor *= (gamma + (1 - gamma) * beta);
826 * stress_strain_tensor_linearized *= (gamma + (1 - gamma) * beta);
827 * deviator_stress_tensor /= deviator_stress_tensor_norm;
828 * stress_strain_tensor_linearized -= (1 - gamma) * beta * 2 * mu
829 * * outer_product(deviator_stress_tensor,
830 * deviator_stress_tensor);
831 * }
832 *
833 * stress_strain_tensor += stress_strain_tensor_kappa;
834 * stress_strain_tensor_linearized += stress_strain_tensor_kappa;
835 * }
836 *
837 * @endcode
838 *
839 * Finally, below we will need a function that computes the rotation matrix
840 * induced by a displacement at a given point. In fact, of course, the
841 * displacement at a single point only has a direction and a magnitude, it
842 * is the change in direction and magnitude that induces rotations. In
843 * effect, the rotation matrix can be computed from the gradients of a
844 * displacement, or, more specifically, from the curl.
845 *
846
847 *
848 * The formulas by which the rotation matrices are determined are a little
849 * awkward, especially in 3d. For 2d, there is a simpler way, so we
850 * implement this function twice, once for 2d and once for 3d, so that we
851 * can compile and use the program in both space dimensions if so desired --
852 * after all, deal.II is all about dimension independent programming and
853 * reuse of algorithm thoroughly tested with cheap computations in 2d, for
854 * the more expensive computations in 3d. Here is one case, where we have to
855 * implement different algorithms for 2d and 3d, but then can write the rest
856 * of the program in a way that is independent of the space dimension.
857 *
858
859 *
860 * So, without further ado to the 2d implementation:
861 *
862 * @code
864 * get_rotation_matrix (const std::vector<Tensor<1,2> > &grad_u)
865 * {
866 * @endcode
867 *
868 * First, compute the curl of the velocity field from the gradients. Note
869 * that we are in 2d, so the rotation is a scalar:
870 *
871 * @code
872 * const double curl = (grad_u[1][0] - grad_u[0][1]);
873 *
874 * @endcode
875 *
876 * From this, compute the angle of rotation:
877 *
878 * @code
879 * const double angle = std::atan (curl);
880 *
881 * @endcode
882 *
883 * And from this, build the antisymmetric rotation matrix:
884 *
885 * @code
886 * const double t[2][2] = {{ cos(angle), sin(angle) },
887 * {-sin(angle), cos(angle) }
888 * };
889 * return Tensor<2,2>(t);
890 * }
891 *
892 *
893 * @endcode
894 *
895 * The 3d case is a little more contrived:
896 *
897 * @code
899 * get_rotation_matrix (const std::vector<Tensor<1,3> > &grad_u)
900 * {
901 * @endcode
902 *
903 * Again first compute the curl of the velocity field. This time, it is a
904 * real vector:
905 *
906 * @code
907 * const Point<3> curl (grad_u[2][1] - grad_u[1][2],
908 * grad_u[0][2] - grad_u[2][0],
909 * grad_u[1][0] - grad_u[0][1]);
910 *
911 * @endcode
912 *
913 * From this vector, using its magnitude, compute the tangent of the angle
914 * of rotation, and from it the actual angle:
915 *
916 * @code
917 * const double tan_angle = std::sqrt(curl*curl);
918 * const double angle = std::atan (tan_angle);
919 *
920 * @endcode
921 *
922 * Now, here's one problem: if the angle of rotation is too small, that
923 * means that there is no rotation going on (for example a translational
924 * motion). In that case, the rotation matrix is the identity matrix.
925 *
926
927 *
928 * The reason why we stress that is that in this case we have that
929 * <code>tan_angle==0</code>. Further down, we need to divide by that
930 * number in the computation of the axis of rotation, and we would get
931 * into trouble when dividing doing so. Therefore, let's shortcut this and
932 * simply return the identity matrix if the angle of rotation is really
933 * small:
934 *
935 * @code
936 * if (angle < 1e-9)
937 * {
938 * static const double rotation[3][3]
939 * = {{ 1, 0, 0}, { 0, 1, 0 }, { 0, 0, 1 } };
940 * const Tensor<2,3> rot(rotation);
941 * return rot;
942 * }
943 *
944 * @endcode
945 *
946 * Otherwise compute the real rotation matrix. The algorithm for this is
947 * not exactly obvious, but can be found in a number of books,
948 * particularly on computer games where rotation is a very frequent
949 * operation. Online, you can find a description at
950 * http://www.makegames.com/3drotation/ and (this particular form, with
951 * the signs as here) at
952 * http://www.gamedev.net/reference/articles/article1199.asp:
953 *
954 * @code
955 * const double c = std::cos(angle);
956 * const double s = std::sin(angle);
957 * const double t = 1-c;
958 *
959 * const Point<3> axis = curl/tan_angle;
960 * const double rotation[3][3]
961 * = {{
962 * t *axis[0] *axis[0]+c,
963 * t *axis[0] *axis[1]+s *axis[2],
964 * t *axis[0] *axis[2]-s *axis[1]
965 * },
966 * {
967 * t *axis[0] *axis[1]-s *axis[2],
968 * t *axis[1] *axis[1]+c,
969 * t *axis[1] *axis[2]+s *axis[0]
970 * },
971 * {
972 * t *axis[0] *axis[2]+s *axis[1],
973 * t *axis[1] *axis[1]-s *axis[0],
974 * t *axis[2] *axis[2]+c
975 * }
976 * };
977 * return Tensor<2,3>(rotation);
978 * }
979 *
980 *
981 * @endcode
982 *
983 * <h3>Equation data: Body forces, boundary forces,
984 * incremental boundary values</h3>
985 *
986
987 *
988 * The following should be relatively standard. We need classes for
989 * the boundary forcing term (which we here choose to be zero)
990 * and incremental boundary values.
991 *
992 * @code
993 * namespace EquationData
994 * {
995 *
996 * /*
997 * template <int dim>
998 * class BoundaryForce : public Function<dim>
999 * {
1000 * public:
1001 * BoundaryForce ();
1002 *
1003 * virtual
1004 * double value (const Point<dim> &p,
1005 * const unsigned int component = 0) const;
1006 *
1007 * virtual
1008 * void vector_value (const Point<dim> &p,
1009 * Vector<double> &values) const;
1010 * };
1011 *
1012 * template <int dim>
1013 * BoundaryForce<dim>::BoundaryForce ()
1014 * :
1015 * Function<dim>(dim)
1016 * {}
1017 *
1018 *
1019 * template <int dim>
1020 * double
1021 * BoundaryForce<dim>::value (const Point<dim> &,
1022 * const unsigned int) const
1023 * {
1024 * return 0.;
1025 * }
1026 *
1027 * template <int dim>
1028 * void
1029 * BoundaryForce<dim>::vector_value (const Point<dim> &p,
1030 * Vector<double> &values) const
1031 * {
1032 * for (unsigned int c = 0; c < this->n_components; ++c)
1033 * values(c) = BoundaryForce<dim>::value(p, c);
1034 * }
1035 *
1036 * @endcode
1037 *
1038 *
1039 * <a name="ThecodeBodyForcecodeclass"></a>
1040 * <h3>The <code>BodyForce</code> class</h3>
1041 * Body forces are generally mediated by one of the four basic
1042 * physical types of forces:
1043 * gravity, strong and weak interaction, and electromagnetism. Unless one
1044 * wants to consider subatomic objects (for which quasistatic deformation is
1045 * irrelevant and an inappropriate description anyway), only gravity and
1046 * electromagnetic forces need to be considered. Let us, for simplicity
1047 * assume that our body has a certain mass density, but is either
1048 * non-magnetic and not electrically conducting or that there are no
1049 * significant electromagnetic fields around. In that case, the body forces
1050 * are simply <code>rho g</code>, where <code>rho</code> is the material
1051 * density and <code>g</code> is a vector in negative z-direction with
1052 * magnitude 9.81 m/s^2. Both the density and <code>g</code> are defined in
1053 * the function, and we take as the density 7700 kg/m^3, a value commonly
1054 * assumed for steel.
1055 *
1056
1057 *
1058 * To be a little more general and to be able to do computations in 2d as
1059 * well, we realize that the body force is always a function returning a
1060 * <code>dim</code> dimensional vector. We assume that gravity acts along
1061 * the negative direction of the last, i.e. <code>dim-1</code>th
1062 * coordinate. The rest of the implementation of this function should be
1063 * mostly self-explanatory given similar definitions in previous example
1064 * programs. Note that the body force is independent of the location; to
1065 * avoid compiler warnings about unused function arguments, we therefore
1066 * comment out the name of the first argument of the
1067 * <code>vector_value</code> function:
1068 *
1069 * @code
1070 * template <int dim>
1071 * class BodyForce : public Function<dim>
1072 * {
1073 * public:
1074 * BodyForce ();
1075 *
1076 * virtual
1077 * void
1078 * vector_value (const Point<dim> &p,
1079 * Vector<double> &values) const;
1080 *
1081 * virtual
1082 * void
1083 * vector_value_list (const std::vector<Point<dim> > &points,
1084 * std::vector<Vector<double> > &value_list) const;
1085 * };
1086 *
1087 *
1088 * template <int dim>
1089 * BodyForce<dim>::BodyForce ()
1090 * :
1091 * Function<dim> (dim)
1092 * {}
1093 *
1094 *
1095 * template <int dim>
1096 * inline
1097 * void
1098 * BodyForce<dim>::vector_value (const Point<dim> &p,
1099 * Vector<double> &values) const
1100 * {
1101 * Assert (values.size() == dim,
1102 * ExcDimensionMismatch (values.size(), dim));
1103 *
1104 * const double g = 9.81;
1105 * const double rho = 7700;
1106 *
1107 * values = 0;
1108 * values(dim-1) = -rho * g;
1109 * }
1110 *
1111 *
1112 *
1113 * template <int dim>
1114 * void
1115 * BodyForce<dim>::vector_value_list (const std::vector<Point<dim> > &points,
1116 * std::vector<Vector<double> > &value_list) const
1117 * {
1118 * const unsigned int n_points = points.size();
1119 *
1120 * Assert (value_list.size() == n_points,
1121 * ExcDimensionMismatch (value_list.size(), n_points));
1122 *
1123 * for (unsigned int p=0; p<n_points; ++p)
1124 * BodyForce<dim>::vector_value (points[p],
1125 * value_list[p]);
1126 * }
1127 *
1128 * @endcode
1129 *
1130 *
1131 * <a name="ThecodeIncrementalBoundaryValuecodeclass"></a>
1132 * <h3>The <code>IncrementalBoundaryValue</code> class</h3>
1133 *
1134
1135 *
1136 * In addition to body forces, movement can be induced by boundary forces
1137 * and forced boundary displacement. The latter case is equivalent to forces
1138 * being chosen in such a way that they induce certain displacement.
1139 *
1140
1141 *
1142 * For quasistatic displacement, typical boundary forces would be pressure
1143 * on a body, or tangential friction against another body. We chose a
1144 * somewhat simpler case here: we prescribe a certain movement of (parts of)
1145 * the boundary, or at least of certain components of the displacement
1146 * vector. We describe this by another vector-valued function that, for a
1147 * given point on the boundary, returns the prescribed displacement.
1148 *
1149
1150 *
1151 * Since we have a time-dependent problem, the displacement increment of the
1152 * boundary equals the displacement accumulated during the length of the
1153 * timestep. The class therefore has to know both the present time and the
1154 * length of the present time step, and can then approximate the incremental
1155 * displacement as the present velocity times the present timestep.
1156 *
1157
1158 *
1159 * For the purposes of this program, we choose a simple form of boundary
1160 * displacement: we displace the top boundary with constant velocity
1161 * downwards. The rest of the boundary is either going to be fixed (and is
1162 * then described using an object of type <code>Functions::ZeroFunction</code>) or free
1163 * (Neumann-type, in which case nothing special has to be done). The
1164 * implementation of the class describing the constant downward motion
1165 * should then be obvious using the knowledge we gained through all the
1166 * previous example programs:
1167 *
1168 * @code
1169 * template <int dim>
1170 * class IncrementalBoundaryValues : public Function<dim>
1171 * {
1172 * public:
1173 * IncrementalBoundaryValues (const double present_time,
1174 * const double present_timestep);
1175 *
1176 * virtual
1177 * void
1178 * vector_value (const Point<dim> &p,
1179 * Vector<double> &values) const;
1180 *
1181 * virtual
1182 * void
1183 * vector_value_list (const std::vector<Point<dim> > &points,
1184 * std::vector<Vector<double> > &value_list) const;
1185 *
1186 * private:
1187 * const double velocity;
1188 * const double present_time;
1189 * const double present_timestep;
1190 * };
1191 *
1192 *
1193 * template <int dim>
1194 * IncrementalBoundaryValues<dim>::
1195 * IncrementalBoundaryValues (const double present_time,
1196 * const double present_timestep)
1197 * :
1198 * Function<dim> (dim),
1199 * velocity (.1),
1200 * present_time (present_time),
1201 * present_timestep (present_timestep)
1202 * {}
1203 *
1204 *
1205 * template <int dim>
1206 * void
1207 * IncrementalBoundaryValues<dim>::
1208 * vector_value (const Point<dim> &p,
1209 * Vector<double> &values) const
1210 * {
1211 * Assert (values.size() == dim,
1212 * ExcDimensionMismatch (values.size(), dim));
1213 *
1214 * values = 0;
1215 * values(2) = -present_timestep * velocity;
1216 * }
1217 *
1218 *
1219 *
1220 * template <int dim>
1221 * void
1222 * IncrementalBoundaryValues<dim>::
1223 * vector_value_list (const std::vector<Point<dim> > &points,
1224 * std::vector<Vector<double> > &value_list) const
1225 * {
1226 * const unsigned int n_points = points.size();
1227 *
1228 * Assert (value_list.size() == n_points,
1229 * ExcDimensionMismatch (value_list.size(), n_points));
1230 *
1231 * for (unsigned int p=0; p<n_points; ++p)
1232 * IncrementalBoundaryValues<dim>::vector_value (points[p],
1233 * value_list[p]);
1234 * }
1235 * */
1236 *
1237 * @endcode
1238 *
1239 * ----------------------------- TimoshenkoBeam ---------------------------------------
1240 *
1241 * @code
1242 * /*
1243 * template <int dim>
1244 * class IncrementalBoundaryForce : public Function<dim>
1245 * {
1246 * public:
1247 * IncrementalBoundaryForce (const double present_time,
1248 * const double end_time);
1249 *
1250 * virtual
1251 * void vector_value (const Point<dim> &p,
1252 * Vector<double> &values) const;
1253 *
1254 * virtual
1255 * void
1256 * vector_value_list (const std::vector<Point<dim> > &points,
1257 * std::vector<Vector<double> > &value_list) const;
1258 * private:
1259 * const double present_time,
1260 * end_time,
1261 * shear_force,
1262 * length,
1263 * depth,
1264 * thickness;
1265 * };
1266 *
1267 * template <int dim>
1268 * IncrementalBoundaryForce<dim>::
1269 * IncrementalBoundaryForce (const double present_time,
1270 * const double end_time)
1271 * :
1272 * Function<dim>(dim),
1273 * present_time (present_time),
1274 * end_time (end_time),
1275 * shear_force (2e4),
1276 * length (.48),
1277 * depth (.12),
1278 * thickness (.01)
1279 * {}
1280 *
1281 * template <int dim>
1282 * void
1283 * IncrementalBoundaryForce<dim>::vector_value (const Point<dim> &p,
1284 * Vector<double> &values) const
1285 * {
1286 * AssertThrow (values.size() == dim,
1287 * ExcDimensionMismatch (values.size(), dim));
1288 * AssertThrow (dim == 2, ExcNotImplemented());
1289 *
1290 * @endcode
1291 *
1292 * compute traction on the right face of Timoshenko beam problem, t_bar
1293 *
1294 * @code
1295 * double inertia_moment = (thickness*std::pow(depth,3)) / 12;
1296 *
1297 * double x = p(0);
1298 * double y = p(1);
1299 *
1300 * AssertThrow(std::fabs(x-length)<1e-12, ExcNotImplemented());
1301 *
1302 * values(0) = 0;
1303 * values(1) = - shear_force/(2*inertia_moment) * ( depth*depth/4-y*y );
1304 *
1305 * @endcode
1306 *
1307 * compute the fraction of imposed force
1308 *
1309 * @code
1310 * const double frac = present_time/end_time;
1311 *
1312 * values *= frac;
1313 * }
1314 *
1315 * template <int dim>
1316 * void
1317 * IncrementalBoundaryForce<dim>::
1318 * vector_value_list (const std::vector<Point<dim> > &points,
1319 * std::vector<Vector<double> > &value_list) const
1320 * {
1321 * const unsigned int n_points = points.size();
1322 *
1323 * Assert (value_list.size() == n_points,
1324 * ExcDimensionMismatch (value_list.size(), n_points));
1325 *
1326 * for (unsigned int p=0; p<n_points; ++p)
1327 * IncrementalBoundaryForce<dim>::vector_value (points[p],
1328 * value_list[p]);
1329 * }
1330 *
1331 *
1332 * template <int dim>
1333 * class BodyForce : public Functions::ZeroFunction<dim>
1334 * {
1335 * public:
1336 * BodyForce () : Functions::ZeroFunction<dim> (dim) {}
1337 * };
1338 *
1339 * template <int dim>
1340 * class IncrementalBoundaryValues : public Function<dim>
1341 * {
1342 * public:
1343 * IncrementalBoundaryValues (const double present_time,
1344 * const double end_time);
1345 *
1346 * virtual
1347 * void
1348 * vector_value (const Point<dim> &p,
1349 * Vector<double> &values) const;
1350 *
1351 * virtual
1352 * void
1353 * vector_value_list (const std::vector<Point<dim> > &points,
1354 * std::vector<Vector<double> > &value_list) const;
1355 *
1356 * private:
1357 * const double present_time,
1358 * end_time,
1359 * shear_force,
1360 * Youngs_modulus,
1361 * Poissons_ratio,
1362 * length,
1363 * depth,
1364 * thickness;
1365 * };
1366 *
1367 *
1368 * template <int dim>
1369 * IncrementalBoundaryValues<dim>::
1370 * IncrementalBoundaryValues (const double present_time,
1371 * const double end_time)
1372 * :
1373 * Function<dim> (dim),
1374 * present_time (present_time),
1375 * end_time (end_time),
1376 * shear_force (2e4),
1377 * Youngs_modulus (2.e11),
1378 * Poissons_ratio (.3),
1379 * length (.48),
1380 * depth (.12),
1381 * thickness (.01)
1382 * {}
1383 *
1384 *
1385 * template <int dim>
1386 * void
1387 * IncrementalBoundaryValues<dim>::
1388 * vector_value (const Point<dim> &p,
1389 * Vector<double> &values) const
1390 * {
1391 * AssertThrow (values.size() == dim,
1392 * ExcDimensionMismatch (values.size(), dim));
1393 * AssertThrow (dim == 2, ExcNotImplemented());
1394 *
1395 *
1396 * @endcode
1397 *
1398 * compute exact displacement of Timoshenko beam problem, u_bar
1399 *
1400 * @code
1401 * double inertia_moment = (thickness*std::pow(depth,3)) / 12;
1402 *
1403 * double x = p(0);
1404 * double y = p(1);
1405 *
1406 * double fac = shear_force / (6*Youngs_modulus*inertia_moment);
1407 *
1408 * values(0) = fac * y * ( (6*length-3*x)*x + (2+Poissons_ratio)*(y*y-depth*depth/4) );
1409 * values(1) = -fac* ( 3*Poissons_ratio*y*y*(length-x) + 0.25*(4+5*Poissons_ratio)*depth*depth*x + (3*length-x)*x*x );
1410 *
1411 * @endcode
1412 *
1413 * compute the fraction of imposed force
1414 *
1415 * @code
1416 * const double frac = present_time/end_time;
1417 *
1418 * values *= frac;
1419 * }
1420 *
1421 *
1422 *
1423 * template <int dim>
1424 * void
1425 * IncrementalBoundaryValues<dim>::
1426 * vector_value_list (const std::vector<Point<dim> > &points,
1427 * std::vector<Vector<double> > &value_list) const
1428 * {
1429 * const unsigned int n_points = points.size();
1430 *
1431 * Assert (value_list.size() == n_points,
1432 * ExcDimensionMismatch (value_list.size(), n_points));
1433 *
1434 * for (unsigned int p=0; p<n_points; ++p)
1435 * IncrementalBoundaryValues<dim>::vector_value (points[p],
1436 * value_list[p]);
1437 * }
1438 * */
1439 *
1440 * @endcode
1441 *
1442 * ------------------------- Thick_tube_internal_pressure ----------------------------------
1443 *
1444 * @code
1445 * /*
1446 * template <int dim>
1447 * class IncrementalBoundaryForce : public Function<dim>
1448 * {
1449 * public:
1450 * IncrementalBoundaryForce (const double present_time,
1451 * const double end_time);
1452 *
1453 * virtual
1454 * void vector_value (const Point<dim> &p,
1455 * Vector<double> &values) const;
1456 *
1457 * virtual
1458 * void
1459 * vector_value_list (const std::vector<Point<dim> > &points,
1460 * std::vector<Vector<double> > &value_list) const;
1461 * private:
1462 * const double present_time,
1463 * end_time,
1464 * pressure,
1465 * inner_radius;
1466 * };
1467 *
1468 * template <int dim>
1469 * IncrementalBoundaryForce<dim>::
1470 * IncrementalBoundaryForce (const double present_time,
1471 * const double end_time)
1472 * :
1473 * Function<dim>(dim),
1474 * present_time (present_time),
1475 * end_time (end_time),
1476 * pressure (0.6*2.4e8),
1477 * @endcode
1478 *
1479 * pressure (1.94e8),
1480 *
1481 * @code
1482 * inner_radius(.1)
1483 * {}
1484 *
1485 * template <int dim>
1486 * void
1487 * IncrementalBoundaryForce<dim>::vector_value (const Point<dim> &p,
1488 * Vector<double> &values) const
1489 * {
1490 * AssertThrow (dim == 2, ExcNotImplemented());
1491 * AssertThrow (values.size() == dim,
1492 * ExcDimensionMismatch (values.size(), dim));
1493 *
1494 * const double eps = 1.e-7 * inner_radius,
1495 * radius = p.norm();
1496 * @endcode
1497 *
1498 * compute traction on the inner boundary, t_bar
1499 *
1500 * @code
1501 * AssertThrow(radius < (eps+inner_radius), ExcInternalError());
1502 *
1503 * const double theta = std::atan2(p(1),p(0));
1504 *
1505 * values(0) = pressure * std::cos(theta);
1506 * values(1) = pressure * std::sin(theta);
1507 *
1508 * @endcode
1509 *
1510 * compute the fraction of imposed force
1511 *
1512 * @code
1513 * const double frac = present_time/end_time;
1514 *
1515 * values *= frac;
1516 * }
1517 *
1518 * template <int dim>
1519 * void
1520 * IncrementalBoundaryForce<dim>::
1521 * vector_value_list (const std::vector<Point<dim> > &points,
1522 * std::vector<Vector<double> > &value_list) const
1523 * {
1524 * const unsigned int n_points = points.size();
1525 *
1526 * Assert (value_list.size() == n_points,
1527 * ExcDimensionMismatch (value_list.size(), n_points));
1528 *
1529 * for (unsigned int p=0; p<n_points; ++p)
1530 * IncrementalBoundaryForce<dim>::vector_value (points[p],
1531 * value_list[p]);
1532 * }
1533 *
1534 *
1535 * template <int dim>
1536 * class BodyForce : public Functions::ZeroFunction<dim>
1537 * {
1538 * public:
1539 * BodyForce () : Functions::ZeroFunction<dim> (dim) {}
1540 * };
1541 *
1542 *
1543 * template <int dim>
1544 * class IncrementalBoundaryValues : public Function<dim>
1545 * {
1546 * public:
1547 * IncrementalBoundaryValues (const double present_time,
1548 * const double end_time);
1549 *
1550 * virtual
1551 * void
1552 * vector_value (const Point<dim> &p,
1553 * Vector<double> &values) const;
1554 *
1555 * virtual
1556 * void
1557 * vector_value_list (const std::vector<Point<dim> > &points,
1558 * std::vector<Vector<double> > &value_list) const;
1559 *
1560 * private:
1561 * const double present_time,
1562 * end_time;
1563 * };
1564 *
1565 *
1566 * template <int dim>
1567 * IncrementalBoundaryValues<dim>::
1568 * IncrementalBoundaryValues (const double present_time,
1569 * const double end_time)
1570 * :
1571 * Function<dim> (dim),
1572 * present_time (present_time),
1573 * end_time (end_time)
1574 * {}
1575 *
1576 *
1577 * template <int dim>
1578 * void
1579 * IncrementalBoundaryValues<dim>::
1580 * vector_value (const Point<dim> &p,
1581 * Vector<double> &values) const
1582 * {
1583 * AssertThrow (values.size() == dim,
1584 * ExcDimensionMismatch (values.size(), dim));
1585 * AssertThrow (dim == 2, ExcNotImplemented());
1586 *
1587 * values = 0.;
1588 * }
1589 *
1590 *
1591 *
1592 * template <int dim>
1593 * void
1594 * IncrementalBoundaryValues<dim>::
1595 * vector_value_list (const std::vector<Point<dim> > &points,
1596 * std::vector<Vector<double> > &value_list) const
1597 * {
1598 * const unsigned int n_points = points.size();
1599 *
1600 * Assert (value_list.size() == n_points,
1601 * ExcDimensionMismatch (value_list.size(), n_points));
1602 *
1603 * for (unsigned int p=0; p<n_points; ++p)
1604 * IncrementalBoundaryValues<dim>::vector_value (points[p],
1605 * value_list[p]);
1606 * }
1607 * */
1608 *
1609 * @endcode
1610 *
1611 * ------------------------- Perforated_strip_tension ----------------------------------
1612 *
1613 * @code
1614 * /*
1615 * template <int dim>
1616 * class IncrementalBoundaryForce : public Function<dim>
1617 * {
1618 * public:
1619 * IncrementalBoundaryForce (const double present_time,
1620 * const double end_time);
1621 *
1622 * virtual
1623 * void vector_value (const Point<dim> &p,
1624 * Vector<double> &values) const;
1625 *
1626 * virtual
1627 * void
1628 * vector_value_list (const std::vector<Point<dim> > &points,
1629 * std::vector<Vector<double> > &value_list) const;
1630 * private:
1631 * const double present_time,
1632 * end_time;
1633 * };
1634 *
1635 * template <int dim>
1636 * IncrementalBoundaryForce<dim>::
1637 * IncrementalBoundaryForce (const double present_time,
1638 * const double end_time)
1639 * :
1640 * Function<dim>(dim),
1641 * present_time (present_time),
1642 * end_time (end_time)
1643 * {}
1644 *
1645 * template <int dim>
1646 * void
1647 * IncrementalBoundaryForce<dim>::vector_value (const Point<dim> &p,
1648 * Vector<double> &values) const
1649 * {
1650 * AssertThrow (values.size() == dim,
1651 * ExcDimensionMismatch (values.size(), dim));
1652 *
1653 * values = 0;
1654 *
1655 * @endcode
1656 *
1657 * compute the fraction of imposed force
1658 *
1659 * @code
1660 * const double frac = present_time/end_time;
1661 *
1662 * values *= frac;
1663 * }
1664 *
1665 * template <int dim>
1666 * void
1667 * IncrementalBoundaryForce<dim>::
1668 * vector_value_list (const std::vector<Point<dim> > &points,
1669 * std::vector<Vector<double> > &value_list) const
1670 * {
1671 * const unsigned int n_points = points.size();
1672 *
1673 * Assert (value_list.size() == n_points,
1674 * ExcDimensionMismatch (value_list.size(), n_points));
1675 *
1676 * for (unsigned int p=0; p<n_points; ++p)
1677 * IncrementalBoundaryForce<dim>::vector_value (points[p],
1678 * value_list[p]);
1679 * }
1680 *
1681 *
1682 * template <int dim>
1683 * class BodyForce : public Functions::ZeroFunction<dim>
1684 * {
1685 * public:
1686 * BodyForce () : Functions::ZeroFunction<dim> (dim) {}
1687 * };
1688 *
1689 *
1690 * template <int dim>
1691 * class IncrementalBoundaryValues : public Function<dim>
1692 * {
1693 * public:
1694 * IncrementalBoundaryValues (const double present_time,
1695 * const double end_time);
1696 *
1697 * virtual
1698 * void
1699 * vector_value (const Point<dim> &p,
1700 * Vector<double> &values) const;
1701 *
1702 * virtual
1703 * void
1704 * vector_value_list (const std::vector<Point<dim> > &points,
1705 * std::vector<Vector<double> > &value_list) const;
1706 *
1707 * private:
1708 * const double present_time,
1709 * end_time,
1710 * imposed_displacement,
1711 * height;
1712 * };
1713 *
1714 *
1715 * template <int dim>
1716 * IncrementalBoundaryValues<dim>::
1717 * IncrementalBoundaryValues (const double present_time,
1718 * const double end_time)
1719 * :
1720 * Function<dim> (dim),
1721 * present_time (present_time),
1722 * end_time (end_time),
1723 * imposed_displacement (0.00055),
1724 * height (0.18)
1725 * {}
1726 *
1727 *
1728 * template <int dim>
1729 * void
1730 * IncrementalBoundaryValues<dim>::
1731 * vector_value (const Point<dim> &p,
1732 * Vector<double> &values) const
1733 * {
1734 * AssertThrow (values.size() == dim,
1735 * ExcDimensionMismatch (values.size(), dim));
1736 *
1737 * const double eps = 1.e-8 * height;
1738 *
1739 * values = 0.;
1740 *
1741 * @endcode
1742 *
1743 * impose displacement only on the top edge
1744 *
1745 * @code
1746 * if (std::abs(p[1]-height) < eps)
1747 * {
1748 * @endcode
1749 *
1750 * compute the fraction of imposed displacement
1751 *
1752 * @code
1753 * const double inc_frac = 1/end_time;
1754 *
1755 * values(1) = inc_frac*imposed_displacement;
1756 * }
1757 *
1758 * }
1759 *
1760 *
1761 *
1762 * template <int dim>
1763 * void
1764 * IncrementalBoundaryValues<dim>::
1765 * vector_value_list (const std::vector<Point<dim> > &points,
1766 * std::vector<Vector<double> > &value_list) const
1767 * {
1768 * const unsigned int n_points = points.size();
1769 *
1770 * Assert (value_list.size() == n_points,
1771 * ExcDimensionMismatch (value_list.size(), n_points));
1772 *
1773 * for (unsigned int p=0; p<n_points; ++p)
1774 * IncrementalBoundaryValues<dim>::vector_value (points[p],
1775 * value_list[p]);
1776 * }
1777 * */
1778 *
1779 * @endcode
1780 *
1781 * ------------------------- Cantiliver_beam_3d ----------------------------------
1782 *
1783 * @code
1784 * template <int dim>
1785 * class IncrementalBoundaryForce : public Function<dim>
1786 * {
1787 * public:
1788 * IncrementalBoundaryForce (const double present_time,
1789 * const double end_time);
1790 *
1791 * virtual
1792 * void vector_value (const Point<dim> &p,
1793 * Vector<double> &values) const;
1794 *
1795 * virtual
1796 * void
1797 * vector_value_list (const std::vector<Point<dim> > &points,
1798 * std::vector<Vector<double> > &value_list) const;
1799 *
1800 * private:
1801 * const double present_time,
1802 * end_time,
1803 * pressure,
1804 * height;
1805 * };
1806 *
1807 * template <int dim>
1808 * IncrementalBoundaryForce<dim>::
1809 * IncrementalBoundaryForce (const double present_time,
1810 * const double end_time)
1811 * :
1812 * Function<dim>(dim),
1813 * present_time (present_time),
1814 * end_time (end_time),
1815 * pressure (6e6),
1816 * height (200e-3)
1817 * {}
1818 *
1819 * template <int dim>
1820 * void
1821 * IncrementalBoundaryForce<dim>::vector_value (const Point<dim> &p,
1822 * Vector<double> &values) const
1823 * {
1824 * AssertThrow (dim == 3, ExcNotImplemented());
1825 * AssertThrow (values.size() == dim,
1826 * ExcDimensionMismatch (values.size(), dim));
1827 *
1828 * const double eps = 1.e-7 * height;
1829 *
1830 * @endcode
1831 *
1832 * pressure should be imposed on the top surface, y = height
1833 *
1834 * @code
1835 * AssertThrow(std::abs(p[1]-(height/2)) < eps, ExcInternalError());
1836 *
1837 * values = 0;
1838 *
1839 * values(1) = -pressure;
1840 *
1841 * @endcode
1842 *
1843 * compute the fraction of imposed force
1844 *
1845 * @code
1846 * const double frac = present_time/end_time;
1847 *
1848 * values *= frac;
1849 * }
1850 *
1851 * template <int dim>
1852 * void
1853 * IncrementalBoundaryForce<dim>::
1854 * vector_value_list (const std::vector<Point<dim> > &points,
1855 * std::vector<Vector<double> > &value_list) const
1856 * {
1857 * const unsigned int n_points = points.size();
1858 *
1859 * Assert (value_list.size() == n_points,
1860 * ExcDimensionMismatch (value_list.size(), n_points));
1861 *
1862 * for (unsigned int p=0; p<n_points; ++p)
1863 * IncrementalBoundaryForce<dim>::vector_value (points[p], value_list[p]);
1864 * }
1865 *
1866 *
1867 * template <int dim>
1868 * class BodyForce : public Functions::ZeroFunction<dim>
1869 * {
1870 * public:
1871 * BodyForce () : Functions::ZeroFunction<dim> (dim) {}
1872 * };
1873 *
1874 *
1875 * template <int dim>
1876 * class IncrementalBoundaryValues : public Function<dim>
1877 * {
1878 * public:
1879 * IncrementalBoundaryValues (const double present_time,
1880 * const double end_time);
1881 *
1882 * virtual
1883 * void
1884 * vector_value (const Point<dim> &p,
1885 * Vector<double> &values) const;
1886 *
1887 * virtual
1888 * void
1889 * vector_value_list (const std::vector<Point<dim> > &points,
1890 * std::vector<Vector<double> > &value_list) const;
1891 *
1892 * private:
1893 * const double present_time,
1894 * end_time;
1895 * };
1896 *
1897 *
1898 * template <int dim>
1899 * IncrementalBoundaryValues<dim>::
1900 * IncrementalBoundaryValues (const double present_time,
1901 * const double end_time)
1902 * :
1903 * Function<dim> (dim),
1904 * present_time (present_time),
1905 * end_time (end_time)
1906 * {}
1907 *
1908 *
1909 * template <int dim>
1910 * void
1911 * IncrementalBoundaryValues<dim>::
1912 * vector_value (const Point<dim> &/*p*/,
1913 * Vector<double> &values) const
1914 * {
1915 * AssertThrow (values.size() == dim,
1916 * ExcDimensionMismatch (values.size(), dim));
1917 * AssertThrow (dim == 3, ExcNotImplemented());
1918 *
1919 * values = 0.;
1920 * }
1921 *
1922 *
1923 * template <int dim>
1924 * void
1925 * IncrementalBoundaryValues<dim>::
1926 * vector_value_list (const std::vector<Point<dim> > &points,
1927 * std::vector<Vector<double> > &value_list) const
1928 * {
1929 * const unsigned int n_points = points.size();
1930 *
1931 * Assert (value_list.size() == n_points,
1932 * ExcDimensionMismatch (value_list.size(), n_points));
1933 *
1934 * for (unsigned int p=0; p<n_points; ++p)
1935 * IncrementalBoundaryValues<dim>::vector_value (points[p], value_list[p]);
1936 * }
1937 *
1938 * @endcode
1939 *
1940 * -------------------------------------------------------------------------------
1941 *
1942 * @code
1943 * }
1944 *
1945 *
1946 * namespace DualFunctional
1947 * {
1948 *
1949 * template <int dim>
1950 * class DualFunctionalBase : public Subscriptor
1951 * {
1952 * public:
1953 * virtual
1954 * void
1955 * assemble_rhs (const DoFHandler<dim> &dof_handler,
1956 * const Vector<double> &solution,
1957 * const ConstitutiveLaw<dim> &constitutive_law,
1958 * const DoFHandler<dim> &dof_handler_dual,
1959 * Vector<double> &rhs_dual) const = 0;
1960 * };
1961 *
1962 *
1963 * template <int dim>
1964 * class PointValuesEvaluation : public DualFunctionalBase<dim>
1965 * {
1966 * public:
1967 * PointValuesEvaluation (const Point<dim> &evaluation_point);
1968 *
1969 * virtual
1970 * void
1971 * assemble_rhs (const DoFHandler<dim> &dof_handler,
1972 * const Vector<double> &solution,
1973 * const ConstitutiveLaw<dim> &constitutive_law,
1974 * const DoFHandler<dim> &dof_handler_dual,
1975 * Vector<double> &rhs_dual) const;
1976 *
1977 * DeclException1 (ExcEvaluationPointNotFound,
1978 * Point<dim>,
1979 * << "The evaluation point " << arg1
1980 * << " was not found among the vertices of the present grid.");
1981 *
1982 * protected:
1983 * const Point<dim> evaluation_point;
1984 * };
1985 *
1986 *
1987 * template <int dim>
1988 * PointValuesEvaluation<dim>::
1989 * PointValuesEvaluation (const Point<dim> &evaluation_point)
1990 * :
1991 * evaluation_point (evaluation_point)
1992 * {}
1993 *
1994 *
1995 * template <int dim>
1996 * void
1997 * PointValuesEvaluation<dim>::
1998 * assemble_rhs (const DoFHandler<dim> &/*dof_handler*/,
1999 * const Vector<double> &/*solution*/,
2000 * const ConstitutiveLaw<dim> &/*constitutive_law*/,
2001 * const DoFHandler<dim> &dof_handler_dual,
2002 * Vector<double> &rhs_dual) const
2003 * {
2004 * rhs_dual.reinit (dof_handler_dual.n_dofs());
2005 * const unsigned int dofs_per_vertex = dof_handler_dual.get_fe().dofs_per_vertex;
2006 *
2008 * cell_dual = dof_handler_dual.begin_active(),
2009 * endc_dual = dof_handler_dual.end();
2010 * for (; cell_dual!=endc_dual; ++cell_dual)
2011 * for (unsigned int vertex=0;
2012 * vertex<GeometryInfo<dim>::vertices_per_cell;
2013 * ++vertex)
2014 * if (cell_dual->vertex(vertex).distance(evaluation_point)
2015 * < cell_dual->diameter()*1e-8)
2016 * {
2017 * for (unsigned int id=0; id!=dofs_per_vertex; ++id)
2018 * {
2019 * rhs_dual(cell_dual->vertex_dof_index(vertex,id)) = 1;
2020 * }
2021 * return;
2022 * }
2023 *
2024 * AssertThrow (false, ExcEvaluationPointNotFound(evaluation_point));
2025 * }
2026 *
2027 *
2028 * template <int dim>
2029 * class PointXDerivativesEvaluation : public DualFunctionalBase<dim>
2030 * {
2031 * public:
2032 * PointXDerivativesEvaluation (const Point<dim> &evaluation_point);
2033 *
2034 * virtual
2035 * void
2036 * assemble_rhs (const DoFHandler<dim> &dof_handler,
2037 * const Vector<double> &solution,
2038 * const ConstitutiveLaw<dim> &constitutive_law,
2039 * const DoFHandler<dim> &dof_handler_dual,
2040 * Vector<double> &rhs_dual) const;
2041 *
2042 * DeclException1 (ExcEvaluationPointNotFound,
2043 * Point<dim>,
2044 * << "The evaluation point " << arg1
2045 * << " was not found among the vertices of the present grid.");
2046 *
2047 * protected:
2048 * const Point<dim> evaluation_point;
2049 * };
2050 *
2051 *
2052 * template <int dim>
2053 * PointXDerivativesEvaluation<dim>::
2054 * PointXDerivativesEvaluation (const Point<dim> &evaluation_point)
2055 * :
2056 * evaluation_point (evaluation_point)
2057 * {}
2058 *
2059 *
2060 * template <int dim>
2061 * void
2062 * PointXDerivativesEvaluation<dim>::
2063 * assemble_rhs (const DoFHandler<dim> &/*dof_handler*/,
2064 * const Vector<double> &/*solution*/,
2065 * const ConstitutiveLaw<dim> &/*constitutive_law*/,
2066 * const DoFHandler<dim> &dof_handler_dual,
2067 * Vector<double> &rhs_dual) const
2068 * {
2069 * rhs_dual.reinit (dof_handler_dual.n_dofs());
2070 *
2071 * QGauss<dim> quadrature(4);
2072 * FEValues<dim> fe_values (dof_handler_dual.get_fe(), quadrature,
2076 * const unsigned int n_q_points = fe_values.n_quadrature_points;
2077 * Assert ( n_q_points==quadrature.size() , ExcInternalError() );
2078 * const unsigned int dofs_per_cell = dof_handler_dual.get_fe().dofs_per_cell;
2079 *
2080 * Vector<double> cell_rhs (dofs_per_cell);
2081 * std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
2082 *
2083 * double total_volume = 0;
2084 *
2086 * cell = dof_handler_dual.begin_active(),
2087 * endc = dof_handler_dual.end();
2088 * for (; cell!=endc; ++cell)
2089 * if (cell->center().distance(evaluation_point) <=
2090 * cell->diameter())
2091 * {
2092 * fe_values.reinit (cell);
2093 * cell_rhs = 0;
2094 *
2095 * for (unsigned int q=0; q<n_q_points; ++q)
2096 * {
2097 * for (unsigned int i=0; i<dofs_per_cell; ++i)
2098 * {
2099 * cell_rhs(i) += fe_values.shape_grad(i,q)[0] *
2100 * fe_values.JxW (q);
2101 * }
2102 *
2103 * total_volume += fe_values.JxW (q);
2104 * }
2105 *
2106 * cell->get_dof_indices (local_dof_indices);
2107 * for (unsigned int i=0; i<dofs_per_cell; ++i)
2108 * {
2109 * rhs_dual(local_dof_indices[i]) += cell_rhs(i);
2110 * }
2111 * }
2112 *
2113 * AssertThrow (total_volume > 0,
2114 * ExcEvaluationPointNotFound(evaluation_point));
2115 *
2116 * rhs_dual *= 1./total_volume;
2117 * }
2118 *
2119 *
2120 *
2121 * template <int dim>
2122 * class MeanDisplacementFace : public DualFunctionalBase<dim>
2123 * {
2124 * public:
2125 * MeanDisplacementFace (const unsigned int face_id,
2126 * const std::vector<bool> comp_mask);
2127 *
2128 * virtual
2129 * void
2130 * assemble_rhs (const DoFHandler<dim> &dof_handler,
2131 * const Vector<double> &solution,
2132 * const ConstitutiveLaw<dim> &constitutive_law,
2133 * const DoFHandler<dim> &dof_handler_dual,
2134 * Vector<double> &rhs_dual) const;
2135 *
2136 * protected:
2137 * const unsigned int face_id;
2138 * const std::vector<bool> comp_mask;
2139 * };
2140 *
2141 *
2142 * template <int dim>
2143 * MeanDisplacementFace<dim>::
2144 * MeanDisplacementFace (const unsigned int face_id,
2145 * const std::vector<bool> comp_mask )
2146 * :
2147 * face_id (face_id),
2148 * comp_mask (comp_mask)
2149 * {
2150 * AssertThrow(comp_mask.size() == dim,
2151 * ExcDimensionMismatch (comp_mask.size(), dim) );
2152 * }
2153 *
2154 *
2155 * template <int dim>
2156 * void
2157 * MeanDisplacementFace<dim>::
2158 * assemble_rhs (const DoFHandler<dim> &/*dof_handler*/,
2159 * const Vector<double> &/*solution*/,
2160 * const ConstitutiveLaw<dim> &/*constitutive_law*/,
2161 * const DoFHandler<dim> &dof_handler_dual,
2162 * Vector<double> &rhs_dual) const
2163 * {
2164 * AssertThrow (dim >= 2, ExcNotImplemented());
2165 *
2166 * rhs_dual.reinit (dof_handler_dual.n_dofs());
2167 *
2168 * const QGauss<dim-1> face_quadrature(dof_handler_dual.get_fe().tensor_degree()+1);
2169 * FEFaceValues<dim> fe_face_values (dof_handler_dual.get_fe(), face_quadrature,
2171 *
2172 * const unsigned int dofs_per_vertex = dof_handler_dual.get_fe().dofs_per_vertex;
2173 * const unsigned int dofs_per_cell = dof_handler_dual.get_fe().dofs_per_cell;
2174 * const unsigned int n_face_q_points = face_quadrature.size();
2175 *
2176 * AssertThrow(dofs_per_vertex == dim,
2177 * ExcDimensionMismatch (dofs_per_vertex, dim) );
2178 *
2179 * std::vector<unsigned int> comp_vector(dofs_per_vertex);
2180 * for (unsigned int i=0; i!=dofs_per_vertex; ++i)
2181 * {
2182 * if (comp_mask[i])
2183 * {
2184 * comp_vector[i] = 1;
2185 * }
2186 * }
2187 *
2188 * Vector<double> cell_rhs (dofs_per_cell);
2189 *
2190 * std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
2191 *
2192 * @endcode
2193 *
2194 * bound_size : size of the boundary, in 2d is the length
2195 * and in the 3d case, area
2196 *
2197 * @code
2198 * double bound_size = 0.;
2199 *
2201 * cell = dof_handler_dual.begin_active(),
2202 * endc = dof_handler_dual.end();
2203 * bool evaluation_face_found = false;
2204 * for (; cell!=endc; ++cell)
2205 * {
2206 * cell_rhs = 0;
2207 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
2208 * {
2209 * if (cell->face(face)->at_boundary()
2210 * &&
2211 * cell->face(face)->boundary_id() == face_id)
2212 * {
2213 * if (!evaluation_face_found)
2214 * {
2215 * evaluation_face_found = true;
2216 * }
2217 * fe_face_values.reinit (cell, face);
2218 *
2219 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
2220 * {
2221 * bound_size += fe_face_values.JxW(q_point);
2222 *
2223 * for (unsigned int i=0; i<dofs_per_cell; ++i)
2224 * {
2225 * const unsigned int
2226 * component_i = dof_handler_dual.get_fe().system_to_component_index(i).first;
2227 *
2228 * cell_rhs(i) += (fe_face_values.shape_value(i,q_point) *
2229 * comp_vector[component_i] *
2230 * fe_face_values.JxW(q_point));
2231 * }
2232 *
2233 * }
2234 *
2235 * }
2236 * }
2237 *
2238 * cell->get_dof_indices (local_dof_indices);
2239 * for (unsigned int i=0; i<dofs_per_cell; ++i)
2240 * {
2241 * rhs_dual(local_dof_indices[i]) += cell_rhs(i);
2242 * }
2243 *
2244 * }
2245 *
2246 * AssertThrow(evaluation_face_found, ExcInternalError());
2247 *
2248 * rhs_dual /= bound_size;
2249 * }
2250 *
2251 *
2252 *
2253 * template <int dim>
2254 * class MeanStressFace : public DualFunctionalBase<dim>
2255 * {
2256 * public:
2257 * MeanStressFace (const unsigned int face_id,
2258 * const std::vector<std::vector<unsigned int> > &comp_stress);
2259 *
2260 * virtual
2261 * void
2262 * assemble_rhs (const DoFHandler<dim> &dof_handler,
2263 * const Vector<double> &solution,
2264 * const ConstitutiveLaw<dim> &constitutive_law,
2265 * const DoFHandler<dim> &dof_handler_dual,
2266 * Vector<double> &rhs_dual) const;
2267 *
2268 * protected:
2269 * const unsigned int face_id;
2270 * const std::vector<std::vector<unsigned int> > comp_stress;
2271 * };
2272 *
2273 *
2274 * template <int dim>
2275 * MeanStressFace<dim>::
2276 * MeanStressFace (const unsigned int face_id,
2277 * const std::vector<std::vector<unsigned int> > &comp_stress )
2278 * :
2279 * face_id (face_id),
2280 * comp_stress (comp_stress)
2281 * {
2282 * AssertThrow(comp_stress.size() == dim,
2283 * ExcDimensionMismatch (comp_stress.size(), dim) );
2284 * }
2285 *
2286 *
2287 * template <int dim>
2288 * void
2289 * MeanStressFace<dim>::
2290 * assemble_rhs (const DoFHandler<dim> &dof_handler,
2291 * const Vector<double> &solution,
2292 * const ConstitutiveLaw<dim> &constitutive_law,
2293 * const DoFHandler<dim> &dof_handler_dual,
2294 * Vector<double> &rhs_dual) const
2295 * {
2296 * AssertThrow (dim >= 2, ExcNotImplemented());
2297 *
2298 * rhs_dual.reinit (dof_handler_dual.n_dofs());
2299 *
2300 * const QGauss<dim-1> face_quadrature(dof_handler_dual.get_fe().tensor_degree()+1);
2301 *
2302 * FEFaceValues<dim> fe_face_values (dof_handler.get_fe(), face_quadrature,
2304 * FEFaceValues<dim> fe_face_values_dual (dof_handler_dual.get_fe(), face_quadrature,
2306 *
2307 * const unsigned int dofs_per_cell_dual = dof_handler_dual.get_fe().dofs_per_cell;
2308 * const unsigned int n_face_q_points = face_quadrature.size();
2309 *
2310 * std::vector<SymmetricTensor<2, dim> > strain_tensor(n_face_q_points);
2311 * SymmetricTensor<4, dim> stress_strain_tensor;
2312 *
2313 * Vector<double> cell_rhs (dofs_per_cell_dual);
2314 *
2315 * std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell_dual);
2316 *
2317 * @endcode
2318 *
2319 * bound_size : size of the boundary, in 2d is the length
2320 * and in the 3d case, area
2321 *
2322 * @code
2323 * double bound_size = 0.;
2324 *
2325 * bool evaluation_face_found = false;
2326 *
2328 * cell_dual = dof_handler_dual.begin_active(),
2329 * endc_dual = dof_handler_dual.end(),
2330 * cell = dof_handler.begin_active();
2331 *
2332 * const FEValuesExtractors::Vector displacement(0);
2333 *
2334 * for (; cell_dual!=endc_dual; ++cell_dual, ++cell)
2335 * {
2336 * cell_rhs = 0;
2337 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
2338 * {
2339 * if (cell_dual->face(face)->at_boundary()
2340 * &&
2341 * cell_dual->face(face)->boundary_id() == face_id)
2342 * {
2343 * if (!evaluation_face_found)
2344 * {
2345 * evaluation_face_found = true;
2346 * }
2347 *
2348 * fe_face_values.reinit (cell, face);
2349 * fe_face_values_dual.reinit (cell_dual, face);
2350 *
2351 * fe_face_values[displacement].get_function_symmetric_gradients(solution,
2352 * strain_tensor);
2353 *
2354 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
2355 * {
2356 * bound_size += fe_face_values_dual.JxW(q_point);
2357 *
2358 * constitutive_law.get_stress_strain_tensor(strain_tensor[q_point],
2359 * stress_strain_tensor);
2360 *
2361 * for (unsigned int i=0; i<dofs_per_cell_dual; ++i)
2362 * {
2364 * stress_phi_i = stress_strain_tensor
2365 * * fe_face_values_dual[displacement].symmetric_gradient(i, q_point);
2366 *
2367 * for (unsigned int k=0; k!=dim; ++k)
2368 * {
2369 * for (unsigned int l=0; l!=dim; ++l)
2370 * {
2371 * if ( comp_stress[k][l] == 1 )
2372 * {
2373 * cell_rhs(i) += stress_phi_i[k][l]
2374 * *
2375 * fe_face_values_dual.JxW(q_point);
2376 * }
2377 *
2378 * }
2379 * }
2380 *
2381 * }
2382 *
2383 * }
2384 *
2385 * }
2386 * }
2387 *
2388 * cell_dual->get_dof_indices (local_dof_indices);
2389 * for (unsigned int i=0; i<dofs_per_cell_dual; ++i)
2390 * {
2391 * rhs_dual(local_dof_indices[i]) += cell_rhs(i);
2392 * }
2393 *
2394 * }
2395 *
2396 * AssertThrow(evaluation_face_found, ExcInternalError());
2397 *
2398 * rhs_dual /= bound_size;
2399 *
2400 * }
2401 *
2402 *
2403 * template <int dim>
2404 * class MeanStressDomain : public DualFunctionalBase<dim>
2405 * {
2406 * public:
2407 * MeanStressDomain (const std::string &base_mesh,
2408 * const std::vector<std::vector<unsigned int> > &comp_stress);
2409 *
2410 * virtual
2411 * void
2412 * assemble_rhs (const DoFHandler<dim> &dof_handler,
2413 * const Vector<double> &solution,
2414 * const ConstitutiveLaw<dim> &constitutive_law,
2415 * const DoFHandler<dim> &dof_handler_dual,
2416 * Vector<double> &rhs_dual) const;
2417 *
2418 * protected:
2419 * const std::string base_mesh;
2420 * const std::vector<std::vector<unsigned int> > comp_stress;
2421 * };
2422 *
2423 *
2424 * template <int dim>
2425 * MeanStressDomain<dim>::
2426 * MeanStressDomain (const std::string &base_mesh,
2427 * const std::vector<std::vector<unsigned int> > &comp_stress )
2428 * :
2429 * base_mesh (base_mesh),
2430 * comp_stress (comp_stress)
2431 * {
2432 * AssertThrow(comp_stress.size() == dim,
2433 * ExcDimensionMismatch (comp_stress.size(), dim) );
2434 * }
2435 *
2436 *
2437 * template <int dim>
2438 * void
2439 * MeanStressDomain<dim>::
2440 * assemble_rhs (const DoFHandler<dim> &dof_handler,
2441 * const Vector<double> &solution,
2442 * const ConstitutiveLaw<dim> &constitutive_law,
2443 * const DoFHandler<dim> &dof_handler_dual,
2444 * Vector<double> &rhs_dual) const
2445 * {
2446 * AssertThrow (base_mesh == "Cantiliver_beam_3d", ExcNotImplemented());
2447 * AssertThrow (dim == 3, ExcNotImplemented());
2448 *
2449 * @endcode
2450 *
2451 * Mean stress at the specified domain is of interest.
2452 * The interest domains are located on the bottom and top of the flanges
2453 * close to the clamped face, z = 0
2454 * top domain: height/2 - thickness_flange <= y <= height/2
2455 * 0 <= z <= 2 * thickness_flange
2456 * bottom domain: -height/2 <= y <= -height/2 + thickness_flange
2457 * 0 <= z <= 2 * thickness_flange
2458 *
2459
2460 *
2461 *
2462 * @code
2463 * const double height = 200e-3,
2464 * thickness_flange = 10e-3;
2465 *
2466 * rhs_dual.reinit (dof_handler_dual.n_dofs());
2467 *
2468 * const QGauss<dim> quadrature_formula(dof_handler_dual.get_fe().tensor_degree()+1);
2469 *
2470 * FEValues<dim> fe_values (dof_handler.get_fe(), quadrature_formula,
2472 * FEValues<dim> fe_values_dual (dof_handler_dual.get_fe(), quadrature_formula,
2474 *
2475 * const unsigned int dofs_per_cell_dual = dof_handler_dual.get_fe().dofs_per_cell;
2476 * const unsigned int n_q_points = quadrature_formula.size();
2477 *
2478 * std::vector<SymmetricTensor<2, dim> > strain_tensor(n_q_points);
2479 * SymmetricTensor<4, dim> stress_strain_tensor;
2480 *
2481 * Vector<double> cell_rhs (dofs_per_cell_dual);
2482 *
2483 * std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell_dual);
2484 *
2485 * @endcode
2486 *
2487 * domain_size : size of the interested domain, in 2d is the area
2488 * and in the 3d case, volume
2489 *
2490 * @code
2491 * double domain_size = 0.;
2492 *
2493 * bool evaluation_domain_found = false;
2494 *
2496 * cell_dual = dof_handler_dual.begin_active(),
2497 * endc_dual = dof_handler_dual.end(),
2498 * cell = dof_handler.begin_active();
2499 *
2500 * const FEValuesExtractors::Vector displacement(0);
2501 *
2502 * for (; cell_dual!=endc_dual; ++cell_dual, ++cell)
2503 * {
2504 * const double y = cell->center()[1],
2505 * z = cell->center()[2];
2506 * @endcode
2507 *
2508 * top domain: height/2 - thickness_flange <= y <= height/2
2509 * 0 <= z <= 2 * thickness_flange
2510 * bottom domain: -height/2 <= y <= -height/2 + thickness_flange
2511 * 0 <= z <= 2 * thickness_flange
2512 *
2513 * @code
2514 * if ( ((z > 0) && (z < 2*thickness_flange)) &&
2515 * ( ((y > height/2 - thickness_flange) && (y < height/2)) ||
2516 * ((y > -height/2) && (y < -height/2 + thickness_flange)) ) )
2517 * {
2518 * cell_rhs = 0;
2519 *
2520 * if (!evaluation_domain_found)
2521 * {
2522 * evaluation_domain_found = true;
2523 * }
2524 *
2525 * fe_values.reinit(cell);
2526 * fe_values_dual.reinit(cell_dual);
2527 *
2528 * fe_values[displacement].get_function_symmetric_gradients(solution,
2529 * strain_tensor);
2530 *
2531 * for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
2532 * {
2533 * domain_size += fe_values_dual.JxW(q_point);
2534 *
2535 * constitutive_law.get_stress_strain_tensor(strain_tensor[q_point],
2536 * stress_strain_tensor);
2537 *
2538 * for (unsigned int i=0; i<dofs_per_cell_dual; ++i)
2539 * {
2541 * stress_phi_i = stress_strain_tensor
2542 * * fe_values_dual[displacement].symmetric_gradient(i, q_point);
2543 *
2544 * for (unsigned int k=0; k!=dim; ++k)
2545 * {
2546 * for (unsigned int l=0; l!=dim; ++l)
2547 * {
2548 * if ( comp_stress[k][l] == 1 )
2549 * {
2550 * cell_rhs(i) += stress_phi_i[k][l]
2551 * *
2552 * fe_values_dual.JxW(q_point);
2553 * }
2554 *
2555 * }
2556 * }
2557 *
2558 * }
2559 *
2560 * }
2561 *
2562 * }
2563 *
2564 * cell_dual->get_dof_indices (local_dof_indices);
2565 * for (unsigned int i=0; i<dofs_per_cell_dual; ++i)
2566 * {
2567 * rhs_dual(local_dof_indices[i]) += cell_rhs(i);
2568 * }
2569 *
2570 * }
2571 *
2572 * AssertThrow(evaluation_domain_found, ExcInternalError());
2573 *
2574 * rhs_dual /= domain_size;
2575 *
2576 * }
2577 *
2578 *
2579 * template <int dim>
2580 * class MeanStrainEnergyFace : public DualFunctionalBase<dim>
2581 * {
2582 * public:
2583 * MeanStrainEnergyFace (const unsigned int face_id,
2584 * const Function<dim> &lambda_function,
2585 * const Function<dim> &mu_function );
2586 *
2587 * void assemble_rhs_nonlinear (const DoFHandler<dim> &primal_dof_handler,
2588 * const Vector<double> &primal_solution,
2589 * const DoFHandler<dim> &dof_handler,
2590 * Vector<double> &rhs) const;
2591 *
2592 * protected:
2593 * const unsigned int face_id;
2594 * const SmartPointer<const Function<dim> > lambda_function;
2595 * const SmartPointer<const Function<dim> > mu_function;
2596 * };
2597 *
2598 *
2599 * template <int dim>
2600 * MeanStrainEnergyFace<dim>::
2601 * MeanStrainEnergyFace (const unsigned int face_id,
2602 * const Function<dim> &lambda_function,
2603 * const Function<dim> &mu_function )
2604 * :
2605 * face_id (face_id),
2606 * lambda_function (&lambda_function),
2607 * mu_function (&mu_function)
2608 * {}
2609 *
2610 *
2611 * template <int dim>
2612 * void
2613 * MeanStrainEnergyFace<dim>::
2614 * assemble_rhs_nonlinear (const DoFHandler<dim> &primal_dof_handler,
2615 * const Vector<double> &primal_solution,
2616 * const DoFHandler<dim> &dof_handler,
2617 * Vector<double> &rhs) const
2618 * {
2619 * @endcode
2620 *
2621 * Assemble right hand side of the dual problem when the quantity of interest is
2622 * a nonlinear functinoal. In this case, the QoI should be linearized which depends
2623 * on the solution of the primal problem.
2624 * The extracter of the linearized QoI functional is the gradient of the the original
2625 * QoI functional with the primal solution values.
2626 *
2627
2628 *
2629 *
2630 * @code
2631 * AssertThrow (dim >= 2, ExcNotImplemented());
2632 *
2633 * rhs.reinit (dof_handler.n_dofs());
2634 *
2635 * const QGauss<dim-1> face_quadrature(dof_handler.get_fe().tensor_degree()+1);
2636 * FEFaceValues<dim> primal_fe_face_values (primal_dof_handler.get_fe(), face_quadrature,
2640 *
2641 * FEFaceValues<dim> fe_face_values (dof_handler.get_fe(), face_quadrature,
2642 * update_values);
2643 *
2644 * const unsigned int dofs_per_vertex = primal_dof_handler.get_fe().dofs_per_vertex;
2645 * const unsigned int n_face_q_points = face_quadrature.size();
2646 * const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell;
2647 *
2648 * AssertThrow(dofs_per_vertex == dim,
2649 * ExcDimensionMismatch (dofs_per_vertex, dim) );
2650 *
2651 * std::vector< std::vector< Tensor<1,dim> > > primal_solution_gradients;
2652 * primal_solution_gradients.resize(n_face_q_points);
2653 *
2654 * std::vector<std::vector<Tensor<2,dim> > > primal_solution_hessians;
2655 * primal_solution_hessians.resize (n_face_q_points);
2656 *
2657 * for (unsigned int i=0; i!=n_face_q_points; ++i)
2658 * {
2659 * primal_solution_gradients[i].resize (dofs_per_vertex);
2660 * primal_solution_hessians[i].resize (dofs_per_vertex);
2661 * }
2662 *
2663 * std::vector<double> lambda_values (n_face_q_points);
2664 * std::vector<double> mu_values (n_face_q_points);
2665 *
2666 * Vector<double> cell_rhs (dofs_per_cell);
2667 *
2668 * std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
2669 *
2670 * @endcode
2671 *
2672 * bound_size : size of the boundary, in 2d is the length
2673 * and in the 3d case, area
2674 *
2675 * @code
2676 * double bound_size = 0.;
2677 *
2678 * bool evaluation_face_found = false;
2679 *
2681 * primal_cell = primal_dof_handler.begin_active(),
2682 * primal_endc = primal_dof_handler.end();
2683 *
2685 * cell = dof_handler.begin_active(),
2686 * endc = dof_handler.end();
2687 *
2688 * for (; cell!=endc; ++cell, ++primal_cell)
2689 * {
2690 * cell_rhs = 0;
2691 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
2692 * {
2693 * if (cell->face(face)->at_boundary()
2694 * &&
2695 * cell->face(face)->boundary_id() == face_id)
2696 * {
2697 * if (!evaluation_face_found)
2698 * {
2699 * evaluation_face_found = true;
2700 * }
2701 * primal_fe_face_values.reinit (primal_cell, face);
2702 *
2703 * primal_fe_face_values.get_function_gradients (primal_solution,
2704 * primal_solution_gradients);
2705 *
2706 * primal_fe_face_values.get_function_hessians (primal_solution,
2707 * primal_solution_hessians);
2708 *
2709 * lambda_function->value_list (primal_fe_face_values.get_quadrature_points(), lambda_values);
2710 * mu_function->value_list (primal_fe_face_values.get_quadrature_points(), mu_values);
2711 *
2712 * fe_face_values.reinit (cell, face);
2713 *
2714 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
2715 * {
2716 * bound_size += primal_fe_face_values.JxW(q_point);
2717 *
2718 * for (unsigned int m=0; m<dofs_per_cell; ++m)
2719 * {
2720 * const unsigned int
2721 * component_m = dof_handler.get_fe().system_to_component_index(m).first;
2722 *
2723 * for (unsigned int i=0; i!=dofs_per_vertex; ++i)
2724 * {
2725 * for (unsigned int j=0; j!=dofs_per_vertex; ++j)
2726 * {
2727 * cell_rhs(m) += fe_face_values.shape_value(m,q_point) *
2728 * (
2729 * lambda_values[q_point] *
2730 * (
2731 * primal_solution_hessians[q_point][i][i][component_m] * primal_solution_gradients[q_point][j][j]
2732 * +
2733 * primal_solution_gradients[q_point][i][i] * primal_solution_hessians[q_point][j][j][component_m]
2734 * )
2735 * +
2736 * mu_values[q_point] *
2737 * (
2738 * 2*primal_solution_hessians[q_point][j][i][component_m] * primal_solution_gradients[q_point][j][i]
2739 * +
2740 * primal_solution_hessians[q_point][i][j][component_m] * primal_solution_gradients[q_point][j][i]
2741 * +
2742 * primal_solution_gradients[q_point][i][j] * primal_solution_hessians[q_point][j][i][component_m]
2743 * )
2744 * ) *
2745 * primal_fe_face_values.JxW(q_point);
2746 *
2747 * }
2748 * }
2749 *
2750 * } // end loop DoFs
2751 *
2752 *
2753 * } // end loop Gauss points
2754 *
2755 * } // end if face
2756 * } // end loop face
2757 *
2758 * cell->get_dof_indices (local_dof_indices);
2759 * for (unsigned int i=0; i<dofs_per_cell; ++i)
2760 * {
2761 * rhs(local_dof_indices[i]) += cell_rhs(i);
2762 * }
2763 *
2764 * } // end loop cell
2765 *
2766 * AssertThrow(evaluation_face_found, ExcInternalError());
2767 *
2768 * rhs *= 1./(2*bound_size);
2769 *
2770 * }
2771 *
2772 *
2773 * }
2774 *
2775 *
2776 * @endcode
2777 *
2778 * DualSolver class
2779 *
2780 * @code
2781 * template <int dim>
2782 * class DualSolver
2783 * {
2784 * public:
2785 * DualSolver (const Triangulation<dim> &triangulation,
2786 * const FESystem<dim> &fe,
2787 * const Vector<double> &solution,
2788 * const ConstitutiveLaw<dim> &constitutive_law,
2789 * const DualFunctional::DualFunctionalBase<dim> &dual_functional,
2790 * const unsigned int &timestep_no,
2791 * const std::string &output_dir,
2792 * const std::string &base_mesh,
2793 * const double &present_time,
2794 * const double &end_time);
2795 *
2796 * void compute_error_DWR (Vector<float> &estimated_error_per_cell);
2797 *
2798 * ~DualSolver ();
2799 *
2800 * private:
2801 * void setup_system ();
2802 * void compute_dirichlet_constraints ();
2803 * void assemble_matrix ();
2804 * void assemble_rhs ();
2805 * void solve ();
2806 * void output_results ();
2807 *
2808 * const FESystem<dim> &fe;
2809 * DoFHandler<dim> dof_handler;
2810 * const Vector<double> solution;
2811 *
2812 * const unsigned int fe_degree;
2813 *
2814 *
2815 * const unsigned int fe_degree_dual;
2816 * FESystem<dim> fe_dual;
2817 * DoFHandler<dim> dof_handler_dual;
2818 *
2819 * const QGauss<dim> quadrature_formula;
2820 * const QGauss<dim - 1> face_quadrature_formula;
2821 *
2822 * AffineConstraints<double> constraints_hanging_nodes_dual;
2823 * AffineConstraints<double> constraints_dirichlet_and_hanging_nodes_dual;
2824 *
2825 * SparsityPattern sparsity_pattern_dual;
2826 * SparseMatrix<double> system_matrix_dual;
2827 * Vector<double> system_rhs_dual;
2828 * Vector<double> solution_dual;
2829 *
2830 * const ConstitutiveLaw<dim> constitutive_law;
2831 *
2834 *
2835 * unsigned int timestep_no;
2836 * std::string output_dir;
2837 * const std::string base_mesh;
2838 * double present_time;
2839 * double end_time;
2840 * };
2841 *
2842 *
2843 * template<int dim>
2844 * DualSolver<dim>::
2845 * DualSolver (const Triangulation<dim> &triangulation,
2846 * const FESystem<dim> &fe,
2847 * const Vector<double> &solution,
2848 * const ConstitutiveLaw<dim> &constitutive_law,
2849 * const DualFunctional::DualFunctionalBase<dim> &dual_functional,
2850 * const unsigned int &timestep_no,
2851 * const std::string &output_dir,
2852 * const std::string &base_mesh,
2853 * const double &present_time,
2854 * const double &end_time)
2855 * :
2856 * fe (fe),
2857 * dof_handler (triangulation),
2858 * solution(solution),
2859 * fe_degree(fe.tensor_degree()),
2860 * fe_degree_dual(fe_degree + 1),
2861 * fe_dual(FE_Q<dim>(fe_degree_dual), dim),
2862 * dof_handler_dual (triangulation),
2863 * quadrature_formula (fe_degree_dual + 1),
2864 * face_quadrature_formula (fe_degree_dual + 1),
2865 * constitutive_law (constitutive_law),
2867 * dual_functional (&dual_functional),
2868 * timestep_no (timestep_no),
2869 * output_dir (output_dir),
2870 * base_mesh (base_mesh),
2871 * present_time (present_time),
2872 * end_time (end_time)
2873 * {}
2874 *
2875 *
2876 * template<int dim>
2877 * DualSolver<dim>::~DualSolver()
2878 * {
2879 * dof_handler_dual.clear ();
2880 * }
2881 *
2882 *
2883 * template<int dim>
2884 * void DualSolver<dim>::setup_system()
2885 * {
2886 * dof_handler.distribute_dofs(fe);
2887 *
2888 * dof_handler_dual.distribute_dofs (fe_dual);
2889 * std::cout << " Number of degrees of freedom in dual problem: "
2890 * << dof_handler_dual.n_dofs()
2891 * << std::endl;
2892 *
2893 * constraints_hanging_nodes_dual.clear ();
2894 * DoFTools::make_hanging_node_constraints (dof_handler_dual,
2895 * constraints_hanging_nodes_dual);
2896 * constraints_hanging_nodes_dual.close ();
2897 *
2898 * compute_dirichlet_constraints();
2899 *
2900 * sparsity_pattern_dual.reinit (dof_handler_dual.n_dofs(),
2901 * dof_handler_dual.n_dofs(),
2902 * dof_handler_dual.max_couplings_between_dofs());
2903 * DoFTools::make_sparsity_pattern (dof_handler_dual, sparsity_pattern_dual);
2904 *
2905 * @endcode
2906 *
2907 * constraints_hanging_nodes_dual.condense (sparsity_pattern_dual);
2908 *
2909 * @code
2910 * constraints_dirichlet_and_hanging_nodes_dual.condense (sparsity_pattern_dual);
2911 *
2912 * sparsity_pattern_dual.compress();
2913 *
2914 * system_matrix_dual.reinit (sparsity_pattern_dual);
2915 *
2916 * solution_dual.reinit (dof_handler_dual.n_dofs());
2917 * system_rhs_dual.reinit (dof_handler_dual.n_dofs());
2918 *
2919 * }
2920 *
2921 * template<int dim>
2922 * void DualSolver<dim>::compute_dirichlet_constraints()
2923 * {
2924 * constraints_dirichlet_and_hanging_nodes_dual.clear ();
2925 * constraints_dirichlet_and_hanging_nodes_dual.merge(constraints_hanging_nodes_dual);
2926 *
2927 * std::vector<bool> component_mask(dim);
2928 *
2929 * if (base_mesh == "Timoshenko beam")
2930 * {
2932 * 0,
2933 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
2934 * constraints_dirichlet_and_hanging_nodes_dual,
2935 * ComponentMask());
2936 * }
2937 * else if (base_mesh == "Thick_tube_internal_pressure")
2938 * {
2939 * @endcode
2940 *
2941 * the boundary x = 0
2942 *
2943 * @code
2944 * component_mask[0] = true;
2945 * component_mask[1] = false;
2946 * VectorTools::interpolate_boundary_values (dof_handler_dual,
2947 * 2,
2948 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
2949 * constraints_dirichlet_and_hanging_nodes_dual,
2950 * component_mask);
2951 * @endcode
2952 *
2953 * the boundary y = 0
2954 *
2955 * @code
2956 * component_mask[0] = false;
2957 * component_mask[1] = true;
2958 * VectorTools::interpolate_boundary_values (dof_handler_dual,
2959 * 3,
2960 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
2961 * constraints_dirichlet_and_hanging_nodes_dual,
2962 * component_mask);
2963 * }
2964 * else if (base_mesh == "Perforated_strip_tension")
2965 * {
2966 * @endcode
2967 *
2968 * the boundary x = 0
2969 *
2970 * @code
2971 * component_mask[0] = true;
2972 * component_mask[1] = false;
2973 * component_mask[2] = false;
2974 * VectorTools::interpolate_boundary_values (dof_handler_dual,
2975 * 4,
2976 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
2977 * constraints_dirichlet_and_hanging_nodes_dual,
2978 * component_mask);
2979 * @endcode
2980 *
2981 * the boundary y = 0
2982 *
2983 * @code
2984 * component_mask[0] = false;
2985 * component_mask[1] = true;
2986 * component_mask[2] = false;
2987 * VectorTools::interpolate_boundary_values (dof_handler_dual,
2988 * 1,
2989 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
2990 * constraints_dirichlet_and_hanging_nodes_dual,
2991 * component_mask);
2992 * @endcode
2993 *
2994 * the boundary y = imposed incremental displacement
2995 *
2996 * @code
2997 * component_mask[0] = false;
2998 * component_mask[1] = true;
2999 * component_mask[2] = false;
3000 * VectorTools::interpolate_boundary_values (dof_handler_dual,
3001 * 3,
3002 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
3003 * constraints_dirichlet_and_hanging_nodes_dual,
3004 * component_mask);
3005 * }
3006 * else if (base_mesh == "Cantiliver_beam_3d")
3007 * {
3008 * @endcode
3009 *
3010 * the boundary x = y = z = 0
3011 *
3012 * @code
3013 * component_mask[0] = true;
3014 * component_mask[1] = true;
3015 * component_mask[2] = true;
3016 * VectorTools::interpolate_boundary_values (dof_handler_dual,
3017 * 1,
3018 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
3019 * constraints_dirichlet_and_hanging_nodes_dual,
3020 * component_mask);
3021 * }
3022 * else
3023 * {
3024 * AssertThrow(false, ExcNotImplemented());
3025 * }
3026 *
3027 * constraints_dirichlet_and_hanging_nodes_dual.close();
3028 * }
3029 *
3030 *
3031 * template<int dim>
3032 * void DualSolver<dim>::assemble_matrix()
3033 * {
3034 * FEValues<dim> fe_values(fe, quadrature_formula, update_gradients);
3035 *
3036 * FEValues<dim> fe_values_dual(fe_dual, quadrature_formula,
3038 *
3039 * const unsigned int dofs_per_cell_dual = fe_dual.dofs_per_cell;
3040 * const unsigned int n_q_points = quadrature_formula.size();
3041 *
3042 * FullMatrix<double> cell_matrix (dofs_per_cell_dual, dofs_per_cell_dual);
3043 *
3044 * std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell_dual);
3045 *
3047 * cell_dual = dof_handler_dual.begin_active(),
3048 * endc_dual = dof_handler_dual.end(),
3049 * cell = dof_handler.begin_active();
3050 *
3051 * const FEValuesExtractors::Vector displacement(0);
3052 *
3053 * for (; cell_dual != endc_dual; ++cell_dual, ++cell)
3054 * if (cell_dual->is_locally_owned())
3055 * {
3056 * fe_values.reinit(cell);
3057 *
3058 * fe_values_dual.reinit(cell_dual);
3059 * cell_matrix = 0;
3060 *
3061 * std::vector<SymmetricTensor<2, dim> > strain_tensor(n_q_points);
3062 * fe_values[displacement].get_function_symmetric_gradients(solution,
3063 * strain_tensor);
3064 *
3065 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
3066 * {
3067 * SymmetricTensor<4, dim> stress_strain_tensor_linearized;
3068 * SymmetricTensor<4, dim> stress_strain_tensor;
3069 * constitutive_law.get_linearized_stress_strain_tensors(strain_tensor[q_point],
3070 * stress_strain_tensor_linearized,
3071 * stress_strain_tensor);
3072 *
3073 * for (unsigned int i = 0; i < dofs_per_cell_dual; ++i)
3074 * {
3076 * stress_phi_i = stress_strain_tensor_linearized
3077 * * fe_values_dual[displacement].symmetric_gradient(i, q_point);
3078 *
3079 * for (unsigned int j = 0; j < dofs_per_cell_dual; ++j)
3080 * cell_matrix(i, j) += (stress_phi_i
3081 * * fe_values_dual[displacement].symmetric_gradient(j, q_point)
3082 * * fe_values_dual.JxW(q_point));
3083 *
3084 * }
3085 *
3086 * }
3087 *
3088 * cell_dual->get_dof_indices(local_dof_indices);
3089 * constraints_dirichlet_and_hanging_nodes_dual.distribute_local_to_global(cell_matrix,
3090 * local_dof_indices,
3091 * system_matrix_dual);
3092 *
3093 * }
3094 *
3095 * }
3096 *
3097 *
3098 * template<int dim>
3099 * void DualSolver<dim>::assemble_rhs()
3100 * {
3101 * dual_functional->assemble_rhs (dof_handler, solution, constitutive_law,
3102 * dof_handler_dual, system_rhs_dual);
3103 * constraints_dirichlet_and_hanging_nodes_dual.condense (system_rhs_dual);
3104 * }
3105 *
3106 *
3107 * template<int dim>
3108 * void DualSolver<dim>::solve()
3109 * {
3110 * @endcode
3111 *
3112 * +++ direct solver +++++++++
3113 *
3114 * @code
3115 * SparseDirectUMFPACK A_direct;
3116 * A_direct.initialize(system_matrix_dual);
3117 *
3118 * @endcode
3119 *
3120 * After the decomposition, we can use A_direct like a matrix representing
3121 * the inverse of our system matrix, so to compute the solution we just
3122 * have to multiply with the right hand side vector:
3123 *
3124 * @code
3125 * A_direct.vmult(solution_dual, system_rhs_dual);
3126 *
3127 * @endcode
3128 *
3129 * ++++ iterative solver ++ CG ++++ doesn't work
3130 * SolverControl solver_control (5000, 1e-12);
3131 * SolverCG<> cg (solver_control);
3132 *
3133
3134 *
3135 * PreconditionSSOR<> preconditioner;
3136 * preconditioner.initialize(system_matrix_dual, 1.2);
3137 *
3138
3139 *
3140 * cg.solve (system_matrix_dual, solution_dual, system_rhs_dual,
3141 * preconditioner);
3142 *
3143
3144 *
3145 * ++++ iterative solver ++ BiCGStab ++++++ doesn't work
3146 * SolverControl solver_control (5000, 1e-12);
3147 * SolverBicgstab<> bicgstab (solver_control);
3148 *
3149
3150 *
3151 * PreconditionJacobi<> preconditioner;
3152 * preconditioner.initialize(system_matrix_dual, 1.0);
3153 *
3154
3155 *
3156 * bicgstab.solve (system_matrix_dual, solution_dual, system_rhs_dual,
3157 * preconditioner);
3158 *
3159
3160 *
3161 * +++++++++++++++++++++++++++++++++++++++++++++++++
3162 *
3163
3164 *
3165 *
3166 * @code
3167 * constraints_dirichlet_and_hanging_nodes_dual.distribute (solution_dual);
3168 * }
3169 *
3170 * template<int dim>
3171 * void DualSolver<dim>::output_results()
3172 * {
3173 * std::string filename = (output_dir + "dual-solution-" +
3174 * Utilities::int_to_string(timestep_no, 4) + ".vtk");
3175 * std::ofstream output (filename.c_str());
3176 * DataOut<dim> data_out;
3177 * data_out.attach_dof_handler (dof_handler_dual);
3178 * std::vector<std::string> solution_names;
3179 * switch (dim)
3180 * {
3181 * case 1:
3182 * solution_names.push_back ("displacement");
3183 * break;
3184 * case 2:
3185 * solution_names.push_back ("x_displacement");
3186 * solution_names.push_back ("y_displacement");
3187 * break;
3188 * case 3:
3189 * solution_names.push_back ("x_displacement");
3190 * solution_names.push_back ("y_displacement");
3191 * solution_names.push_back ("z_displacement");
3192 * break;
3193 * default:
3194 * Assert (false, ExcNotImplemented());
3195 * }
3196 * data_out.add_data_vector (solution_dual, solution_names);
3197 * data_out.build_patches ();
3198 * data_out.write_vtk (output);
3199 * }
3200 *
3201 * template<int dim>
3202 * void DualSolver<dim>::compute_error_DWR (Vector<float> &estimated_error_per_cell)
3203 * {
3204 * Assert (estimated_error_per_cell.size() == triangulation->n_global_active_cells(),
3205 * ExcDimensionMismatch (estimated_error_per_cell.size(), triangulation->n_global_active_cells()));
3206 *
3207 * @endcode
3208 *
3209 * solve the dual problem
3210 *
3211 * @code
3212 * setup_system ();
3213 * assemble_matrix ();
3214 * assemble_rhs ();
3215 * solve ();
3216 * output_results ();
3217 *
3218 * @endcode
3219 *
3220 * compuate the dual weights
3221 *
3222 * @code
3223 * Vector<double> primal_solution (dof_handler_dual.n_dofs());
3224 * FETools::interpolate (dof_handler,
3225 * solution,
3226 * dof_handler_dual,
3227 * constraints_dirichlet_and_hanging_nodes_dual,
3228 * primal_solution);
3229 *
3230 * AffineConstraints<double> constraints_hanging_nodes;
3232 * constraints_hanging_nodes);
3233 * constraints_hanging_nodes.close();
3234 * Vector<double> dual_weights (dof_handler_dual.n_dofs());
3235 * FETools::interpolation_difference (dof_handler_dual,
3236 * constraints_dirichlet_and_hanging_nodes_dual,
3237 * solution_dual,
3238 * dof_handler,
3239 * constraints_hanging_nodes,
3240 * dual_weights);
3241 *
3242 * @endcode
3243 *
3244 * estimate the error
3245 *
3246 * @code
3247 * FEValues<dim> fe_values(fe_dual, quadrature_formula,
3248 * update_values |
3250 * update_hessians |
3253 *
3254 * const unsigned int n_q_points = quadrature_formula.size();
3255 * std::vector<SymmetricTensor<2, dim> > strain_tensor(n_q_points);
3256 * SymmetricTensor<4, dim> stress_strain_tensor_linearized;
3257 * SymmetricTensor<4, dim> stress_strain_tensor;
3258 * Tensor<5, dim> stress_strain_tensor_grad;
3259 * std::vector<std::vector<Tensor<2,dim> > > cell_hessians (n_q_points);
3260 * for (unsigned int i=0; i!=n_q_points; ++i)
3261 * {
3262 * cell_hessians[i].resize (dim);
3263 * }
3264 * std::vector<Vector<double> > dual_weights_cell_values (n_q_points, Vector<double>(dim));
3265 *
3266 * const EquationData::BodyForce<dim> body_force;
3267 * std::vector<Vector<double> > body_force_values (n_q_points, Vector<double>(dim));
3268 * const FEValuesExtractors::Vector displacement(0);
3269 *
3270 *
3271 * FEFaceValues<dim> fe_face_values_cell(fe_dual, face_quadrature_formula,
3272 * update_values |
3277 * fe_face_values_neighbor (fe_dual, face_quadrature_formula,
3278 * update_values |
3282 * FESubfaceValues<dim> fe_subface_values_cell (fe_dual, face_quadrature_formula,
3284 *
3285 * const unsigned int n_face_q_points = face_quadrature_formula.size();
3286 * std::vector<Vector<double> > jump_residual (n_face_q_points, Vector<double>(dim));
3287 * std::vector<Vector<double> > dual_weights_face_values (n_face_q_points, Vector<double>(dim));
3288 *
3289 * std::vector<std::vector<Tensor<1,dim> > > cell_grads(n_face_q_points);
3290 * for (unsigned int i=0; i!=n_face_q_points; ++i)
3291 * {
3292 * cell_grads[i].resize (dim);
3293 * }
3294 * std::vector<std::vector<Tensor<1,dim> > > neighbor_grads(n_face_q_points);
3295 * for (unsigned int i=0; i!=n_face_q_points; ++i)
3296 * {
3297 * neighbor_grads[i].resize (dim);
3298 * }
3299 * SymmetricTensor<2, dim> q_cell_strain_tensor;
3300 * SymmetricTensor<2, dim> q_neighbor_strain_tensor;
3301 * SymmetricTensor<4, dim> cell_stress_strain_tensor;
3302 * SymmetricTensor<4, dim> neighbor_stress_strain_tensor;
3303 *
3304 *
3305 * typename std::map<typename DoFHandler<dim>::face_iterator, Vector<double> >
3306 * face_integrals;
3308 * cell = dof_handler_dual.begin_active(),
3309 * endc = dof_handler_dual.end();
3310 * for (; cell!=endc; ++cell)
3311 * if (cell->is_locally_owned())
3312 * {
3313 * for (unsigned int face_no=0;
3314 * face_no<GeometryInfo<dim>::faces_per_cell;
3315 * ++face_no)
3316 * {
3317 * face_integrals[cell->face(face_no)].reinit (dim);
3318 * face_integrals[cell->face(face_no)] = -1e20;
3319 * }
3320 * }
3321 *
3322 * std::vector<Vector<float> > error_indicators_vector;
3323 * error_indicators_vector.resize( triangulation->n_active_cells(),
3324 * Vector<float>(dim) );
3325 *
3326 * @endcode
3327 *
3328 * ----------------- estimate_some -------------------------
3329 *
3330 * @code
3331 * cell = dof_handler_dual.begin_active();
3332 * unsigned int present_cell = 0;
3333 * for (; cell!=endc; ++cell, ++present_cell)
3334 * if (cell->is_locally_owned())
3335 * {
3336 * @endcode
3337 *
3338 * --------------- integrate_over_cell -------------------
3339 *
3340 * @code
3341 * fe_values.reinit(cell);
3342 * body_force.vector_value_list(fe_values.get_quadrature_points(),
3343 * body_force_values);
3344 * fe_values[displacement].get_function_symmetric_gradients(primal_solution,
3345 * strain_tensor);
3346 * fe_values.get_function_hessians(primal_solution, cell_hessians);
3347 *
3348 * fe_values.get_function_values(dual_weights,
3349 * dual_weights_cell_values);
3350 *
3351 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
3352 * {
3353 * constitutive_law.get_linearized_stress_strain_tensors(strain_tensor[q_point],
3354 * stress_strain_tensor_linearized,
3355 * stress_strain_tensor);
3356 * constitutive_law.get_grad_stress_strain_tensor(strain_tensor[q_point],
3357 * cell_hessians[q_point],
3358 * stress_strain_tensor_grad);
3359 *
3360 * for (unsigned int i=0; i!=dim; ++i)
3361 * {
3362 * error_indicators_vector[present_cell](i) +=
3363 * body_force_values[q_point](i)*
3364 * dual_weights_cell_values[q_point](i)*
3365 * fe_values.JxW(q_point);
3366 * for (unsigned int j=0; j!=dim; ++j)
3367 * {
3368 * for (unsigned int k=0; k!=dim; ++k)
3369 * {
3370 * for (unsigned int l=0; l!=dim; ++l)
3371 * {
3372 * error_indicators_vector[present_cell](i) +=
3373 * ( stress_strain_tensor[i][j][k][l]*
3374 * 0.5*(cell_hessians[q_point][k][l][j]
3375 * +
3376 * cell_hessians[q_point][l][k][j])
3377 * + stress_strain_tensor_grad[i][j][k][l][j] * strain_tensor[q_point][k][l]
3378 * ) *
3379 * dual_weights_cell_values[q_point](i) *
3380 * fe_values.JxW(q_point);
3381 * }
3382 * }
3383 * }
3384 *
3385 * }
3386 *
3387 * }
3388 * @endcode
3389 *
3390 * -------------------------------------------------------
3391 * compute face_integrals
3392 *
3393 * @code
3394 * for (unsigned int face_no=0;
3395 * face_no<GeometryInfo<dim>::faces_per_cell;
3396 * ++face_no)
3397 * {
3398 * if (cell->face(face_no)->at_boundary())
3399 * {
3400 * for (unsigned int id=0; id!=dim; ++id)
3401 * {
3402 * face_integrals[cell->face(face_no)](id) = 0;
3403 * }
3404 * continue;
3405 * }
3406 *
3407 * if ((cell->neighbor(face_no)->has_children() == false) &&
3408 * (cell->neighbor(face_no)->level() == cell->level()) &&
3409 * (cell->neighbor(face_no)->index() < cell->index()))
3410 * continue;
3411 *
3412 * if (cell->at_boundary(face_no) == false)
3413 * if (cell->neighbor(face_no)->level() < cell->level())
3414 * continue;
3415 *
3416 *
3417 * if (cell->face(face_no)->has_children() == false)
3418 * {
3419 * @endcode
3420 *
3421 * ------------- integrate_over_regular_face -----------
3422 *
3423 * @code
3424 * fe_face_values_cell.reinit(cell, face_no);
3425 * fe_face_values_cell.get_function_gradients (primal_solution,
3426 * cell_grads);
3427 *
3428 * Assert (cell->neighbor(face_no).state() == IteratorState::valid,
3429 * ExcInternalError());
3430 * const unsigned int
3431 * neighbor_neighbor = cell->neighbor_of_neighbor (face_no);
3433 * neighbor = cell->neighbor(face_no);
3434 *
3435 * fe_face_values_neighbor.reinit(neighbor, neighbor_neighbor);
3436 * fe_face_values_neighbor.get_function_gradients (primal_solution,
3437 * neighbor_grads);
3438 *
3439 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
3440 * {
3441 * q_cell_strain_tensor = 0.;
3442 * q_neighbor_strain_tensor = 0.;
3443 * for (unsigned int i=0; i!=dim; ++i)
3444 * {
3445 * for (unsigned int j=0; j!=dim; ++j)
3446 * {
3447 * q_cell_strain_tensor[i][j] = 0.5*(cell_grads[q_point][i][j] +
3448 * cell_grads[q_point][j][i] );
3449 * q_neighbor_strain_tensor[i][j] = 0.5*(neighbor_grads[q_point][i][j] +
3450 * neighbor_grads[q_point][j][i] );
3451 * }
3452 * }
3453 *
3454 * constitutive_law.get_stress_strain_tensor (q_cell_strain_tensor,
3455 * cell_stress_strain_tensor);
3456 * constitutive_law.get_stress_strain_tensor (q_neighbor_strain_tensor,
3457 * neighbor_stress_strain_tensor);
3458 *
3459 * jump_residual[q_point] = 0.;
3460 * for (unsigned int i=0; i!=dim; ++i)
3461 * {
3462 * for (unsigned int j=0; j!=dim; ++j)
3463 * {
3464 * for (unsigned int k=0; k!=dim; ++k)
3465 * {
3466 * for (unsigned int l=0; l!=dim; ++l)
3467 * {
3468 * jump_residual[q_point](i) += (cell_stress_strain_tensor[i][j][k][l]*
3469 * q_cell_strain_tensor[k][l]
3470 * -
3471 * neighbor_stress_strain_tensor[i][j][k][l]*
3472 * q_neighbor_strain_tensor[k][l] )*
3473 * fe_face_values_cell.normal_vector(q_point)[j];
3474 * }
3475 * }
3476 * }
3477 * }
3478 *
3479 * }
3480 *
3481 * fe_face_values_cell.get_function_values (dual_weights,
3482 * dual_weights_face_values);
3483 *
3484 * Vector<double> face_integral_vector(dim);
3485 * face_integral_vector = 0;
3486 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
3487 * {
3488 * for (unsigned int i=0; i!=dim; ++i)
3489 * {
3490 * face_integral_vector(i) += jump_residual[q_point](i) *
3491 * dual_weights_face_values[q_point](i) *
3492 * fe_face_values_cell.JxW(q_point);
3493 * }
3494 * }
3495 *
3496 * Assert (face_integrals.find (cell->face(face_no)) != face_integrals.end(),
3497 * ExcInternalError());
3498 *
3499 * for (unsigned int i=0; i!=dim; ++i)
3500 * {
3501 * Assert (face_integrals[cell->face(face_no)](i) == -1e20,
3502 * ExcInternalError());
3503 * face_integrals[cell->face(face_no)](i) = face_integral_vector(i);
3504 *
3505 * }
3506 *
3507 * @endcode
3508 *
3509 * -----------------------------------------------------
3510 *
3511 * @code
3512 * }
3513 * else
3514 * {
3515 * @endcode
3516 *
3517 * ------------- integrate_over_irregular_face ---------
3518 *
3519 * @code
3520 * const typename DoFHandler<dim>::face_iterator
3521 * face = cell->face(face_no);
3522 * const typename DoFHandler<dim>::cell_iterator
3523 * neighbor = cell->neighbor(face_no);
3524 * Assert (neighbor.state() == IteratorState::valid,
3525 * ExcInternalError());
3526 * Assert (neighbor->has_children(),
3527 * ExcInternalError());
3528 *
3529 * const unsigned int
3530 * neighbor_neighbor = cell->neighbor_of_neighbor (face_no);
3531 *
3532 * for (unsigned int subface_no=0;
3533 * subface_no<face->n_children(); ++subface_no)
3534 * {
3536 * neighbor_child = cell->neighbor_child_on_subface (face_no, subface_no);
3537 * Assert (neighbor_child->face(neighbor_neighbor) ==
3538 * cell->face(face_no)->child(subface_no),
3539 * ExcInternalError());
3540 *
3541 * fe_subface_values_cell.reinit (cell, face_no, subface_no);
3542 * fe_subface_values_cell.get_function_gradients (primal_solution,
3543 * cell_grads);
3544 * fe_face_values_neighbor.reinit (neighbor_child,
3545 * neighbor_neighbor);
3546 * fe_face_values_neighbor.get_function_gradients (primal_solution,
3547 * neighbor_grads);
3548 *
3549 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
3550 * {
3551 * q_cell_strain_tensor = 0.;
3552 * q_neighbor_strain_tensor = 0.;
3553 * for (unsigned int i=0; i!=dim; ++i)
3554 * {
3555 * for (unsigned int j=0; j!=dim; ++j)
3556 * {
3557 * q_cell_strain_tensor[i][j] = 0.5*(cell_grads[q_point][i][j] +
3558 * cell_grads[q_point][j][i] );
3559 * q_neighbor_strain_tensor[i][j] = 0.5*(neighbor_grads[q_point][i][j] +
3560 * neighbor_grads[q_point][j][i] );
3561 * }
3562 * }
3563 *
3564 * constitutive_law.get_stress_strain_tensor (q_cell_strain_tensor,
3565 * cell_stress_strain_tensor);
3566 * constitutive_law.get_stress_strain_tensor (q_neighbor_strain_tensor,
3567 * neighbor_stress_strain_tensor);
3568 *
3569 * jump_residual[q_point] = 0.;
3570 * for (unsigned int i=0; i!=dim; ++i)
3571 * {
3572 * for (unsigned int j=0; j!=dim; ++j)
3573 * {
3574 * for (unsigned int k=0; k!=dim; ++k)
3575 * {
3576 * for (unsigned int l=0; l!=dim; ++l)
3577 * {
3578 * jump_residual[q_point](i) += (-cell_stress_strain_tensor[i][j][k][l]*
3579 * q_cell_strain_tensor[k][l]
3580 * +
3581 * neighbor_stress_strain_tensor[i][j][k][l]*
3582 * q_neighbor_strain_tensor[k][l] )*
3583 * fe_face_values_neighbor.normal_vector(q_point)[j];
3584 * }
3585 * }
3586 * }
3587 * }
3588 *
3589 * }
3590 *
3591 * fe_face_values_neighbor.get_function_values (dual_weights,
3592 * dual_weights_face_values);
3593 *
3594 * Vector<double> face_integral_vector(dim);
3595 * face_integral_vector = 0;
3596 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
3597 * {
3598 * for (unsigned int i=0; i!=dim; ++i)
3599 * {
3600 * face_integral_vector(i) += jump_residual[q_point](i) *
3601 * dual_weights_face_values[q_point](i) *
3602 * fe_face_values_neighbor.JxW(q_point);
3603 * }
3604 * }
3605 *
3606 * for (unsigned int i=0; i!=dim; ++i)
3607 * {
3608 * face_integrals[neighbor_child->face(neighbor_neighbor)](i) = face_integral_vector(i);
3609 * }
3610 *
3611 * }
3612 *
3613 * Vector<double> sum (dim);
3614 * sum = 0;
3615 * for (unsigned int subface_no=0;
3616 * subface_no<face->n_children(); ++subface_no)
3617 * {
3618 * Assert (face_integrals.find(face->child(subface_no)) !=
3619 * face_integrals.end(),
3620 * ExcInternalError());
3621 * for (unsigned int i=0; i!=dim; ++i)
3622 * {
3623 * Assert (face_integrals[face->child(subface_no)](i) != -1e20,
3624 * ExcInternalError());
3625 * sum(i) += face_integrals[face->child(subface_no)](i);
3626 * }
3627 * }
3628 * for (unsigned int i=0; i!=dim; ++i)
3629 * {
3630 * face_integrals[face](i) = sum(i);
3631 * }
3632 *
3633 *
3634 * @endcode
3635 *
3636 * -----------------------------------------------------
3637 *
3638 * @code
3639 * }
3640 *
3641 *
3642 * }
3643 * }
3644 * @endcode
3645 *
3646 * ----------------------------------------------------------
3647 *
3648
3649 *
3650 *
3651 * @code
3652 * present_cell=0;
3653 * cell = dof_handler_dual.begin_active();
3654 * for (; cell!=endc; ++cell, ++present_cell)
3655 * if (cell->is_locally_owned())
3656 * {
3657 * for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
3658 * ++face_no)
3659 * {
3660 * Assert(face_integrals.find(cell->face(face_no)) !=
3661 * face_integrals.end(),
3662 * ExcInternalError());
3663 *
3664 * for (unsigned int id=0; id!=dim; ++id)
3665 * {
3666 * error_indicators_vector[present_cell](id)
3667 * -= 0.5*face_integrals[cell->face(face_no)](id);
3668 * }
3669 *
3670 * }
3671 *
3672 * estimated_error_per_cell(present_cell) = error_indicators_vector[present_cell].l2_norm();
3673 *
3674 * }
3675 * }
3676 *
3677 *
3678 *
3679 * @endcode
3680 *
3681 *
3682 * <a name="ThecodePlasticityContactProblemcodeclasstemplate"></a>
3683 * <h3>The <code>PlasticityContactProblem</code> class template</h3>
3684 *
3685
3686 *
3687 * This is the main class of this program and supplies all functions
3688 * and variables needed to describe
3689 * the nonlinear contact problem. It is
3690 * close to @ref step_41 "step-41" but with some additional
3691 * features like handling hanging nodes,
3692 * a Newton method, using Trilinos and p4est
3693 * for parallel distributed computing.
3694 * To deal with hanging nodes makes
3695 * life a bit more complicated since
3696 * we need another AffineConstraints object now.
3697 * We create a Newton method for the
3698 * active set method for the contact
3699 * situation and to handle the nonlinear
3700 * operator for the constitutive law.
3701 *
3702
3703 *
3704 * The general layout of this class is very much like for most other tutorial programs.
3705 * To make our life a bit easier, this class reads a set of input parameters from an input file. These
3706 * parameters, using the ParameterHandler class, are declared in the <code>declare_parameters</code>
3707 * function (which is static so that it can be called before we even create an object of the current
3708 * type), and a ParameterHandler object that has been used to read an input file will then be passed
3709 * to the constructor of this class.
3710 *
3711
3712 *
3713 * The remaining member functions are by and large as we have seen in several of the other tutorial
3714 * programs, though with additions for the current nonlinear system. We will comment on their purpose
3715 * as we get to them further below.
3716 *
3717 * @code
3718 * template <int dim>
3719 * class ElastoPlasticProblem
3720 * {
3721 * public:
3722 * ElastoPlasticProblem (const ParameterHandler &prm);
3723 *
3724 * void run ();
3725 *
3726 * static void declare_parameters (ParameterHandler &prm);
3727 *
3728 * private:
3729 * void make_grid ();
3730 * void setup_system ();
3731 * void compute_dirichlet_constraints ();
3732 * void assemble_newton_system (const TrilinosWrappers::MPI::Vector &linearization_point,
3733 * const TrilinosWrappers::MPI::Vector &delta_linearization_point);
3734 * void compute_nonlinear_residual (const TrilinosWrappers::MPI::Vector &linearization_point);
3735 * void solve_newton_system ();
3736 * void solve_newton ();
3737 * void compute_error ();
3738 * void compute_error_residual (const TrilinosWrappers::MPI::Vector &tmp_solution);
3739 * void refine_grid ();
3740 * void move_mesh (const TrilinosWrappers::MPI::Vector &displacement) const;
3741 * void output_results (const std::string &filename_base);
3742 *
3743 * @endcode
3744 *
3745 * Next are three functions that handle the history variables stored in each
3746 * quadrature point. The first one is called before the first timestep to
3747 * set up a pristine state for the history variables. It only works on
3748 * those quadrature points on cells that belong to the present processor:
3749 *
3750 * @code
3751 * void setup_quadrature_point_history ();
3752 *
3753 * @endcode
3754 *
3755 * The second one updates the history variables at the end of each
3756 * timestep:
3757 *
3758 * @code
3759 * void update_quadrature_point_history ();
3760 *
3761 * @endcode
3762 *
3763 * As far as member variables are concerned, we start with ones that we use to
3764 * indicate the MPI universe this program runs on, and then two numbers
3765 * telling us how many participating processors there are, and where in
3766 * this world we are., a stream we use to let
3767 * exactly one processor produce output to the console (see @ref step_17 "step-17") and
3768 * a variable that is used to time the various sections of the program:
3769 *
3770 * @code
3771 * MPI_Comm mpi_communicator;
3772 * const unsigned int n_mpi_processes;
3773 * const unsigned int this_mpi_process;
3774 * ConditionalOStream pcout;
3775 * TimerOutput computing_timer;
3776 *
3777 * @endcode
3778 *
3779 * The next group describes the mesh and the finite element space.
3780 * In particular, for this parallel program, the finite element
3781 * space has associated with it variables that indicate which degrees
3782 * of freedom live on the current processor (the index sets, see
3783 * also @ref step_40 "step-40" and the @ref distributed documentation module) as
3784 * well as a variety of constraints: those imposed by hanging nodes,
3785 * by Dirichlet boundary conditions, and by the active set of
3786 * contact nodes. Of the three AffineConstraints objects defined
3787 * here, the first only contains hanging node constraints, the
3788 * second also those associated with Dirichlet boundary conditions,
3789 * and the third these plus the contact constraints.
3790 *
3791
3792 *
3793 * The variable <code>active_set</code> consists of those degrees
3794 * of freedom constrained by the contact, and we use
3795 * <code>fraction_of_plastic_q_points_per_cell</code> to keep
3796 * track of the fraction of quadrature points on each cell where
3797 * the stress equals the yield stress. The latter is only used to
3798 * create graphical output showing the plastic zone, but not for
3799 * any further computation; the variable is a member variable of
3800 * this class since the information is computed as a by-product
3801 * of computing the residual, but is used only much later. (Note
3802 * that the vector is a vector of length equal to the number of
3803 * active cells on the <i>local mesh</i>; it is never used to
3804 * exchange information between processors and can therefore be
3805 * a regular deal.II vector.)
3806 *
3807 * @code
3808 * const unsigned int n_initial_global_refinements;
3810 *
3811 * const unsigned int fe_degree;
3812 * FESystem<dim> fe;
3813 * DoFHandler<dim> dof_handler;
3814 *
3815 * IndexSet locally_owned_dofs;
3816 * IndexSet locally_relevant_dofs;
3817 *
3818 * AffineConstraints<double> constraints_hanging_nodes;
3819 * AffineConstraints<double> constraints_dirichlet_and_hanging_nodes;
3820 *
3821 * Vector<float> fraction_of_plastic_q_points_per_cell;
3822 *
3823 * @endcode
3824 *
3825 * One difference of this program is that we declare the quadrature
3826 * formula in the class declaration. The reason is that in all the other
3827 * programs, it didn't do much harm if we had used different quadrature
3828 * formulas when computing the matrix and the right hand side, for
3829 * example. However, in the present case it does: we store information in
3830 * the quadrature points, so we have to make sure all parts of the program
3831 * agree on where they are and how many there are on each cell. Thus, let
3832 * us first declare the quadrature formula that will be used throughout...
3833 *
3834 * @code
3835 * const QGauss<dim> quadrature_formula;
3836 * const QGauss<dim - 1> face_quadrature_formula;
3837 *
3838 * @endcode
3839 *
3840 * ... and then also have a vector of history objects, one per quadrature
3841 * point on those cells for which we are responsible (i.e. we don't store
3842 * history data for quadrature points on cells that are owned by other
3843 * processors).
3844 *
3845 * @code
3846 * std::vector<PointHistory<dim> > quadrature_point_history;
3847 *
3848 * @endcode
3849 *
3850 * The way this object is accessed is through a <code>user pointer</code>
3851 * that each cell, face, or edge holds: it is a <code>void*</code> pointer
3852 * that can be used by application programs to associate arbitrary data to
3853 * cells, faces, or edges. What the program actually does with this data
3854 * is within its own responsibility, the library just allocates some space
3855 * for these pointers, and application programs can set and read the
3856 * pointers for each of these objects.
3857 *
3858
3859 *
3860 *
3861
3862 *
3863 * The next block of variables corresponds to the solution
3864 * and the linear systems we need to form. In particular, this
3865 * includes the Newton matrix and right hand side; the vector
3866 * that corresponds to the residual (i.e., the Newton right hand
3867 * side) but from which we have not eliminated the various
3868 * constraints and that is used to determine which degrees of
3869 * freedom need to be constrained in the next iteration; and
3870 * a vector that corresponds to the diagonal of the @f$B@f$ matrix
3871 * briefly mentioned in the introduction and discussed in the
3872 * accompanying paper.
3873 *
3874 * @code
3875 * TrilinosWrappers::SparseMatrix newton_matrix;
3876 *
3878 * TrilinosWrappers::MPI::Vector incremental_displacement;
3879 * TrilinosWrappers::MPI::Vector newton_rhs;
3880 * TrilinosWrappers::MPI::Vector newton_rhs_residual;
3881 *
3882 * @endcode
3883 *
3884 * The next block of variables is then related to the time dependent
3885 * nature of the problem: they denote the length of the time interval
3886 * which we want to simulate, the present time and number of time step,
3887 * and length of present timestep:
3888 *
3889 * @code
3890 * double present_time;
3891 * double present_timestep;
3892 * double end_time;
3893 * unsigned int timestep_no;
3894 *
3895 * @endcode
3896 *
3897 * The next block contains the variables that describe the material
3898 * response:
3899 *
3900 * @code
3901 * const double e_modulus, nu, sigma_0, gamma;
3902 * ConstitutiveLaw<dim> constitutive_law;
3903 *
3904 * @endcode
3905 *
3906 * And then there is an assortment of other variables that are used
3907 * to identify the mesh we are asked to build as selected by the
3908 * parameter file, the obstacle that is being pushed into the
3909 * deformable body, the mesh refinement strategy, whether to transfer
3910 * the solution from one mesh to the next, and how many mesh
3911 * refinement cycles to perform. As possible, we mark these kinds
3912 * of variables as <code>const</code> to help the reader identify
3913 * which ones may or may not be modified later on (the output directory
3914 * being an exception -- it is never modified outside the constructor
3915 * but it is awkward to initialize in the member-initializer-list
3916 * following the colon in the constructor since there we have only
3917 * one shot at setting it; the same is true for the mesh refinement
3918 * criterion):
3919 *
3920 * @code
3921 * const std::string base_mesh;
3922 *
3923 * struct RefinementStrategy
3924 * {
3925 * enum value
3926 * {
3927 * refine_global,
3928 * refine_percentage,
3929 * refine_fix_dofs
3930 * };
3931 * };
3932 * typename RefinementStrategy::value refinement_strategy;
3933 *
3934 * struct ErrorEstimationStrategy
3935 * {
3936 * enum value
3937 * {
3938 * kelly_error,
3939 * residual_error,
3940 * weighted_residual_error,
3941 * weighted_kelly_error
3942 * };
3943 * };
3944 * typename ErrorEstimationStrategy::value error_estimation_strategy;
3945 *
3946 * Vector<float> estimated_error_per_cell;
3947 *
3948 * const bool transfer_solution;
3949 * std::string output_dir;
3950 * TableHandler table_results,
3951 * table_results_2,
3952 * table_results_3;
3953 *
3954 * unsigned int current_refinement_cycle;
3955 *
3956 * const double max_relative_error;
3957 * float relative_error;
3958 *
3959 * const bool show_stresses;
3960 * };
3961 *
3962 *
3963 * @endcode
3964 *
3965 *
3966 * <a name="ImplementationofthecodePlasticityContactProblemcodeclass"></a>
3967 * <h3>Implementation of the <code>PlasticityContactProblem</code> class</h3>
3968 *
3969
3970 *
3971 *
3972 * <a name="PlasticityContactProblemdeclare_parameters"></a>
3973 * <h4>PlasticityContactProblem::declare_parameters</h4>
3974 *
3975
3976 *
3977 * Let us start with the declaration of run-time parameters that can be
3978 * selected in the input file. These values will be read back in the
3979 * constructor of this class to initialize the member variables of this
3980 * class:
3981 *
3982 * @code
3983 * template <int dim>
3984 * void
3985 * ElastoPlasticProblem<dim>::declare_parameters (ParameterHandler &prm)
3986 * {
3987 * prm.declare_entry("polynomial degree", "1",
3989 * "Polynomial degree of the FE_Q finite element space, typically 1 or 2.");
3990 * prm.declare_entry("number of initial refinements", "2",
3992 * "Number of initial global mesh refinement steps before "
3993 * "the first computation.");
3994 * prm.declare_entry("refinement strategy", "percentage",
3995 * Patterns::Selection("global|percentage"),
3996 * "Mesh refinement strategy:\n"
3997 * " global: one global refinement\n"
3998 * " percentage: a fixed percentage of cells gets refined using the selected error estimator.");
3999 * prm.declare_entry("error estimation strategy", "kelly_error",
4000 * Patterns::Selection("kelly_error|residual_error|weighted_residual_error"),
4001 * "Error estimation strategy:\n"
4002 * " kelly_error: Kelly error estimator\n"
4003 * " residual_error: residual-based error estimator\n"
4004 * " weighted_residual_error: dual weighted residual (Goal-oriented) error estimator.\n");
4005 * prm.declare_entry("maximum relative error","0.05",
4006 * Patterns::Double(),
4007 * "maximum relative error which plays the role of a criteria for refinement.");
4008 * prm.declare_entry("number of cycles", "5",
4010 * "Number of adaptive mesh refinement cycles to run.");
4011 * prm.declare_entry("output directory", "",
4013 * "Directory for output files (graphical output and benchmark "
4014 * "statistics). If empty, use the current directory.");
4015 * prm.declare_entry("transfer solution", "true",
4016 * Patterns::Bool(),
4017 * "Whether the solution should be used as a starting guess "
4018 * "for the next finer mesh. If false, then the iteration starts at "
4019 * "zero on every mesh.");
4020 * prm.declare_entry("base mesh", "Thick_tube_internal_pressure",
4021 * Patterns::Selection("Timoshenko beam|Thick_tube_internal_pressure|"
4022 * "Perforated_strip_tension|Cantiliver_beam_3d"),
4023 * "Select the shape of the domain: 'box' or 'half sphere'");
4024 * prm.declare_entry("elasticity modulus","2.e11",
4025 * Patterns::Double(),
4026 * "Elasticity modulus of the material in MPa (N/mm2)");
4027 * prm.declare_entry("Poissons ratio","0.3",
4028 * Patterns::Double(),
4029 * "Poisson's ratio of the material");
4030 * prm.declare_entry("yield stress","2.e11",
4031 * Patterns::Double(),
4032 * "Yield stress of the material in MPa (N/mm2)");
4033 * prm.declare_entry("isotropic hardening parameter","0.",
4034 * Patterns::Double(),
4035 * "Isotropic hardening parameter of the material");
4036 * prm.declare_entry("show stresses", "false",
4037 * Patterns::Bool(),
4038 * "Whether illustrates the stresses and von Mises stresses or not.");
4039 *
4040 *
4041 * }
4042 *
4043 *
4044 * @endcode
4045 *
4046 *
4047 * <a name="ThecodePlasticityContactProblemcodeconstructor"></a>
4048 * <h4>The <code>PlasticityContactProblem</code> constructor</h4>
4049 *
4050
4051 *
4052 * Given the declarations of member variables as well as the
4053 * declarations of run-time parameters that are read from the input
4054 * file, there is nothing surprising in this constructor. In the body
4055 * we initialize the mesh refinement strategy and the output directory,
4056 * creating such a directory if necessary.
4057 *
4058 * @code
4059 * template <int dim>
4060 * ElastoPlasticProblem<dim>::
4061 * ElastoPlasticProblem (const ParameterHandler &prm)
4062 * :
4063 * mpi_communicator(MPI_COMM_WORLD),
4066 * pcout(std::cout, this_mpi_process == 0),
4067 * computing_timer(MPI_COMM_WORLD, pcout, TimerOutput::never,
4069 *
4070 * n_initial_global_refinements (prm.get_integer("number of initial refinements")),
4071 * triangulation(mpi_communicator),
4072 * fe_degree (prm.get_integer("polynomial degree")),
4073 * fe(FE_Q<dim>(QGaussLobatto<1>(fe_degree+1)), dim),
4074 * dof_handler(triangulation),
4075 * quadrature_formula (fe_degree + 1),
4076 * face_quadrature_formula (fe_degree + 1),
4077 *
4078 * e_modulus (prm.get_double("elasticity modulus")),
4079 * nu (prm.get_double("Poissons ratio")),
4080 * sigma_0(prm.get_double("yield stress")),
4081 * gamma (prm.get_double("isotropic hardening parameter")),
4082 * constitutive_law (e_modulus,
4083 * nu,
4084 * sigma_0,
4085 * gamma),
4086 *
4087 * base_mesh (prm.get("base mesh")),
4088 *
4089 * transfer_solution (prm.get_bool("transfer solution")),
4090 * table_results(),
4091 * table_results_2(),
4092 * table_results_3(),
4093 * max_relative_error (prm.get_double("maximum relative error")),
4094 * show_stresses (prm.get_bool("show stresses"))
4095 * {
4096 * std::string strat = prm.get("refinement strategy");
4097 * if (strat == "global")
4098 * refinement_strategy = RefinementStrategy::refine_global;
4099 * else if (strat == "percentage")
4100 * refinement_strategy = RefinementStrategy::refine_percentage;
4101 * else
4102 * AssertThrow (false, ExcNotImplemented());
4103 *
4104 * strat = prm.get("error estimation strategy");
4105 * if (strat == "kelly_error")
4106 * error_estimation_strategy = ErrorEstimationStrategy::kelly_error;
4107 * else if (strat == "residual_error")
4108 * error_estimation_strategy = ErrorEstimationStrategy::residual_error;
4109 * else if (strat == "weighted_residual_error")
4110 * error_estimation_strategy = ErrorEstimationStrategy::weighted_residual_error;
4111 * else
4112 * AssertThrow(false, ExcNotImplemented());
4113 *
4114 * output_dir = prm.get("output directory");
4115 * if (output_dir != "" && *(output_dir.rbegin()) != '/')
4116 * output_dir += "/";
4117 * mkdir(output_dir.c_str(), 0777);
4118 *
4119 * pcout << " Using output directory '" << output_dir << "'" << std::endl;
4120 * pcout << " FE degree " << fe_degree << std::endl;
4121 * pcout << " transfer solution "
4122 * << (transfer_solution ? "true" : "false") << std::endl;
4123 * }
4124 *
4125 *
4126 *
4127 * @endcode
4128 *
4129 *
4130 * <a name="PlasticityContactProblemmake_grid"></a>
4131 * <h4>PlasticityContactProblem::make_grid</h4>
4132 *
4133
4134 *
4135 * The next block deals with constructing the starting mesh.
4136 * We will use the following helper function and the first
4137 * block of the <code>make_grid()</code> to construct a
4138 * mesh that corresponds to a half sphere. deal.II has a function
4139 * that creates such a mesh, but it is in the wrong location
4140 * and facing the wrong direction, so we need to shift and rotate
4141 * it a bit before using it.
4142 *
4143
4144 *
4145 * For later reference, as described in the documentation of
4146 * GridGenerator::half_hyper_ball(), the flat surface of the halfsphere
4147 * has boundary indicator zero, while the remainder has boundary
4148 * indicator one.
4149 *
4150 * @code
4151 * Point<3>
4152 * rotate_half_sphere (const Point<3> &in)
4153 * {
4154 * return Point<3>(in(2), in(1), -in(0));
4155 * }
4156 *
4157 * template <int dim>
4158 * void
4159 * ElastoPlasticProblem<dim>::make_grid ()
4160 * {
4161 * if (base_mesh == "Timoshenko beam")
4162 * {
4163 * AssertThrow (dim == 2, ExcNotImplemented());
4164 *
4165 * const double length = .48,
4166 * depth = .12;
4167 *
4168 * const Point<dim> point_1(0, -depth/2),
4169 * point_2(length, depth/2);
4170 *
4171 * std::vector<unsigned int> repetitions(2);
4172 * repetitions[0] = 4;
4173 * repetitions[1] = 1;
4174 * GridGenerator::subdivided_hyper_rectangle(triangulation, repetitions, point_1, point_2);
4175 *
4176 *
4177 * @endcode
4178 *
4179 * give the indicators to boundaries for specification,
4180 *
4181
4182 *
4183 * ________100______
4184 * | |
4185 * 0 | | 5
4186 * |________________|
4187 * 100
4188 * 0 to essential boundary conditions (left edge) which are as default
4189 * 100 to the null boundaries (upper and lower edges) where we do not need to take care of them
4190 * 5 to the natural boundaries (right edge) for imposing the traction force
4191 *
4192 * @code
4194 * cell = triangulation.begin_active(),
4195 * endc = triangulation.end();
4196 * for (; cell!=endc; ++cell)
4197 * {
4198 * for (unsigned int face=0; face!=GeometryInfo<dim>::faces_per_cell; ++face)
4199 * {
4200 * if ( std::fabs(cell->face(face)->center()(0)-length) < 1e-12 )
4201 * {
4202 * cell->face(face)->set_manifold_id(5);
4203 * }
4204 * else if ( ( std::fabs(cell->face(face)->center()(1)-(depth/2)) < 1e-12 )
4205 * ||
4206 * ( std::fabs(cell->face(face)->center()(1)-(-depth/2)) < 1e-12 ) )
4207 * {
4208 * cell->face(face)->set_manifold_id(100);
4209 * }
4210 *
4211 * }
4212 * }
4213 *
4214 * triangulation.refine_global(n_initial_global_refinements);
4215 *
4216 * }
4217 * else if (base_mesh == "Thick_tube_internal_pressure")
4218 * {
4219 * @endcode
4220 *
4221 * Example 1 from the paper: Zhong Z., .... A new numerical method for determining
4222 * collapse load-carrying capacity of structure made of elasto-plastic material,
4223 * J. Cent. South Univ. (2014) 21: 398-404
4224 *
4225 * @code
4226 * AssertThrow (dim == 2, ExcNotImplemented());
4227 *
4228 * const Point<dim> center(0, 0);
4229 * const double inner_radius = .1,
4230 * outer_radius = .2;
4232 * center, inner_radius, outer_radius,
4233 * 0, true);
4234 *
4235 * @endcode
4236 *
4237 * give the indicators to boundaries for specification,
4238 *
4239
4240 *
4241 *
4242 * @code
4243 * /* _____
4244 * | \
4245 * | \
4246 * 2 | \ 1
4247 * |_ \
4248 * \ \
4249 * 0 \ |
4250 * |________|
4251 * 3
4252 * */
4253 * @endcode
4254 *
4255 * 0 - inner boundary - natural boundary condition - impose the traction force
4256 * 1 - outer boundary - free boundary - we do not need to take care of them
4257 * 2 - left boundary - essential boundary condition - constrained to move along the x direction
4258 * 3 - bottom boundary - essential boundary condition - constrained to move along the y direction
4259 *
4260
4261 *
4262 *
4263 * @code
4264 * const SphericalManifold<dim> inner_boundary_description(center);
4265 * triangulation.set_manifold (0, inner_boundary_description);
4266 *
4267 * const SphericalManifold<dim> outer_boundary_description(center);
4268 * triangulation.set_manifold (1, outer_boundary_description);
4269 *
4270 * triangulation.refine_global(n_initial_global_refinements);
4271 *
4272 * triangulation.reset_manifold (0);
4273 * triangulation.reset_manifold (1);
4274 *
4275 * }
4276 * else if (base_mesh == "Perforated_strip_tension")
4277 * {
4278 * @endcode
4279 *
4280 * Example 2 from the paper: Zhong Z., .... A new numerical method for determining
4281 * collapse load-carrying capacity of structure made of elasto-plastic material,
4282 * J. Cent. South Univ. (2014) 21: 398-404
4283 *
4284 * @code
4285 * AssertThrow (dim == 3, ExcNotImplemented());
4286 *
4287 * const int dim_2d = 2;
4288 * const Point<dim_2d> center_2d(0, 0);
4289 * const double inner_radius = 0.05,
4290 * outer_radius = 0.1,
4291 * height = 0.18,
4292 * thickness = 0.004;
4293 * @endcode
4294 *
4295 * thickness = 0.01;
4296 *
4297
4298 *
4299 *
4300 * @code
4301 * Triangulation<dim_2d> triangulation_1,
4302 * triangulation_2,
4303 * triangulation_2d;
4304 *
4305 * const double eps = 1e-7 * inner_radius;
4306 * {
4308 *
4309 * GridGenerator::quarter_hyper_shell(triangulation_1,
4310 * center_2d, inner_radius, outer_radius,
4311 * 2);
4312 *
4313 * @endcode
4314 *
4315 * Modify the triangulation_1
4316 *
4317 * @code
4319 * cell = triangulation_1.begin_active(),
4320 * endc = triangulation_1.end();
4321 * std::vector<bool> treated_vertices(triangulation_1.n_vertices(), false);
4322 * for (; cell != endc; ++cell)
4323 * {
4324 * for (unsigned int f=0; f<GeometryInfo<dim_2d>::faces_per_cell; ++f)
4325 * if (cell->face(f)->at_boundary() && cell->face(f)->center()(0)>eps &&
4326 * cell->face(f)->center()(1)>eps )
4327 * {
4328 * @endcode
4329 *
4330 * distance of the face center from the center
4331 *
4332 * @code
4333 * point(0) = cell->face(f)->center()(0) - center_2d(0);
4334 * point(1) = cell->face(f)->center()(1) - center_2d(1);
4335 * if ( point.norm() > (inner_radius + eps) )
4336 * {
4337 * for (unsigned int v=0; v < GeometryInfo<dim_2d>::vertices_per_face; ++v)
4338 * {
4339 * unsigned int vv = cell->face(f)->vertex_index(v);
4340 * if (treated_vertices[vv] == false)
4341 * {
4342 * treated_vertices[vv] = true;
4343 * if (vv==1)
4344 * {
4345 * cell->face(f)->vertex(v) = center_2d+Point<dim_2d>(outer_radius,outer_radius);
4346 * }
4347 * }
4348 * }
4349 * }
4350 *
4351 * }
4352 * }
4353 *
4354 * }
4355 *
4356 * @endcode
4357 *
4358 * Make the triangulation_2, a rectangular above the triangulation_1
4359 *
4360 * @code
4361 * {
4362 * const Point<dim_2d> point1 (0, outer_radius),
4363 * point2 (outer_radius, height);
4364 *
4365 * GridGenerator::hyper_rectangle(triangulation_2, point1, point2);
4366 *
4367 * }
4368 *
4369 * @endcode
4370 *
4371 * make the triangulation_2d and refine it
4372 *
4373 * @code
4374 * {
4375 * @endcode
4376 *
4377 * Merge the two triangulation_1 and triangulation_2
4378 *
4379 * @code
4380 * GridGenerator::merge_triangulations(triangulation_1, triangulation_2, triangulation_2d);
4381 *
4382 * @endcode
4383 *
4384 * Assign boundary indicators to the boundary faces
4385 *
4386 * @code
4387 * /*
4388 * *
4389 * * /\ y
4390 * * |
4391 * * _____3_____
4392 * * | |
4393 * * | |
4394 * * 4 | |
4395 * * | |
4396 * * | | 2
4397 * * |_ |
4398 * * \ |
4399 * * 10 \ |
4400 * * |______| ____________\ x
4401 * * 1 /
4402 * */
4403 * {
4405 * cell = triangulation_2d.begin_active(),
4406 * endc = triangulation_2d.end();
4407 * for (; cell != endc; ++cell)
4408 * {
4409 * for (unsigned int f=0; f<GeometryInfo<dim_2d>::faces_per_cell; ++f)
4410 * {
4411 * if (cell->face(f)->at_boundary())
4412 * {
4413 * if ( std::fabs(cell->face(f)->center()(1)) < eps )
4414 * {
4415 * cell->face(f)->set_manifold_id(1);
4416 * }
4417 * else if ( std::fabs(cell->face(f)->center()(0)-outer_radius) < eps )
4418 * {
4419 * cell->face(f)->set_manifold_id(2);
4420 * }
4421 * else if ( std::fabs(cell->face(f)->center()(1)-height) < eps )
4422 * {
4423 * cell->face(f)->set_manifold_id(3);
4424 * }
4425 * else if ( std::fabs(cell->face(f)->center()(0)) < eps )
4426 * {
4427 * cell->face(f)->set_manifold_id(4);
4428 * }
4429 * else
4430 * {
4431 * cell->face(f)->set_all_boundary_ids(10);
4432 * }
4433 *
4434 * }
4435 * }
4436 * }
4437 *
4438 * }
4439 *
4440 * const SphericalManifold<dim_2d> inner_boundary_description(center_2d);
4441 * triangulation_2d.set_manifold (10, inner_boundary_description);
4442 *
4443 * triangulation_2d.refine_global(3);
4444 *
4445 * triangulation_2d.reset_manifold (10);
4446 * }
4447 *
4448 * @endcode
4449 *
4450 * Extrude the triangulation_2d and make it 3d
4451 * GridGenerator::extrude_triangulation(triangulation_2d,
4452 * 2, thickness, triangulation);
4453 *
4454 * @code
4455 * extrude_triangulation(triangulation_2d,
4456 * 2, thickness, triangulation);
4457 *
4458 * @endcode
4459 *
4460 * Assign boundary indicators to the boundary faces
4461 *
4462 * @code
4463 * /*
4464 * *
4465 * * /\ y
4466 * * |
4467 * * _____3_____
4468 * * | |
4469 * * | |
4470 * * 4 | |
4471 * * | 5|6 |
4472 * * | | 2
4473 * * |_ |
4474 * * \ |
4475 * * 10 \ |
4476 * * |______| ____________\ x
4477 * * 1 /
4478 * */
4479 * {
4480 * Tensor<1,dim> dist_vector;
4481 * Point<dim> center(center_2d(0), center_2d(1), 0);
4482 *
4484 * cell = triangulation.begin_active(),
4485 * endc = triangulation.end();
4486 * for (; cell != endc; ++cell)
4487 * {
4488 * for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
4489 * {
4490 * if (cell->face(f)->at_boundary())
4491 * {
4492 * dist_vector = cell->face(f)->center() - center;
4493 *
4494 * if ( std::fabs(dist_vector[1]) < eps )
4495 * {
4496 * cell->face(f)->set_manifold_id(1);
4497 * }
4498 * else if ( std::fabs(dist_vector[0]-outer_radius) < eps )
4499 * {
4500 * cell->face(f)->set_manifold_id(2);
4501 * }
4502 * else if ( std::fabs(dist_vector[1]-height) < eps )
4503 * {
4504 * cell->face(f)->set_manifold_id(3);
4505 * }
4506 * else if ( std::fabs(dist_vector[0]) < eps )
4507 * {
4508 * cell->face(f)->set_manifold_id(4);
4509 * }
4510 * else if ( std::fabs(dist_vector[2]) < eps )
4511 * {
4512 * cell->face(f)->set_manifold_id(5);
4513 * }
4514 * else if ( std::fabs(dist_vector[2]-thickness) < eps )
4515 * {
4516 * cell->face(f)->set_manifold_id(6);
4517 * }
4518 * else
4519 * {
4520 * cell->face(f)->set_all_boundary_ids(10);
4521 * }
4522 *
4523 * }
4524 * }
4525 * }
4526 *
4527 * }
4528 *
4529 * const CylindricalManifold<dim> inner_boundary_description(2);
4530 * triangulation.set_manifold (10, inner_boundary_description);
4531 *
4532 * triangulation.refine_global(n_initial_global_refinements);
4533 *
4534 * triangulation.reset_manifold (10);
4535 *
4536 * }
4537 * else if (base_mesh == "Cantiliver_beam_3d")
4538 * {
4539 * @endcode
4540 *
4541 * A rectangular tube made of Aluminium
4542 * http://www.google.de/imgres?imgurl=http%3A%2F%2Fwww.americanaluminum.com%2Fimages%2Fstockshape-rectangletube.gif&imgrefurl=http%3A%2F%2Fwww.americanaluminum.com%2Fstandard%2FrectangleTube&h=280&w=300&tbnid=VPDNh4-DJz4wyM%3A&zoom=1&docid=9DoGJCkOeFqiSM&ei=L1AuVfG5GMvtO7DggdAF&tbm=isch&client=ubuntu&iact=rc&uact=3&dur=419&page=1&start=0&ndsp=33&ved=0CGYQrQMwFQ
4543 * approximation of beam 17250
4544 * units are in meter
4545 *
4546
4547 *
4548 *
4549 * @code
4550 * AssertThrow (dim == 3, ExcNotImplemented());
4551 *
4552 * const int dim_2d = 2;
4553 *
4554 * const double length = .7,
4555 * width = 80e-3,
4556 * height = 200e-3,
4557 * thickness_web = 10e-3,
4558 * thickness_flange = 10e-3;
4559 *
4560 * Triangulation<dim_2d> triangulation_b,
4561 * triangulation_t,
4562 * triangulation_l,
4563 * triangulation_r,
4564 * triangulation_2d;
4565 *
4566 * const double eps = 1e-7 * width;
4567 * @endcode
4568 *
4569 * Make the triangulation_b, a rectangular at the bottom of rectangular tube
4570 *
4571 * @code
4572 * {
4573 * const Point<dim_2d> point1 (-width/2, -height/2),
4574 * point2 (width/2, -(height/2)+thickness_flange);
4575 *
4576 * std::vector<unsigned int> repetitions(dim_2d);
4577 * repetitions[0] = 8;
4578 * repetitions[1] = 1;
4579 *
4580 * GridGenerator::subdivided_hyper_rectangle(triangulation_b, repetitions, point1, point2);
4581 * }
4582 *
4583 * @endcode
4584 *
4585 * Make the triangulation_t, a rectangular at the top of rectangular tube
4586 *
4587 * @code
4588 * {
4589 * const Point<dim_2d> point1 (-width/2, (height/2)-thickness_flange),
4590 * point2 (width/2, height/2);
4591 *
4592 * std::vector<unsigned int> repetitions(dim_2d);
4593 * repetitions[0] = 8;
4594 * repetitions[1] = 1;
4595 *
4596 * GridGenerator::subdivided_hyper_rectangle(triangulation_t, repetitions, point1, point2);
4597 * }
4598 *
4599 * @endcode
4600 *
4601 * Make the triangulation_l, a rectangular at the left of rectangular tube
4602 *
4603 * @code
4604 * {
4605 * const Point<dim_2d> point1 (-width/2, -(height/2)+thickness_flange),
4606 * point2 (-(width/2)+thickness_web, (height/2)-thickness_flange);
4607 *
4608 * std::vector<unsigned int> repetitions(dim_2d);
4609 * repetitions[0] = 1;
4610 * repetitions[1] = 18;
4611 *
4612 * GridGenerator::subdivided_hyper_rectangle(triangulation_l, repetitions, point1, point2);
4613 * }
4614 *
4615 * @endcode
4616 *
4617 * Make the triangulation_r, a rectangular at the right of rectangular tube
4618 *
4619 * @code
4620 * {
4621 * const Point<dim_2d> point1 ((width/2)-thickness_web, -(height/2)+thickness_flange),
4622 * point2 (width/2, (height/2)-thickness_flange);
4623 *
4624 * std::vector<unsigned int> repetitions(dim_2d);
4625 * repetitions[0] = 1;
4626 * repetitions[1] = 18;
4627 *
4628 * GridGenerator::subdivided_hyper_rectangle(triangulation_r, repetitions, point1, point2);
4629 * }
4630 *
4631 * @endcode
4632 *
4633 * make the triangulation_2d
4634 *
4635 * @code
4636 * {
4637 * @endcode
4638 *
4639 * merging every two triangles to make triangulation_2d
4640 *
4641 * @code
4642 * Triangulation<dim_2d> triangulation_bl,
4643 * triangulation_blr;
4644 *
4645 * GridGenerator::merge_triangulations(triangulation_b, triangulation_l, triangulation_bl);
4646 * GridGenerator::merge_triangulations(triangulation_bl, triangulation_r, triangulation_blr);
4647 * GridGenerator::merge_triangulations(triangulation_blr, triangulation_t, triangulation_2d);
4648 * }
4649 *
4650 * @endcode
4651 *
4652 * Extrude the triangulation_2d and make it 3d
4653 *
4654 * @code
4655 * const unsigned int n_slices = static_cast<int>(length*1000/20) + 1;
4656 * extrude_triangulation(triangulation_2d,
4657 * n_slices, length, triangulation);
4658 *
4659 * @endcode
4660 *
4661 * Assign boundary indicators to the boundary faces
4662 *
4663 * @code
4664 * /*
4665 * *
4666 * * A
4667 * * ---------*----------
4668 * * / /|
4669 * * / / |
4670 * * / / |
4671 * * / 2 length / |
4672 * * / / |
4673 * * / / |
4674 * * / / |
4675 * * / width / |
4676 * * -------------------- |
4677 * * | --------1-------. | |
4678 * * | : : | |
4679 * * | : : |h |
4680 * * | : y z : |e |
4681 * * | : | / : |i /
4682 * * |1: |___ x :1|g /
4683 * * | : : |h /
4684 * * | : : |t /
4685 * * | : : | /
4686 * * | : : | /
4687 * * | ----------------- |/
4688 * * ---------1----------/
4689 * *
4690 * * face id:
4691 * * Essential boundary condition:
4692 * * 1: z = 0: clamped, fixed in x, y and z directions
4693 * * Natural/Newmann boundary condition:
4694 * * 2: y = height/2: traction face: pressure on the surface
4695 * * Quantity of interest:
4696 * * displacement at Point A (x=0, y=height/2, z=length)
4697 * */
4698 * {
4699 * Tensor<1,dim> dist_vector;
4700 * Point<dim> center(0, 0, 0);
4701 *
4703 * cell = triangulation.begin_active(),
4704 * endc = triangulation.end();
4705 * for (; cell != endc; ++cell)
4706 * {
4707 * for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
4708 * {
4709 * if (cell->face(f)->at_boundary())
4710 * {
4711 * dist_vector = cell->face(f)->center() - center;
4712 *
4713 * if ( std::fabs(dist_vector[2]) < eps )
4714 * {
4715 * cell->face(f)->set_manifold_id(1);
4716 * }
4717 * else if ( std::fabs(dist_vector[1]-(height/2)) < eps )
4718 * {
4719 * cell->face(f)->set_manifold_id(2);
4720 * }
4721 * else
4722 * {
4723 * cell->face(f)->set_all_boundary_ids(0);
4724 * }
4725 *
4726 * }
4727 * }
4728 * }
4729 *
4730 * }
4731 *
4732 * triangulation.refine_global(n_initial_global_refinements);
4733 *
4734 * }
4735 * else
4736 * {
4737 * AssertThrow(false, ExcNotImplemented());
4738 * }
4739 *
4740 * pcout << " Number of active cells: "
4741 * << triangulation.n_active_cells()
4742 * << std::endl;
4743 * }
4744 *
4745 *
4746 *
4747 * @endcode
4748 *
4749 *
4750 * <a name="PlasticityContactProblemsetup_system"></a>
4751 * <h4>PlasticityContactProblem::setup_system</h4>
4752 *
4753
4754 *
4755 * The next piece in the puzzle is to set up the DoFHandler, resize
4756 * vectors and take care of various other status variables such as
4757 * index sets and constraint matrices.
4758 *
4759
4760 *
4761 * In the following, each group of operations is put into a brace-enclosed
4762 * block that is being timed by the variable declared at the top of the
4763 * block (the constructor of the TimerOutput::Scope variable starts the
4764 * timed section, the destructor that is called at the end of the block
4765 * stops it again).
4766 *
4767 * @code
4768 * template <int dim>
4769 * void
4770 * ElastoPlasticProblem<dim>::setup_system ()
4771 * {
4772 * /* setup dofs and get index sets for locally owned and relevant dofs */
4773 * TimerOutput::Scope t(computing_timer, "Setup");
4774 * {
4775 * TimerOutput::Scope t(computing_timer, "Setup: distribute DoFs");
4776 * dof_handler.distribute_dofs(fe);
4777 * pcout << " Number of degrees of freedom: "
4778 * << dof_handler.n_dofs()
4779 * << std::endl;
4780 *
4781 * locally_owned_dofs = dof_handler.locally_owned_dofs();
4782 * locally_relevant_dofs.clear();
4784 * locally_relevant_dofs);
4785 * }
4786 *
4787 * /* setup hanging nodes and Dirichlet constraints */
4788 * {
4789 * TimerOutput::Scope t(computing_timer, "Setup: constraints");
4790 * constraints_hanging_nodes.reinit(locally_relevant_dofs);
4792 * constraints_hanging_nodes);
4793 * constraints_hanging_nodes.close();
4794 *
4795 * pcout << " Number of active cells: "
4796 * << triangulation.n_global_active_cells() << std::endl
4797 * << " Number of degrees of freedom: " << dof_handler.n_dofs()
4798 * << std::endl;
4799 *
4800 * compute_dirichlet_constraints();
4801 * }
4802 *
4803 * /* initialization of vectors*/
4804 * {
4805 * TimerOutput::Scope t(computing_timer, "Setup: vectors");
4806 * if (timestep_no==1 || current_refinement_cycle!=0)
4807 * {
4808 * solution.reinit(locally_relevant_dofs, mpi_communicator);
4809 * }
4810 * incremental_displacement.reinit(locally_relevant_dofs, mpi_communicator);
4811 * newton_rhs.reinit(locally_owned_dofs, mpi_communicator);
4812 * newton_rhs_residual.reinit(locally_owned_dofs, mpi_communicator);
4813 * fraction_of_plastic_q_points_per_cell.reinit(triangulation.n_active_cells());
4814 * }
4815 *
4816 * @endcode
4817 *
4818 * Finally, we set up sparsity patterns and matrices.
4819 * We temporarily (ab)use the system matrix to also build the (diagonal)
4820 * matrix that we use in eliminating degrees of freedom that are in contact
4821 * with the obstacle, but we then immediately set the Newton matrix back
4822 * to zero.
4823 *
4824 * @code
4825 * {
4826 * TimerOutput::Scope t(computing_timer, "Setup: matrix");
4827 * TrilinosWrappers::SparsityPattern sp(locally_owned_dofs,
4828 * mpi_communicator);
4829 *
4830 * DoFTools::make_sparsity_pattern(dof_handler, sp,
4831 * constraints_dirichlet_and_hanging_nodes, false,
4832 * this_mpi_process);
4833 * sp.compress();
4834 * newton_matrix.reinit(sp);
4835 * }
4836 * }
4837 *
4838 *
4839 * @endcode
4840 *
4841 *
4842 * <a name="PlasticityContactProblemcompute_dirichlet_constraints"></a>
4843 * <h4>PlasticityContactProblem::compute_dirichlet_constraints</h4>
4844 *
4845
4846 *
4847 * This function, broken out of the preceding one, computes the constraints
4848 * associated with Dirichlet-type boundary conditions and puts them into the
4849 * <code>constraints_dirichlet_and_hanging_nodes</code> variable by merging
4850 * with the constraints that come from hanging nodes.
4851 *
4852
4853 *
4854 * As laid out in the introduction, we need to distinguish between two
4855 * cases:
4856 * - If the domain is a box, we set the displacement to zero at the bottom,
4857 * and allow vertical movement in z-direction along the sides. As
4858 * shown in the <code>make_grid()</code> function, the former corresponds
4859 * to boundary indicator 6, the latter to 8.
4860 * - If the domain is a half sphere, then we impose zero displacement along
4861 * the curved part of the boundary, associated with boundary indicator zero.
4862 *
4863 * @code
4864 * template <int dim>
4865 * void
4866 * ElastoPlasticProblem<dim>::compute_dirichlet_constraints ()
4867 * {
4868 * constraints_dirichlet_and_hanging_nodes.reinit(locally_relevant_dofs);
4869 * constraints_dirichlet_and_hanging_nodes.merge(constraints_hanging_nodes);
4870 *
4871 * std::vector<bool> component_mask(dim);
4872 *
4873 * if (base_mesh == "Timoshenko beam")
4874 * {
4876 * 0,
4877 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
4878 * constraints_dirichlet_and_hanging_nodes,
4879 * ComponentMask());
4880 * }
4881 * else if (base_mesh == "Thick_tube_internal_pressure")
4882 * {
4883 * @endcode
4884 *
4885 * the boundary x = 0
4886 *
4887 * @code
4888 * component_mask[0] = true;
4889 * component_mask[1] = false;
4891 * 2,
4892 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
4893 * constraints_dirichlet_and_hanging_nodes,
4894 * component_mask);
4895 * @endcode
4896 *
4897 * the boundary y = 0
4898 *
4899 * @code
4900 * component_mask[0] = false;
4901 * component_mask[1] = true;
4903 * 3,
4904 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
4905 * constraints_dirichlet_and_hanging_nodes,
4906 * component_mask);
4907 * }
4908 * else if (base_mesh == "Perforated_strip_tension")
4909 * {
4910 * @endcode
4911 *
4912 * the boundary x = 0
4913 *
4914 * @code
4915 * component_mask[0] = true;
4916 * component_mask[1] = false;
4917 * component_mask[2] = false;
4919 * 4,
4920 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
4921 * constraints_dirichlet_and_hanging_nodes,
4922 * component_mask);
4923 * @endcode
4924 *
4925 * the boundary y = 0
4926 *
4927 * @code
4928 * component_mask[0] = false;
4929 * component_mask[1] = true;
4930 * component_mask[2] = false;
4932 * 1,
4933 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
4934 * constraints_dirichlet_and_hanging_nodes,
4935 * component_mask);
4936 * @endcode
4937 *
4938 * the boundary y = imposed incremental displacement
4939 *
4940 * @code
4941 * component_mask[0] = false;
4942 * component_mask[1] = true;
4943 * component_mask[2] = false;
4945 * 3,
4946 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
4947 * constraints_dirichlet_and_hanging_nodes,
4948 * component_mask);
4949 * }
4950 * else if (base_mesh == "Cantiliver_beam_3d")
4951 * {
4952 * @endcode
4953 *
4954 * the boundary x = y = z = 0
4955 *
4956 * @code
4957 * component_mask[0] = true;
4958 * component_mask[1] = true;
4959 * component_mask[2] = true;
4961 * 1,
4962 * EquationData::IncrementalBoundaryValues<dim>(present_time, end_time),
4963 * constraints_dirichlet_and_hanging_nodes,
4964 * component_mask);
4965 * }
4966 * else
4967 * {
4968 * AssertThrow(false, ExcNotImplemented());
4969 * }
4970 *
4971 *
4972 * constraints_dirichlet_and_hanging_nodes.close();
4973 * }
4974 *
4975 *
4976 * @endcode
4977 *
4978 *
4979 * <a name="PlasticityContactProblemassemble_newton_system"></a>
4980 * <h4>PlasticityContactProblem::assemble_newton_system</h4>
4981 *
4982
4983 *
4984 * Given the complexity of the problem, it may come as a bit of a surprise
4985 * that assembling the linear system we have to solve in each Newton iteration
4986 * is actually fairly straightforward. The following function builds the Newton
4987 * right hand side and Newton matrix. It looks fairly innocent because the
4988 * heavy lifting happens in the call to
4989 * <code>ConstitutiveLaw::get_linearized_stress_strain_tensors()</code> and in
4991 * constraints we have previously computed.
4992 *
4993 * @code
4994 * template <int dim>
4995 * void
4996 * ElastoPlasticProblem<dim>::
4997 * assemble_newton_system (const TrilinosWrappers::MPI::Vector &/*linearization_point*/,
4998 * const TrilinosWrappers::MPI::Vector &delta_linearization_point)
4999 * {
5000 * TimerOutput::Scope t(computing_timer, "Assembling");
5001 *
5002 * types::boundary_id traction_surface_id = numbers::invalid_boundary_id;
5003 * if (base_mesh == "Timoshenko beam")
5004 * {
5005 * traction_surface_id = 5;
5006 * }
5007 * else if (base_mesh == "Thick_tube_internal_pressure")
5008 * {
5009 * traction_surface_id = 0;
5010 * }
5011 * else if (base_mesh == "Cantiliver_beam_3d")
5012 * {
5013 * traction_surface_id = 2;
5014 * }
5015 * else
5016 * {
5017 * AssertThrow(false, ExcNotImplemented());
5018 * }
5019 *
5020 * FEValues<dim> fe_values(fe, quadrature_formula,
5023 *
5024 * FEFaceValues<dim> fe_values_face(fe, face_quadrature_formula,
5026 *
5027 * const unsigned int dofs_per_cell = fe.dofs_per_cell;
5028 * const unsigned int n_q_points = quadrature_formula.size();
5029 * const unsigned int n_face_q_points = face_quadrature_formula.size();
5030 *
5031 *
5032 * const EquationData::BodyForce<dim> body_force;
5033 * std::vector<Vector<double> > body_force_values(n_q_points,
5034 * Vector<double>(dim));
5035 *
5036 * const EquationData::
5037 * IncrementalBoundaryForce<dim> boundary_force(present_time, end_time);
5038 * std::vector<Vector<double> > boundary_force_values(n_face_q_points,
5039 * Vector<double>(dim));
5040 *
5041 * FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
5042 * Vector<double> cell_rhs(dofs_per_cell);
5043 *
5044 * std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
5045 *
5046 * @endcode
5047 *
5048 * std::vector<SymmetricTensor<2, dim> > strain_tensor(n_q_points);
5049 *
5050 * @code
5051 * std::vector<SymmetricTensor<2, dim> > incremental_strain_tensor(n_q_points);
5052 *
5054 * cell = dof_handler.begin_active(),
5055 * endc = dof_handler.end();
5056 *
5057 * const FEValuesExtractors::Vector displacement(0);
5058 *
5059 * for (; cell != endc; ++cell)
5060 * if (cell->is_locally_owned())
5061 * {
5062 * fe_values.reinit(cell);
5063 * cell_matrix = 0;
5064 * cell_rhs = 0;
5065 *
5066 * fe_values[displacement].get_function_symmetric_gradients(delta_linearization_point,
5067 * incremental_strain_tensor);
5068 *
5069 * @endcode
5070 *
5071 * For assembling the local right hand side contributions, we need
5072 * to access the prior linearized stress value in this quadrature
5073 * point. To get it, we use the user pointer of this cell that
5074 * points into the global array to the quadrature point data
5075 * corresponding to the first quadrature point of the present cell,
5076 * and then add an offset corresponding to the index of the
5077 * quadrature point we presently consider:
5078 *
5079 * @code
5080 * const PointHistory<dim> *local_quadrature_points_history
5081 * = reinterpret_cast<PointHistory<dim>*>(cell->user_pointer());
5082 * Assert (local_quadrature_points_history >=
5083 * &quadrature_point_history.front(),
5084 * ExcInternalError());
5085 * Assert (local_quadrature_points_history <
5086 * &quadrature_point_history.back(),
5087 * ExcInternalError());
5088 *
5089 * @endcode
5090 *
5091 * In addition, we need the values of the external body forces at
5092 * the quadrature points on this cell:
5093 *
5094 * @code
5095 * body_force.vector_value_list(fe_values.get_quadrature_points(),
5096 * body_force_values);
5097 *
5098 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
5099 * {
5100 * SymmetricTensor<2, dim> tmp_strain_tensor_qpoint;
5101 * tmp_strain_tensor_qpoint = local_quadrature_points_history[q_point].old_strain
5102 * + incremental_strain_tensor[q_point];
5103 *
5104 * SymmetricTensor<4, dim> stress_strain_tensor_linearized;
5105 * SymmetricTensor<4, dim> stress_strain_tensor;
5106 * constitutive_law.get_linearized_stress_strain_tensors(tmp_strain_tensor_qpoint,
5107 * stress_strain_tensor_linearized,
5108 * stress_strain_tensor);
5109 *
5110 * Tensor<1, dim> rhs_values_body_force;
5111 * for (unsigned int i = 0; i < dim; ++i)
5112 * {
5113 * rhs_values_body_force[i] = body_force_values[q_point][i];
5114 * }
5115 *
5116 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
5117 * {
5118 * @endcode
5119 *
5120 * Having computed the stress-strain tensor and its linearization,
5121 * we can now put together the parts of the matrix and right hand side.
5122 * In both, we need the linearized stress-strain tensor times the
5123 * symmetric gradient of @f$\varphi_i@f$, i.e. the term @f$I_\Pi\varepsilon(\varphi_i)@f$,
5124 * so we introduce an abbreviation of this term. Recall that the
5125 * matrix corresponds to the bilinear form
5126 * @f$A_{ij}=(I_\Pi\varepsilon(\varphi_i),\varepsilon(\varphi_j))@f$ in the
5127 * notation of the accompanying publication, whereas the right
5128 * hand side is @f$F_i=([I_\Pi-P_\Pi C]\varepsilon(\varphi_i),\varepsilon(\mathbf u))@f$
5129 * where @f$u@f$ is the current linearization points (typically the last solution).
5130 * This might suggest that the right hand side will be zero if the material
5131 * is completely elastic (where @f$I_\Pi=P_\Pi@f$) but this ignores the fact
5132 * that the right hand side will also contain contributions from
5133 * non-homogeneous constraints due to the contact.
5134 *
5135
5136 *
5137 * The code block that follows this adds contributions that are due to
5138 * boundary forces, should there be any.
5139 *
5140 * @code
5142 * stress_phi_i = stress_strain_tensor_linearized
5143 * * fe_values[displacement].symmetric_gradient(i, q_point);
5144 *
5145 * for (unsigned int j = 0; j < dofs_per_cell; ++j)
5146 * cell_matrix(i, j) += (stress_phi_i
5147 * * fe_values[displacement].symmetric_gradient(j, q_point)
5148 * * fe_values.JxW(q_point));
5149 *
5150 * cell_rhs(i) += (
5151 * ( stress_phi_i
5152 * * incremental_strain_tensor[q_point] )
5153 * -
5154 * ( ( stress_strain_tensor
5155 * * fe_values[displacement].symmetric_gradient(i, q_point))
5156 * * tmp_strain_tensor_qpoint )
5157 * +
5158 * ( fe_values[displacement].value(i, q_point)
5159 * * rhs_values_body_force )
5160 * ) * fe_values.JxW(q_point);
5161 *
5162 * }
5163 * }
5164 *
5165 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
5166 * if (cell->face(face)->at_boundary()
5167 * &&
5168 * cell->face(face)->boundary_id() == traction_surface_id)
5169 * {
5170 * fe_values_face.reinit(cell, face);
5171 *
5172 * boundary_force.vector_value_list(fe_values_face.get_quadrature_points(),
5173 * boundary_force_values);
5174 *
5175 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
5176 * {
5177 * Tensor<1, dim> rhs_values;
5178 * for (unsigned int i = 0; i < dim; ++i)
5179 * {
5180 * rhs_values[i] = boundary_force_values[q_point][i];
5181 * }
5182 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
5183 * cell_rhs(i) += (fe_values_face[displacement].value(i, q_point)
5184 * * rhs_values
5185 * * fe_values_face.JxW(q_point));
5186 * }
5187 * }
5188 *
5189 * cell->get_dof_indices(local_dof_indices);
5190 * constraints_dirichlet_and_hanging_nodes.distribute_local_to_global(cell_matrix, cell_rhs,
5191 * local_dof_indices,
5192 * newton_matrix,
5193 * newton_rhs,
5194 * true);
5195 *
5196 * }
5197 *
5198 * newton_matrix.compress(VectorOperation::add);
5199 * newton_rhs.compress(VectorOperation::add);
5200 * }
5201 *
5202 *
5203 *
5204 * @endcode
5205 *
5206 *
5207 * <a name="PlasticityContactProblemcompute_nonlinear_residual"></a>
5208 * <h4>PlasticityContactProblem::compute_nonlinear_residual</h4>
5209 *
5210
5211 *
5212 * The following function computes the nonlinear residual of the equation
5213 * given the current solution (or any other linearization point). This
5214 * is needed in the linear search algorithm where we need to try various
5215 * linear combinations of previous and current (trial) solution to
5216 * compute the (real, globalized) solution of the current Newton step.
5217 *
5218
5219 *
5220 * That said, in a slight abuse of the name of the function, it actually
5221 * does significantly more. For example, it also computes the vector
5222 * that corresponds to the Newton residual but without eliminating
5223 * constrained degrees of freedom. We need this vector to compute contact
5224 * forces and, ultimately, to compute the next active set. Likewise, by
5225 * keeping track of how many quadrature points we encounter on each cell
5226 * that show plastic yielding, we also compute the
5227 * <code>fraction_of_plastic_q_points_per_cell</code> vector that we
5228 * can later output to visualize the plastic zone. In both of these cases,
5229 * the results are not necessary as part of the line search, and so we may
5230 * be wasting a small amount of time computing them. At the same time, this
5231 * information appears as a natural by-product of what we need to do here
5232 * anyway, and we want to collect it once at the end of each Newton
5233 * step, so we may as well do it here.
5234 *
5235
5236 *
5237 * The actual implementation of this function should be rather obvious:
5238 *
5239 * @code
5240 * template <int dim>
5241 * void
5242 * ElastoPlasticProblem<dim>::
5243 * compute_nonlinear_residual (const TrilinosWrappers::MPI::Vector &linearization_point)
5244 * {
5245 * types::boundary_id traction_surface_id = numbers::invalid_boundary_id;
5246 * if (base_mesh == "Timoshenko beam")
5247 * {
5248 * traction_surface_id = 5;
5249 * }
5250 * else if (base_mesh == "Thick_tube_internal_pressure")
5251 * {
5252 * traction_surface_id = 0;
5253 * }
5254 * else if (base_mesh == "Cantiliver_beam_3d")
5255 * {
5256 * traction_surface_id = 2;
5257 * }
5258 * else
5259 * {
5260 * AssertThrow(false, ExcNotImplemented());
5261 * }
5262 *
5263 * FEValues<dim> fe_values(fe, quadrature_formula,
5266 *
5267 * FEFaceValues<dim> fe_values_face(fe, face_quadrature_formula,
5270 *
5271 * const unsigned int dofs_per_cell = fe.dofs_per_cell;
5272 * const unsigned int n_q_points = quadrature_formula.size();
5273 * const unsigned int n_face_q_points = face_quadrature_formula.size();
5274 *
5275 * const EquationData::BodyForce<dim> body_force;
5276 * std::vector<Vector<double> > body_force_values(n_q_points,
5277 * Vector<double>(dim));
5278 *
5279 * const EquationData::
5280 * IncrementalBoundaryForce<dim> boundary_force(present_time, end_time);
5281 * std::vector<Vector<double> > boundary_force_values(n_face_q_points,
5282 * Vector<double>(dim));
5283 *
5284 * Vector<double> cell_rhs(dofs_per_cell);
5285 *
5286 * std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
5287 *
5288 * const FEValuesExtractors::Vector displacement(0);
5289 *
5290 * newton_rhs_residual = 0;
5291 *
5292 * fraction_of_plastic_q_points_per_cell = 0;
5293 *
5295 * cell = dof_handler.begin_active(),
5296 * endc = dof_handler.end();
5297 * unsigned int cell_number = 0;
5298 * for (; cell != endc; ++cell, ++cell_number)
5299 * if (cell->is_locally_owned())
5300 * {
5301 * fe_values.reinit(cell);
5302 * cell_rhs = 0;
5303 *
5304 * std::vector<SymmetricTensor<2, dim> > strain_tensors(n_q_points);
5305 * fe_values[displacement].get_function_symmetric_gradients(linearization_point,
5306 * strain_tensors);
5307 *
5308 * body_force.vector_value_list(fe_values.get_quadrature_points(),
5309 * body_force_values);
5310 *
5311 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
5312 * {
5313 * SymmetricTensor<4, dim> stress_strain_tensor;
5314 * const bool q_point_is_plastic
5315 * = constitutive_law.get_stress_strain_tensor(strain_tensors[q_point],
5316 * stress_strain_tensor);
5317 * if (q_point_is_plastic)
5318 * ++fraction_of_plastic_q_points_per_cell(cell_number);
5319 *
5320 * Tensor<1, dim> rhs_values_body_force;
5321 * for (unsigned int i = 0; i < dim; ++i)
5322 * {
5323 * rhs_values_body_force[i] = body_force_values[q_point][i];
5324 * }
5325 *
5326 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
5327 * {
5328 * cell_rhs(i) += (fe_values[displacement].value(i, q_point)
5329 * * rhs_values_body_force
5330 * -
5331 * strain_tensors[q_point]
5332 * * stress_strain_tensor
5333 * * fe_values[displacement].symmetric_gradient(i, q_point)
5334 * )
5335 * * fe_values.JxW(q_point);
5336 *
5337 * Tensor<1, dim> rhs_values;
5338 * rhs_values = 0;
5339 * cell_rhs(i) += (fe_values[displacement].value(i, q_point)
5340 * * rhs_values
5341 * * fe_values.JxW(q_point));
5342 * }
5343 * }
5344 *
5345 * for (unsigned int face = 0; face < GeometryInfo<dim>::faces_per_cell; ++face)
5346 * if (cell->face(face)->at_boundary()
5347 * && cell->face(face)->boundary_id() == traction_surface_id)
5348 * {
5349 * fe_values_face.reinit(cell, face);
5350 *
5351 * boundary_force.vector_value_list(fe_values_face.get_quadrature_points(),
5352 * boundary_force_values);
5353 *
5354 * for (unsigned int q_point = 0; q_point < n_face_q_points;
5355 * ++q_point)
5356 * {
5357 * Tensor<1, dim> rhs_values;
5358 * for (unsigned int i = 0; i < dim; ++i)
5359 * {
5360 * rhs_values[i] = boundary_force_values[q_point][i];
5361 * }
5362 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
5363 * cell_rhs(i) += (fe_values_face[displacement].value(i, q_point) * rhs_values
5364 * * fe_values_face.JxW(q_point));
5365 * }
5366 * }
5367 *
5368 * cell->get_dof_indices(local_dof_indices);
5369 * constraints_dirichlet_and_hanging_nodes.distribute_local_to_global(cell_rhs,
5370 * local_dof_indices,
5371 * newton_rhs_residual);
5372 *
5373 * }
5374 *
5375 * fraction_of_plastic_q_points_per_cell /= quadrature_formula.size();
5376 * newton_rhs_residual.compress(VectorOperation::add);
5377 *
5378 * }
5379 *
5380 *
5381 *
5382 *
5383 *
5384 * @endcode
5385 *
5386 *
5387 * <a name="PlasticityContactProblemsolve_newton_system"></a>
5388 * <h4>PlasticityContactProblem::solve_newton_system</h4>
5389 *
5390
5391 *
5392 * The last piece before we can discuss the actual Newton iteration
5393 * on a single mesh is the solver for the linear systems. There are
5394 * a couple of complications that slightly obscure the code, but
5395 * mostly it is just setup then solve. Among the complications are:
5396 *
5397
5398 *
5399 * - For the hanging nodes we have to apply
5400 * the AffineConstraints<double>::set_zero function to newton_rhs.
5401 * This is necessary if a hanging node with solution value @f$x_0@f$
5402 * has one neighbor with value @f$x_1@f$ which is in contact with the
5403 * obstacle and one neighbor @f$x_2@f$ which is not in contact. Because
5404 * the update for the former will be prescribed, the hanging node constraint
5405 * will have an inhomogeneity and will look like @f$x_0 = x_1/2 + \text{gap}/2@f$.
5406 * So the corresponding entries in the
5407 * ride-hang-side are non-zero with a
5408 * meaningless value. These values we have to
5409 * to set to zero.
5410 * - Like in @ref step_40 "step-40", we need to shuffle between vectors that do and do
5411 * do not have ghost elements when solving or using the solution.
5412 *
5413
5414 *
5415 * The rest of the function is similar to @ref step_40 "step-40" and
5416 * @ref step_41 "step-41" except that we use a BiCGStab solver
5417 * instead of CG. This is due to the fact that for very small hardening
5418 * parameters @f$\gamma@f$, the linear system becomes almost semidefinite though
5419 * still symmetric. BiCGStab appears to have an easier time with such linear
5420 * systems.
5421 *
5422 * @code
5423 * template <int dim>
5424 * void
5425 * ElastoPlasticProblem<dim>::solve_newton_system ()
5426 * {
5427 * TimerOutput::Scope t(computing_timer, "Solve");
5428 *
5429 * TrilinosWrappers::MPI::Vector distributed_solution(locally_owned_dofs, mpi_communicator);
5430 * distributed_solution = incremental_displacement;
5431 *
5432 * constraints_hanging_nodes.set_zero(distributed_solution);
5433 * constraints_hanging_nodes.set_zero(newton_rhs);
5434 *
5435 * @endcode
5436 *
5437 * ------- Solver Bicgstab --- Preconditioner AMG -------------------
5438 * TrilinosWrappers::PreconditionAMG preconditioner;
5439 * {
5440 * TimerOutput::Scope t(computing_timer, "Solve: setup preconditioner");
5441 *
5442
5443 *
5444 * std::vector<std::vector<bool> > constant_modes;
5446 * constant_modes);
5447 *
5448
5449 *
5451 * additional_data.constant_modes = constant_modes;
5452 * additional_data.elliptic = true;
5453 * additional_data.n_cycles = 1;
5454 * additional_data.w_cycle = false;
5455 * additional_data.output_details = false;
5456 * additional_data.smoother_sweeps = 2;
5457 * additional_data.aggregation_threshold = 1e-2;
5458 *
5459
5460 *
5461 * preconditioner.initialize(newton_matrix, additional_data);
5462 * }
5463 *
5464
5465 *
5466 * {
5467 * TimerOutput::Scope t(computing_timer, "Solve: iterate");
5468 *
5469
5470 *
5471 * TrilinosWrappers::MPI::Vector tmp(locally_owned_dofs, mpi_communicator);
5472 *
5473
5474 *
5475 * // const double relative_accuracy = 1e-8;
5476 * const double relative_accuracy = 1e-2;
5477 * const double solver_tolerance = relative_accuracy
5478 * * newton_matrix.residual(tmp, distributed_solution,
5479 * newton_rhs);
5480 *
5481
5482 *
5483 * SolverControl solver_control(newton_matrix.m(),
5484 * solver_tolerance);
5485 * SolverBicgstab<TrilinosWrappers::MPI::Vector> solver(solver_control);
5486 * solver.solve(newton_matrix, distributed_solution,
5487 * newton_rhs, preconditioner);
5488 *
5489
5490 *
5491 * pcout << " Error: " << solver_control.initial_value()
5492 * << " -> " << solver_control.last_value() << " in "
5493 * << solver_control.last_step() << " Bicgstab iterations."
5494 * << std::endl;
5495 * }
5496 *
5497
5498 *
5499 * ------- Solver CG --- Preconditioner SSOR -------------------
5500 *
5501 * @code
5502 * TrilinosWrappers::PreconditionSSOR preconditioner;
5503 * {
5504 * TimerOutput::Scope t(computing_timer, "Solve: setup preconditioner");
5505 *
5507 * preconditioner.initialize(newton_matrix, additional_data);
5508 * }
5509 *
5510 * {
5511 * TimerOutput::Scope t(computing_timer, "Solve: iterate");
5512 *
5513 * TrilinosWrappers::MPI::Vector tmp(locally_owned_dofs, mpi_communicator);
5514 *
5515 * @endcode
5516 *
5517 * const double relative_accuracy = 1e-8;
5518 *
5519 * @code
5520 * const double relative_accuracy = 1e-2;
5521 * const double solver_tolerance = relative_accuracy
5522 * * newton_matrix.residual(tmp, distributed_solution,
5523 * newton_rhs);
5524 *
5525 * @endcode
5526 *
5527 * SolverControl solver_control(newton_matrix.m(),
5528 * solver_tolerance);
5529 *
5530 * @code
5531 * SolverControl solver_control(10*newton_matrix.m(),
5532 * solver_tolerance);
5533 * SolverCG<TrilinosWrappers::MPI::Vector> solver(solver_control);
5534 * solver.solve(newton_matrix, distributed_solution,
5535 * newton_rhs, preconditioner);
5536 *
5537 * pcout << " Error: " << solver_control.initial_value()
5538 * << " -> " << solver_control.last_value() << " in "
5539 * << solver_control.last_step() << " CG iterations."
5540 * << std::endl;
5541 * }
5542 * @endcode
5543 *
5544 * ........................................................
5545 *
5546
5547 *
5548 *
5549 * @code
5550 * constraints_dirichlet_and_hanging_nodes.distribute(distributed_solution);
5551 *
5552 * incremental_displacement = distributed_solution;
5553 * }
5554 *
5555 *
5556 * @endcode
5557 *
5558 *
5559 * <a name="PlasticityContactProblemsolve_newton"></a>
5560 * <h4>PlasticityContactProblem::solve_newton</h4>
5561 *
5562
5563 *
5564 * This is, finally, the function that implements the damped Newton method
5565 * on the current mesh. There are two nested loops: the outer loop for the Newton
5566 * iteration and the inner loop for the line search which
5567 * will be used only if necessary. To obtain a good and reasonable
5568 * starting value we solve an elastic problem in very first Newton step on each
5569 * mesh (or only on the first mesh if we transfer solutions between meshes). We
5570 * do so by setting the yield stress to an unreasonably large value in these
5571 * iterations and then setting it back to the correct value in subsequent
5572 * iterations.
5573 *
5574
5575 *
5576 * Other than this, the top part of this function should be reasonably
5577 * obvious:
5578 *
5579 * @code
5580 * template <int dim>
5581 * void
5582 * ElastoPlasticProblem<dim>::solve_newton ()
5583 * {
5584 * TrilinosWrappers::MPI::Vector old_solution(locally_owned_dofs, mpi_communicator);
5585 * TrilinosWrappers::MPI::Vector residual(locally_owned_dofs, mpi_communicator);
5586 * TrilinosWrappers::MPI::Vector tmp_vector(locally_owned_dofs, mpi_communicator);
5587 * TrilinosWrappers::MPI::Vector locally_relevant_tmp_vector(locally_relevant_dofs, mpi_communicator);
5588 * TrilinosWrappers::MPI::Vector distributed_solution(locally_owned_dofs, mpi_communicator);
5589 * TrilinosWrappers::MPI::Vector tmp_solution(locally_owned_dofs, mpi_communicator);
5590 *
5591 * double residual_norm;
5592 * double previous_residual_norm = -std::numeric_limits<double>::max();
5593 *
5594 * double disp_norm,
5595 * previous_disp_norm = 0;
5596 *
5597 * const double correct_sigma = sigma_0;
5598 *
5599 * const unsigned int max_newton_iter = 100;
5600 *
5601 * for (unsigned int newton_step = 1; newton_step <= max_newton_iter; ++newton_step)
5602 * {
5603 * if (newton_step == 1
5604 * &&
5605 * ((transfer_solution && timestep_no == 1)
5606 * ||
5607 * !transfer_solution))
5608 * constitutive_law.set_sigma_0(1e+10);
5609 * else
5610 * constitutive_law.set_sigma_0(correct_sigma);
5611 *
5612 * pcout << " " << std::endl;
5613 * pcout << " Newton iteration " << newton_step << std::endl;
5614 *
5615 * pcout << " Assembling system... " << std::endl;
5616 * newton_matrix = 0;
5617 * newton_rhs = 0;
5618 * newton_rhs_residual = 0;
5619 *
5620 * tmp_solution = solution;
5621 * tmp_solution += incremental_displacement;
5622 * assemble_newton_system(tmp_solution,
5623 * incremental_displacement);
5624 *
5625 * pcout << " Solving system... " << std::endl;
5626 * solve_newton_system();
5627 *
5628 * @endcode
5629 *
5630 * It gets a bit more hairy after we have computed the
5631 * trial solution @f$\tilde{\mathbf u}@f$ of the current Newton step.
5632 * We handle a highly nonlinear problem so we have to damp
5633 * Newton's method using a line search. To understand how we do this,
5634 * recall that in our formulation, we compute a trial solution
5635 * in each Newton step and not the update between old and new solution.
5636 * Since the solution set is a convex set, we will use a line
5637 * search that tries linear combinations of the
5638 * previous and the trial solution to guarantee that the
5639 * damped solution is in our solution set again.
5640 * At most we apply 5 damping steps.
5641 *
5642
5643 *
5644 * There are exceptions to when we use a line search. First,
5645 * if this is the first Newton step on any mesh, then we don't have
5646 * any point to compare the residual to, so we always accept a full
5647 * step. Likewise, if this is the second Newton step on the first mesh (or
5648 * the second on any mesh if we don't transfer solutions from
5649 * mesh to mesh), then we have computed the first of these steps using
5650 * just an elastic model (see how we set the yield stress sigma to
5651 * an unreasonably large value above). In this case, the first Newton
5652 * solution was a purely elastic one, the second one a plastic one,
5653 * and any linear combination would not necessarily be expected to
5654 * lie in the feasible set -- so we just accept the solution we just
5655 * got.
5656 *
5657
5658 *
5659 * In either of these two cases, we bypass the line search and just
5660 * update residual and other vectors as necessary.
5661 *
5662 * @code
5663 * if ((newton_step==1)
5664 * ||
5665 * (transfer_solution && newton_step == 2 && current_refinement_cycle == 0)
5666 * ||
5667 * (!transfer_solution && newton_step == 2))
5668 * {
5669 * tmp_solution = solution;
5670 * tmp_solution += incremental_displacement;
5671 * compute_nonlinear_residual(tmp_solution);
5672 * old_solution = incremental_displacement;
5673 *
5674 * residual = newton_rhs_residual;
5675 *
5676 * residual.compress(VectorOperation::insert);
5677 *
5678 * residual_norm = residual.l2_norm();
5679 *
5680 * pcout << " Accepting Newton solution with residual: "
5681 * << residual_norm << std::endl;
5682 * }
5683 * else
5684 * {
5685 * for (unsigned int i = 0; i < 5; ++i)
5686 * {
5687 * distributed_solution = incremental_displacement;
5688 *
5689 * const double alpha = std::pow(0.5, static_cast<double>(i));
5690 * tmp_vector = old_solution;
5691 * tmp_vector.sadd(1 - alpha, alpha, distributed_solution);
5692 *
5693 * TimerOutput::Scope t(computing_timer, "Residual and lambda");
5694 *
5695 * locally_relevant_tmp_vector = tmp_vector;
5696 * tmp_solution = solution;
5697 * tmp_solution += locally_relevant_tmp_vector;
5698 * compute_nonlinear_residual(tmp_solution);
5699 * residual = newton_rhs_residual;
5700 *
5701 * residual.compress(VectorOperation::insert);
5702 *
5703 * residual_norm = residual.l2_norm();
5704 *
5705 * pcout << " Residual of the system: "
5706 * << residual_norm << std::endl
5707 * << " with a damping parameter alpha = " << alpha
5708 * << std::endl;
5709 *
5710 * if (residual_norm < previous_residual_norm)
5711 * break;
5712 * }
5713 *
5714 * incremental_displacement = tmp_vector;
5715 * old_solution = incremental_displacement;
5716 * }
5717 *
5718 * disp_norm = incremental_displacement.l2_norm();
5719 *
5720 *
5721 * @endcode
5722 *
5723 * The final step is to check for convergence. If the residual is
5724 * less than a threshold of @f$10^{-10}@f$, then we terminate
5725 * the iteration on the current mesh:
5726 * if (residual_norm < 1e-10)
5727 *
5728 * @code
5729 * if (residual_norm < 1e-7)
5730 * break;
5731 *
5732 * pcout << " difference of two consecutive incremental displacement l2 norm : "
5733 * << std::abs(disp_norm - previous_disp_norm) << std::endl;
5734 * if ( std::abs(disp_norm - previous_disp_norm) < 1e-10 &&
5735 * (residual_norm < 1e-5 || std::abs(residual_norm - previous_residual_norm)<1e-9) )
5736 * {
5737 * pcout << " Convergence by difference of two consecutive solution! " << std::endl;
5738 * break;
5739 * }
5740 *
5741 *
5742 * previous_residual_norm = residual_norm;
5743 * previous_disp_norm = disp_norm;
5744 * }
5745 * }
5746 *
5747 * @endcode
5748 *
5749 *
5750 * <a name="PlasticityContactProblemcompute_error"></a>
5751 * <h4>PlasticityContactProblem::compute_error</h4>
5752 *
5753
5754 *
5755 *
5756 * @code
5757 * template <int dim>
5758 * void
5759 * ElastoPlasticProblem<dim>::compute_error ()
5760 * {
5761 * TrilinosWrappers::MPI::Vector tmp_solution(locally_owned_dofs, mpi_communicator);
5762 * tmp_solution = solution;
5763 * tmp_solution += incremental_displacement;
5764 *
5765 * estimated_error_per_cell.reinit (triangulation.n_active_cells());
5766 * if (error_estimation_strategy == ErrorEstimationStrategy::kelly_error)
5767 * {
5768 * using FunctionMap = std::map<types::boundary_id, const Function<dim> *>;
5769 *
5770 * KellyErrorEstimator<dim>::estimate(dof_handler,
5771 * QGauss<dim - 1>(fe.degree + 2),
5772 * std::map<types::boundary_id, const Function<dim> *>(),
5773 * tmp_solution,
5774 * estimated_error_per_cell);
5775 *
5776 * }
5777 * else if (error_estimation_strategy == ErrorEstimationStrategy::residual_error)
5778 * {
5779 * compute_error_residual(tmp_solution);
5780 *
5781 * }
5782 * else if (error_estimation_strategy == ErrorEstimationStrategy::weighted_residual_error)
5783 * {
5784 * @endcode
5785 *
5786 * make a non-parallel copy of tmp_solution
5787 *
5788 * @code
5789 * Vector<double> copy_solution(tmp_solution);
5790 *
5791 * @endcode
5792 *
5793 * the dual function definition (it should be defined previously, e.g. input file)
5794 *
5795 * @code
5796 * if (base_mesh == "Timoshenko beam")
5797 * {
5798 * double length = .48,
5799 * depth = .12;
5800 *
5801 * const Point<dim> evaluation_point(length, -depth/2);
5802 *
5803 * DualFunctional::PointValuesEvaluation<dim> dual_functional(evaluation_point);
5804 *
5805 * DualSolver<dim> dual_solver(triangulation, fe,
5806 * copy_solution,
5807 * constitutive_law, dual_functional,
5808 * timestep_no, output_dir, base_mesh,
5809 * present_time, end_time);
5810 *
5811 * dual_solver.compute_error_DWR (estimated_error_per_cell);
5812 *
5813 * }
5814 * else if (base_mesh == "Thick_tube_internal_pressure")
5815 * {
5816 * const unsigned int face_id = 0;
5817 * std::vector<std::vector<unsigned int> > comp_stress(dim);
5818 * for (unsigned int i=0; i!=dim; ++i)
5819 * {
5820 * comp_stress[i].resize(dim);
5821 * for (unsigned int j=0; j!=dim; ++j)
5822 * {
5823 * comp_stress[i][j] = 1;
5824 * }
5825 * }
5826 *
5827 * DualFunctional::MeanStressFace<dim> dual_functional(face_id, comp_stress);
5828 *
5829 * DualSolver<dim> dual_solver(triangulation, fe,
5830 * copy_solution,
5831 * constitutive_law, dual_functional,
5832 * timestep_no, output_dir, base_mesh,
5833 * present_time, end_time);
5834 *
5835 * dual_solver.compute_error_DWR (estimated_error_per_cell);
5836 *
5837 * }
5838 * else if (base_mesh == "Perforated_strip_tension")
5839 * {
5840 * @endcode
5841 *
5842 * .........................................
5843 * Mean stress_yy over the bottom boundary
5844 *
5845 * @code
5846 * const unsigned int face_id = 1;
5847 * std::vector<std::vector<unsigned int> > comp_stress(dim);
5848 * for (unsigned int i=0; i!=dim; ++i)
5849 * {
5850 * comp_stress[i].resize(dim);
5851 * for (unsigned int j=0; j!=dim; ++j)
5852 * {
5853 * comp_stress[i][j] = 0;
5854 * }
5855 * }
5856 * comp_stress[1][1] = 1;
5857 *
5858 * DualFunctional::MeanStressFace<dim> dual_functional(face_id, comp_stress);
5859 *
5860 * @endcode
5861 *
5862 * .........................................
5863 *
5864
5865 *
5866 *
5867 * @code
5868 * DualSolver<dim> dual_solver(triangulation, fe,
5869 * copy_solution,
5870 * constitutive_law, dual_functional,
5871 * timestep_no, output_dir, base_mesh,
5872 * present_time, end_time);
5873 *
5874 * dual_solver.compute_error_DWR (estimated_error_per_cell);
5875 *
5876 * }
5877 * else if (base_mesh == "Cantiliver_beam_3d")
5878 * {
5879 * @endcode
5880 *
5881 * Quantity of interest:
5882 * -----------------------------------------------------------
5883 * displacement at Point A (x=0, y=height/2, z=length)
5884 *
5885 * @code
5886 * /*
5887 * const double length = .7,
5888 * height = 200e-3;
5889 *
5890 * const Point<dim> evaluation_point(0, height/2, length);
5891 *
5892 * DualFunctional::PointValuesEvaluation<dim> dual_functional(evaluation_point);
5893 * */
5894 *
5895 * @endcode
5896 *
5897 * -----------------------------------------------------------
5898 * Mean stress at the specified domain is of interest.
5899 * The interest domains are located on the bottom and top of the flanges
5900 * close to the clamped face, z = 0
5901 * top domain: height/2 - thickness_flange <= y <= height/2
5902 * 0 <= z <= 2 * thickness_flange
5903 * bottom domain: -height/2 <= y <= -height/2 + thickness_flange
5904 * 0 <= z <= 2 * thickness_flange
5905 *
5906
5907 *
5908 *
5909 * @code
5910 * std::vector<std::vector<unsigned int> > comp_stress(dim);
5911 * for (unsigned int i=0; i!=dim; ++i)
5912 * {
5913 * comp_stress[i].resize(dim);
5914 * for (unsigned int j=0; j!=dim; ++j)
5915 * {
5916 * comp_stress[i][j] = 1;
5917 * }
5918 * }
5919 * DualFunctional::MeanStressDomain<dim> dual_functional(base_mesh, comp_stress);
5920 *
5921 * @endcode
5922 *
5923 * -----------------------------------------------------------
5924 *
5925
5926 *
5927 *
5928 * @code
5929 * DualSolver<dim> dual_solver(triangulation, fe,
5930 * copy_solution,
5931 * constitutive_law, dual_functional,
5932 * timestep_no, output_dir, base_mesh,
5933 * present_time, end_time);
5934 *
5935 * dual_solver.compute_error_DWR (estimated_error_per_cell);
5936 *
5937 * }
5938 * else
5939 * {
5940 * AssertThrow(false, ExcNotImplemented());
5941 * }
5942 *
5943 *
5944 * }
5945 * else
5946 * {
5947 * AssertThrow(false, ExcNotImplemented());
5948 * }
5949 *
5950 *
5951 * relative_error = estimated_error_per_cell.l2_norm() / tmp_solution.l2_norm();
5952 *
5953 * pcout << "Estimated relative error = " << relative_error << std::endl;
5954 *
5955 * }
5956 *
5957 * template <int dim>
5958 * void
5959 * ElastoPlasticProblem<dim>::compute_error_residual (const TrilinosWrappers::MPI::Vector &tmp_solution)
5960 * {
5961 * FEValues<dim> fe_values(fe, quadrature_formula,
5962 * update_values |
5963 * update_gradients |
5964 * update_hessians |
5965 * update_quadrature_points |
5966 * update_JxW_values);
5967 *
5968 * const unsigned int n_q_points = quadrature_formula.size();
5969 * std::vector<SymmetricTensor<2, dim> > strain_tensor(n_q_points);
5970 * SymmetricTensor<4, dim> stress_strain_tensor_linearized;
5971 * SymmetricTensor<4, dim> stress_strain_tensor;
5972 * Tensor<5, dim> stress_strain_tensor_grad;
5973 * std::vector<std::vector<Tensor<2,dim> > > cell_hessians (n_q_points);
5974 * for (unsigned int i=0; i!=n_q_points; ++i)
5975 * {
5976 * cell_hessians[i].resize (dim);
5977 * }
5978 * const EquationData::BodyForce<dim> body_force;
5979 *
5980 * std::vector<Vector<double> > body_force_values (n_q_points, Vector<double>(dim));
5981 * const FEValuesExtractors::Vector displacement(0);
5982 *
5983 *
5984 * FEFaceValues<dim> fe_face_values_cell(fe, face_quadrature_formula,
5985 * update_values |
5986 * update_quadrature_points|
5987 * update_gradients |
5988 * update_JxW_values |
5989 * update_normal_vectors),
5990 * fe_face_values_neighbor (fe, face_quadrature_formula,
5991 * update_values |
5992 * update_gradients |
5993 * update_JxW_values |
5994 * update_normal_vectors);
5995 * FESubfaceValues<dim> fe_subface_values_cell (fe, face_quadrature_formula,
5996 * update_gradients);
5997 *
5998 * const unsigned int n_face_q_points = face_quadrature_formula.size();
5999 * std::vector<Vector<double> > jump_residual (n_face_q_points, Vector<double>(dim));
6000 * std::vector<std::vector<Tensor<1,dim> > > cell_grads(n_face_q_points);
6001 * for (unsigned int i=0; i!=n_face_q_points; ++i)
6002 * {
6003 * cell_grads[i].resize (dim);
6004 * }
6005 * std::vector<std::vector<Tensor<1,dim> > > neighbor_grads(n_face_q_points);
6006 * for (unsigned int i=0; i!=n_face_q_points; ++i)
6007 * {
6008 * neighbor_grads[i].resize (dim);
6009 * }
6010 * SymmetricTensor<2, dim> q_cell_strain_tensor;
6011 * SymmetricTensor<2, dim> q_neighbor_strain_tensor;
6012 * SymmetricTensor<4, dim> cell_stress_strain_tensor;
6013 * SymmetricTensor<4, dim> neighbor_stress_strain_tensor;
6014 *
6015 *
6016 * typename std::map<typename DoFHandler<dim>::face_iterator, Vector<double> >
6017 * face_integrals;
6018 * typename DoFHandler<dim>::active_cell_iterator
6019 * cell = dof_handler.begin_active(),
6020 * endc = dof_handler.end();
6021 * for (; cell!=endc; ++cell)
6022 * if (cell->is_locally_owned())
6023 * {
6024 * for (unsigned int face_no=0;
6025 * face_no<GeometryInfo<dim>::faces_per_cell;
6026 * ++face_no)
6027 * {
6028 * face_integrals[cell->face(face_no)].reinit (dim);
6029 * face_integrals[cell->face(face_no)] = -1e20;
6030 * }
6031 * }
6032 *
6033 * std::vector<Vector<float> > error_indicators_vector;
6034 * error_indicators_vector.resize( triangulation.n_active_cells(),
6035 * Vector<float>(dim) );
6036 *
6037 * @endcode
6038 *
6039 * ----------------- estimate_some -------------------------
6040 *
6041 * @code
6042 * cell = dof_handler.begin_active();
6043 * unsigned int present_cell = 0;
6044 * for (; cell!=endc; ++cell, ++present_cell)
6045 * if (cell->is_locally_owned())
6046 * {
6047 * @endcode
6048 *
6049 * --------------- integrate_over_cell -------------------
6050 *
6051 * @code
6052 * fe_values.reinit(cell);
6053 * body_force.vector_value_list(fe_values.get_quadrature_points(),
6054 * body_force_values);
6055 * fe_values[displacement].get_function_symmetric_gradients(tmp_solution,
6056 * strain_tensor);
6057 * fe_values.get_function_hessians(tmp_solution, cell_hessians);
6058 *
6059 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
6060 * {
6061 * constitutive_law.get_linearized_stress_strain_tensors(strain_tensor[q_point],
6062 * stress_strain_tensor_linearized,
6063 * stress_strain_tensor);
6064 * constitutive_law.get_grad_stress_strain_tensor(strain_tensor[q_point],
6065 * cell_hessians[q_point],
6066 * stress_strain_tensor_grad);
6067 *
6068 * for (unsigned int i=0; i!=dim; ++i)
6069 * {
6070 * error_indicators_vector[present_cell](i) +=
6071 * body_force_values[q_point](i)*fe_values.JxW(q_point);
6072 * for (unsigned int j=0; j!=dim; ++j)
6073 * {
6074 * for (unsigned int k=0; k!=dim; ++k)
6075 * {
6076 * for (unsigned int l=0; l!=dim; ++l)
6077 * {
6078 * error_indicators_vector[present_cell](i) +=
6079 * ( stress_strain_tensor[i][j][k][l]*
6080 * 0.5*(cell_hessians[q_point][k][l][j]
6081 * +
6082 * cell_hessians[q_point][l][k][j])
6083 * + stress_strain_tensor_grad[i][j][k][l][j] * strain_tensor[q_point][k][l]
6084 * ) *
6085 * fe_values.JxW(q_point);
6086 * }
6087 * }
6088 * }
6089 *
6090 * }
6091 *
6092 * }
6093 * @endcode
6094 *
6095 * -------------------------------------------------------
6096 * compute face_integrals
6097 *
6098 * @code
6099 * for (unsigned int face_no=0;
6100 * face_no<GeometryInfo<dim>::faces_per_cell;
6101 * ++face_no)
6102 * {
6103 * if (cell->face(face_no)->at_boundary())
6104 * {
6105 * for (unsigned int id=0; id!=dim; ++id)
6106 * {
6107 * face_integrals[cell->face(face_no)](id) = 0;
6108 * }
6109 * continue;
6110 * }
6111 *
6112 * if ((cell->neighbor(face_no)->has_children() == false) &&
6113 * (cell->neighbor(face_no)->level() == cell->level()) &&
6114 * (cell->neighbor(face_no)->index() < cell->index()))
6115 * continue;
6116 *
6117 * if (cell->at_boundary(face_no) == false)
6118 * if (cell->neighbor(face_no)->level() < cell->level())
6119 * continue;
6120 *
6121 *
6122 * if (cell->face(face_no)->has_children() == false)
6123 * {
6124 * @endcode
6125 *
6126 * ------------- integrate_over_regular_face -----------
6127 *
6128 * @code
6129 * fe_face_values_cell.reinit(cell, face_no);
6130 * fe_face_values_cell.get_function_gradients (tmp_solution,
6131 * cell_grads);
6132 *
6133 * Assert (cell->neighbor(face_no).state() == IteratorState::valid,
6134 * ExcInternalError());
6135 * const unsigned int
6136 * neighbor_neighbor = cell->neighbor_of_neighbor (face_no);
6137 * const typename DoFHandler<dim>::active_cell_iterator
6138 * neighbor = cell->neighbor(face_no);
6139 *
6140 * fe_face_values_neighbor.reinit(neighbor, neighbor_neighbor);
6141 * fe_face_values_neighbor.get_function_gradients (tmp_solution,
6142 * neighbor_grads);
6143 *
6144 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
6145 * {
6146 * q_cell_strain_tensor = 0.;
6147 * q_neighbor_strain_tensor = 0.;
6148 * for (unsigned int i=0; i!=dim; ++i)
6149 * {
6150 * for (unsigned int j=0; j!=dim; ++j)
6151 * {
6152 * q_cell_strain_tensor[i][j] = 0.5*(cell_grads[q_point][i][j] +
6153 * cell_grads[q_point][j][i] );
6154 * q_neighbor_strain_tensor[i][j] = 0.5*(neighbor_grads[q_point][i][j] +
6155 * neighbor_grads[q_point][j][i] );
6156 * }
6157 * }
6158 *
6159 * constitutive_law.get_stress_strain_tensor (q_cell_strain_tensor,
6160 * cell_stress_strain_tensor);
6161 * constitutive_law.get_stress_strain_tensor (q_neighbor_strain_tensor,
6162 * neighbor_stress_strain_tensor);
6163 *
6164 * jump_residual[q_point] = 0.;
6165 * for (unsigned int i=0; i!=dim; ++i)
6166 * {
6167 * for (unsigned int j=0; j!=dim; ++j)
6168 * {
6169 * for (unsigned int k=0; k!=dim; ++k)
6170 * {
6171 * for (unsigned int l=0; l!=dim; ++l)
6172 * {
6173 * jump_residual[q_point](i) += (cell_stress_strain_tensor[i][j][k][l]*
6174 * q_cell_strain_tensor[k][l]
6175 * -
6176 * neighbor_stress_strain_tensor[i][j][k][l]*
6177 * q_neighbor_strain_tensor[k][l] )*
6178 * fe_face_values_cell.normal_vector(q_point)[j];
6179 * }
6180 * }
6181 * }
6182 * }
6183 *
6184 * }
6185 *
6186 * Vector<double> face_integral_vector(dim);
6187 * face_integral_vector = 0;
6188 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
6189 * {
6190 * for (unsigned int i=0; i!=dim; ++i)
6191 * {
6192 * face_integral_vector(i) += jump_residual[q_point](i) *
6193 * fe_face_values_cell.JxW(q_point);
6194 * }
6195 * }
6196 *
6197 * Assert (face_integrals.find (cell->face(face_no)) != face_integrals.end(),
6198 * ExcInternalError());
6199 *
6200 * for (unsigned int i=0; i!=dim; ++i)
6201 * {
6202 * Assert (face_integrals[cell->face(face_no)](i) == -1e20,
6203 * ExcInternalError());
6204 * face_integrals[cell->face(face_no)](i) = face_integral_vector(i);
6205 *
6206 * }
6207 *
6208 * @endcode
6209 *
6210 * -----------------------------------------------------
6211 *
6212 * @code
6213 * }
6214 * else
6215 * {
6216 * @endcode
6217 *
6218 * ------------- integrate_over_irregular_face ---------
6219 *
6220 * @code
6221 * const typename DoFHandler<dim>::face_iterator
6222 * face = cell->face(face_no);
6223 * const typename DoFHandler<dim>::cell_iterator
6224 * neighbor = cell->neighbor(face_no);
6225 * Assert (neighbor.state() == IteratorState::valid,
6226 * ExcInternalError());
6227 * Assert (neighbor->has_children(),
6228 * ExcInternalError());
6229 *
6230 * const unsigned int
6231 * neighbor_neighbor = cell->neighbor_of_neighbor (face_no);
6232 *
6233 * for (unsigned int subface_no=0;
6234 * subface_no<face->n_children(); ++subface_no)
6235 * {
6236 * const typename DoFHandler<dim>::active_cell_iterator
6237 * neighbor_child = cell->neighbor_child_on_subface (face_no, subface_no);
6238 * Assert (neighbor_child->face(neighbor_neighbor) ==
6239 * cell->face(face_no)->child(subface_no),
6240 * ExcInternalError());
6241 *
6242 * fe_subface_values_cell.reinit (cell, face_no, subface_no);
6243 * fe_subface_values_cell.get_function_gradients (tmp_solution,
6244 * cell_grads);
6245 * fe_face_values_neighbor.reinit (neighbor_child,
6246 * neighbor_neighbor);
6247 * fe_face_values_neighbor.get_function_gradients (tmp_solution,
6248 * neighbor_grads);
6249 *
6250 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
6251 * {
6252 * q_cell_strain_tensor = 0.;
6253 * q_neighbor_strain_tensor = 0.;
6254 * for (unsigned int i=0; i!=dim; ++i)
6255 * {
6256 * for (unsigned int j=0; j!=dim; ++j)
6257 * {
6258 * q_cell_strain_tensor[i][j] = 0.5*(cell_grads[q_point][i][j] +
6259 * cell_grads[q_point][j][i] );
6260 * q_neighbor_strain_tensor[i][j] = 0.5*(neighbor_grads[q_point][i][j] +
6261 * neighbor_grads[q_point][j][i] );
6262 * }
6263 * }
6264 *
6265 * constitutive_law.get_stress_strain_tensor (q_cell_strain_tensor,
6266 * cell_stress_strain_tensor);
6267 * constitutive_law.get_stress_strain_tensor (q_neighbor_strain_tensor,
6268 * neighbor_stress_strain_tensor);
6269 *
6270 * jump_residual[q_point] = 0.;
6271 * for (unsigned int i=0; i!=dim; ++i)
6272 * {
6273 * for (unsigned int j=0; j!=dim; ++j)
6274 * {
6275 * for (unsigned int k=0; k!=dim; ++k)
6276 * {
6277 * for (unsigned int l=0; l!=dim; ++l)
6278 * {
6279 * jump_residual[q_point](i) += (-cell_stress_strain_tensor[i][j][k][l]*
6280 * q_cell_strain_tensor[k][l]
6281 * +
6282 * neighbor_stress_strain_tensor[i][j][k][l]*
6283 * q_neighbor_strain_tensor[k][l] )*
6284 * fe_face_values_neighbor.normal_vector(q_point)[j];
6285 * }
6286 * }
6287 * }
6288 * }
6289 *
6290 * }
6291 *
6292 * Vector<double> face_integral_vector(dim);
6293 * face_integral_vector = 0;
6294 * for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
6295 * {
6296 * for (unsigned int i=0; i!=dim; ++i)
6297 * {
6298 * face_integral_vector(i) += jump_residual[q_point](i) *
6299 * fe_face_values_neighbor.JxW(q_point);
6300 * }
6301 * }
6302 *
6303 * for (unsigned int i=0; i!=dim; ++i)
6304 * {
6305 * face_integrals[neighbor_child->face(neighbor_neighbor)](i) = face_integral_vector(i);
6306 * }
6307 *
6308 * }
6309 *
6310 * Vector<double> sum (dim);
6311 * sum = 0;
6312 * for (unsigned int subface_no=0;
6313 * subface_no<face->n_children(); ++subface_no)
6314 * {
6315 * Assert (face_integrals.find(face->child(subface_no)) !=
6316 * face_integrals.end(),
6317 * ExcInternalError());
6318 * for (unsigned int i=0; i!=dim; ++i)
6319 * {
6320 * Assert (face_integrals[face->child(subface_no)](i) != -1e20,
6321 * ExcInternalError());
6322 * sum(i) += face_integrals[face->child(subface_no)](i);
6323 * }
6324 * }
6325 * for (unsigned int i=0; i!=dim; ++i)
6326 * {
6327 * face_integrals[face](i) = sum(i);
6328 * }
6329 *
6330 *
6331 * @endcode
6332 *
6333 * -----------------------------------------------------
6334 *
6335 * @code
6336 * }
6337 *
6338 *
6339 * }
6340 * }
6341 * @endcode
6342 *
6343 * ----------------------------------------------------------
6344 *
6345
6346 *
6347 *
6348 * @code
6349 * present_cell=0;
6350 * cell = dof_handler.begin_active();
6351 * for (; cell!=endc; ++cell, ++present_cell)
6352 * if (cell->is_locally_owned())
6353 * {
6354 * for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell;
6355 * ++face_no)
6356 * {
6357 * Assert(face_integrals.find(cell->face(face_no)) !=
6358 * face_integrals.end(),
6359 * ExcInternalError());
6360 *
6361 * for (unsigned int id=0; id!=dim; ++id)
6362 * {
6363 * error_indicators_vector[present_cell](id)
6364 * -= 0.5*face_integrals[cell->face(face_no)](id);
6365 * }
6366 *
6367 * }
6368 *
6369 * estimated_error_per_cell(present_cell) = error_indicators_vector[present_cell].l2_norm();
6370 *
6371 * }
6372 *
6373 * }
6374 *
6375 *
6376 * @endcode
6377 *
6378 *
6379 * <a name="PlasticityContactProblemrefine_grid"></a>
6380 * <h4>PlasticityContactProblem::refine_grid</h4>
6381 *
6382
6383 *
6384 * If you've made it this far into the deal.II tutorial, the following
6385 * function refining the mesh should not pose any challenges to you
6386 * any more. It refines the mesh, either globally or using the Kelly
6387 * error estimator, and if so asked also transfers the solution from
6388 * the previous to the next mesh. In the latter case, we also need
6389 * to compute the active set and other quantities again, for which we
6390 * need the information computed by <code>compute_nonlinear_residual()</code>.
6391 *
6392 * @code
6393 * template <int dim>
6394 * void
6395 * ElastoPlasticProblem<dim>::refine_grid ()
6396 * {
6397 * @endcode
6398 *
6399 * ---------------------------------------------------------------
6400 * Make a field variable for history varibales to be able to
6401 * transfer the data to the quadrature points of the new mesh
6402 *
6403 * @code
6404 * FE_DGQ<dim> history_fe (1);
6405 * DoFHandler<dim> history_dof_handler (triangulation);
6406 * history_dof_handler.distribute_dofs (history_fe);
6407 * std::vector< std::vector< Vector<double> > >
6408 * history_stress_field (dim, std::vector< Vector<double> >(dim)),
6409 * local_history_stress_values_at_qpoints (dim, std::vector< Vector<double> >(dim)),
6410 * local_history_stress_fe_values (dim, std::vector< Vector<double> >(dim));
6411 *
6412 *
6413 * std::vector< std::vector< Vector<double> > >
6414 * history_strain_field (dim, std::vector< Vector<double> >(dim)),
6415 * local_history_strain_values_at_qpoints (dim, std::vector< Vector<double> >(dim)),
6416 * local_history_strain_fe_values (dim, std::vector< Vector<double> >(dim));
6417 *
6418 * for (unsigned int i=0; i<dim; ++i)
6419 * for (unsigned int j=0; j<dim; ++j)
6420 * {
6421 * history_stress_field[i][j].reinit(history_dof_handler.n_dofs());
6422 * local_history_stress_values_at_qpoints[i][j].reinit(quadrature_formula.size());
6423 * local_history_stress_fe_values[i][j].reinit(history_fe.dofs_per_cell);
6424 *
6425 * history_strain_field[i][j].reinit(history_dof_handler.n_dofs());
6426 * local_history_strain_values_at_qpoints[i][j].reinit(quadrature_formula.size());
6427 * local_history_strain_fe_values[i][j].reinit(history_fe.dofs_per_cell);
6428 * }
6429 * FullMatrix<double> qpoint_to_dof_matrix (history_fe.dofs_per_cell,
6430 * quadrature_formula.size());
6432 * (history_fe,
6433 * quadrature_formula, quadrature_formula,
6434 * qpoint_to_dof_matrix);
6436 * cell = dof_handler.begin_active(),
6437 * endc = dof_handler.end(),
6438 * dg_cell = history_dof_handler.begin_active();
6439 * for (; cell!=endc; ++cell, ++dg_cell)
6440 * if (cell->is_locally_owned())
6441 * {
6442 * PointHistory<dim> *local_quadrature_points_history
6443 * = reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
6444 * Assert (local_quadrature_points_history >=
6445 * &quadrature_point_history.front(),
6446 * ExcInternalError());
6447 * Assert (local_quadrature_points_history <
6448 * &quadrature_point_history.back(),
6449 * ExcInternalError());
6450 * for (unsigned int i=0; i<dim; ++i)
6451 * for (unsigned int j=0; j<dim; ++j)
6452 * {
6453 * for (unsigned int q=0; q<quadrature_formula.size(); ++q)
6454 * {
6455 * local_history_stress_values_at_qpoints[i][j](q)
6456 * = local_quadrature_points_history[q].old_stress[i][j];
6457 *
6458 * local_history_strain_values_at_qpoints[i][j](q)
6459 * = local_quadrature_points_history[q].old_strain[i][j];
6460 * }
6461 * qpoint_to_dof_matrix.vmult (local_history_stress_fe_values[i][j],
6462 * local_history_stress_values_at_qpoints[i][j]);
6463 * dg_cell->set_dof_values (local_history_stress_fe_values[i][j],
6464 * history_stress_field[i][j]);
6465 *
6466 * qpoint_to_dof_matrix.vmult (local_history_strain_fe_values[i][j],
6467 * local_history_strain_values_at_qpoints[i][j]);
6468 * dg_cell->set_dof_values (local_history_strain_fe_values[i][j],
6469 * history_strain_field[i][j]);
6470 * }
6471 * }
6472 *
6473 *
6474 * @endcode
6475 *
6476 * ---------------------------------------------------------------
6477 * Refine the mesh
6478 *
6479 * @code
6480 * if (refinement_strategy == RefinementStrategy::refine_global)
6481 * {
6483 * cell = triangulation.begin_active();
6484 * cell != triangulation.end(); ++cell)
6485 * if (cell->is_locally_owned())
6486 * cell->set_refine_flag ();
6487 * }
6488 * else
6489 * {
6490 * const double refine_fraction_cells = .3,
6491 * coarsen_fraction_cells = .03;
6492 * @endcode
6493 *
6494 * const double refine_fraction_cells = .1,
6495 * coarsen_fraction_cells = .3;
6496 *
6497
6498 *
6499 *
6500 * @code
6502 * ::refine_and_coarsen_fixed_number(triangulation,
6503 * estimated_error_per_cell,
6504 * refine_fraction_cells, coarsen_fraction_cells);
6505 * }
6506 *
6507 * triangulation.prepare_coarsening_and_refinement();
6508 *
6510 * TrilinosWrappers::MPI::Vector> solution_transfer(dof_handler);
6511 * solution_transfer.prepare_for_coarsening_and_refinement(solution);
6512 *
6513 *
6515 * TrilinosWrappers::MPI::Vector> incremental_displacement_transfer(dof_handler);
6516 * if (transfer_solution)
6517 * incremental_displacement_transfer.prepare_for_coarsening_and_refinement(incremental_displacement);
6518 *
6519 * SolutionTransfer<dim, Vector<double> > history_stress_field_transfer0(history_dof_handler),
6520 * history_stress_field_transfer1(history_dof_handler),
6521 * history_stress_field_transfer2(history_dof_handler);
6522 * history_stress_field_transfer0.prepare_for_coarsening_and_refinement(history_stress_field[0]);
6523 * if ( dim > 1)
6524 * {
6525 * history_stress_field_transfer1.prepare_for_coarsening_and_refinement(history_stress_field[1]);
6526 * }
6527 * if ( dim == 3)
6528 * {
6529 * history_stress_field_transfer2.prepare_for_coarsening_and_refinement(history_stress_field[2]);
6530 * }
6531 *
6532 * SolutionTransfer<dim, Vector<double> > history_strain_field_transfer0(history_dof_handler),
6533 * history_strain_field_transfer1(history_dof_handler),
6534 * history_strain_field_transfer2(history_dof_handler);
6535 * history_strain_field_transfer0.prepare_for_coarsening_and_refinement(history_strain_field[0]);
6536 * if ( dim > 1)
6537 * {
6538 * history_strain_field_transfer1.prepare_for_coarsening_and_refinement(history_strain_field[1]);
6539 * }
6540 * if ( dim == 3)
6541 * {
6542 * history_strain_field_transfer2.prepare_for_coarsening_and_refinement(history_strain_field[2]);
6543 * }
6544 *
6545 * triangulation.execute_coarsening_and_refinement();
6546 * pcout << " Number of active cells: "
6547 * << triangulation.n_active_cells()
6548 * << std::endl;
6549 *
6550 * setup_system();
6551 * setup_quadrature_point_history ();
6552 *
6553 *
6554 * TrilinosWrappers::MPI::Vector distributed_solution(locally_owned_dofs, mpi_communicator);
6555 * @endcode
6556 *
6557 * distributed_solution = solution;
6558 *
6559 * @code
6560 * solution_transfer.interpolate(distributed_solution);
6561 * solution = distributed_solution;
6562 *
6563 * if (transfer_solution)
6564 * {
6565 * TrilinosWrappers::MPI::Vector distributed_incremental_displacement(locally_owned_dofs, mpi_communicator);
6566 * @endcode
6567 *
6568 * distributed_incremental_displacement = incremental_displacement;
6569 *
6570 * @code
6571 * incremental_displacement_transfer.interpolate(distributed_incremental_displacement);
6572 * incremental_displacement = distributed_incremental_displacement;
6573 * @endcode
6574 *
6575 * compute_nonlinear_residual(incremental_displacement);
6576 *
6577 * @code
6578 * }
6579 *
6580 * @endcode
6581 *
6582 * ---------------------------------------------------
6583 *
6584 * @code
6585 * history_dof_handler.distribute_dofs (history_fe);
6586 * @endcode
6587 *
6588 * stress
6589 *
6590 * @code
6591 * std::vector< std::vector< Vector<double> > >
6592 * distributed_history_stress_field (dim, std::vector< Vector<double> >(dim));
6593 * for (unsigned int i=0; i<dim; ++i)
6594 * for (unsigned int j=0; j<dim; ++j)
6595 * {
6596 * distributed_history_stress_field[i][j].reinit(history_dof_handler.n_dofs());
6597 * }
6598 *
6599 * history_stress_field_transfer0.interpolate(history_stress_field[0], distributed_history_stress_field[0]);
6600 * if ( dim > 1)
6601 * {
6602 * history_stress_field_transfer1.interpolate(history_stress_field[1], distributed_history_stress_field[1]);
6603 * }
6604 * if ( dim == 3)
6605 * {
6606 * history_stress_field_transfer2.interpolate(history_stress_field[2], distributed_history_stress_field[2]);
6607 * }
6608 *
6609 * history_stress_field = distributed_history_stress_field;
6610 *
6611 * @endcode
6612 *
6613 * strain
6614 *
6615 * @code
6616 * std::vector< std::vector< Vector<double> > >
6617 * distributed_history_strain_field (dim, std::vector< Vector<double> >(dim));
6618 * for (unsigned int i=0; i<dim; ++i)
6619 * for (unsigned int j=0; j<dim; ++j)
6620 * {
6621 * distributed_history_strain_field[i][j].reinit(history_dof_handler.n_dofs());
6622 * }
6623 *
6624 * history_strain_field_transfer0.interpolate(history_strain_field[0], distributed_history_strain_field[0]);
6625 * if ( dim > 1)
6626 * {
6627 * history_strain_field_transfer1.interpolate(history_strain_field[1], distributed_history_strain_field[1]);
6628 * }
6629 * if ( dim == 3)
6630 * {
6631 * history_strain_field_transfer2.interpolate(history_strain_field[2], distributed_history_strain_field[2]);
6632 * }
6633 *
6634 * history_strain_field = distributed_history_strain_field;
6635 *
6636 * @endcode
6637 *
6638 * ---------------------------------------------------------------
6639 * Transfer the history data to the quadrature points of the new mesh
6640 * In a final step, we have to get the data back from the now
6641 * interpolated global field to the quadrature points on the
6642 * new mesh. The following code will do that:
6643 *
6644
6645 *
6646 *
6647 * @code
6648 * FullMatrix<double> dof_to_qpoint_matrix (quadrature_formula.size(),
6649 * history_fe.dofs_per_cell);
6651 * (history_fe,
6652 * quadrature_formula,
6653 * dof_to_qpoint_matrix);
6654 * cell = dof_handler.begin_active();
6655 * endc = dof_handler.end();
6656 * dg_cell = history_dof_handler.begin_active();
6657 * for (; cell != endc; ++cell, ++dg_cell)
6658 * if (cell->is_locally_owned())
6659 * {
6660 * PointHistory<dim> *local_quadrature_points_history
6661 * = reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
6662 * Assert (local_quadrature_points_history >=
6663 * &quadrature_point_history.front(),
6664 * ExcInternalError());
6665 * Assert (local_quadrature_points_history <
6666 * &quadrature_point_history.back(),
6667 * ExcInternalError());
6668 * for (unsigned int i=0; i<dim; ++i)
6669 * for (unsigned int j=0; j<dim; ++j)
6670 * {
6671 * dg_cell->get_dof_values (history_stress_field[i][j],
6672 * local_history_stress_fe_values[i][j]);
6673 * dof_to_qpoint_matrix.vmult (local_history_stress_values_at_qpoints[i][j],
6674 * local_history_stress_fe_values[i][j]);
6675 *
6676 * dg_cell->get_dof_values (history_strain_field[i][j],
6677 * local_history_strain_fe_values[i][j]);
6678 * dof_to_qpoint_matrix.vmult (local_history_strain_values_at_qpoints[i][j],
6679 * local_history_strain_fe_values[i][j]);
6680 * for (unsigned int q=0; q<quadrature_formula.size(); ++q)
6681 * {
6682 * local_quadrature_points_history[q].old_stress[i][j]
6683 * = local_history_stress_values_at_qpoints[i][j](q);
6684 *
6685 * local_quadrature_points_history[q].old_strain[i][j]
6686 * = local_history_strain_values_at_qpoints[i][j](q);
6687 * }
6688 * }
6689 *
6690 *
6691 * }
6692 * }
6693 *
6694 * @endcode
6695 *
6696 *
6697 * <a name="ElastoPlasticProblemsetup_quadrature_point_history"></a>
6698 * <h4>ElastoPlasticProblem::setup_quadrature_point_history</h4>
6699 *
6700
6701 *
6702 * At the beginning of our computations, we needed to set up initial values
6703 * of the history variables, such as the existing stresses in the material,
6704 * that we store in each quadrature point. As mentioned above, we use the
6705 * <code>user_pointer</code> for this that is available in each cell.
6706 *
6707
6708 *
6709 * To put this into larger perspective, we note that if we had previously
6710 * available stresses in our model (which we assume do not exist for the
6711 * purpose of this program), then we would need to interpolate the field of
6712 * preexisting stresses to the quadrature points. Likewise, if we were to
6713 * simulate elasto-plastic materials with hardening/softening, then we would
6714 * have to store additional history variables like the present yield stress
6715 * of the accumulated plastic strains in each quadrature
6716 * points. Pre-existing hardening or weakening would then be implemented by
6717 * interpolating these variables in the present function as well.
6718 *
6719 * @code
6720 * template <int dim>
6721 * void ElastoPlasticProblem<dim>::setup_quadrature_point_history ()
6722 * {
6723 * @endcode
6724 *
6725 * What we need to do here is to first count how many quadrature points
6726 * are within the responsibility of this processor. This, of course,
6727 * equals the number of cells that belong to this processor times the
6728 * number of quadrature points our quadrature formula has on each cell.
6729 *
6730
6731 *
6732 * For good measure, we also set all user pointers of all cells, whether
6733 * ours of not, to the null pointer. This way, if we ever access the user
6734 * pointer of a cell which we should not have accessed, a segmentation
6735 * fault will let us know that this should not have happened:
6736 *
6737 * @code
6738 * unsigned int our_cells = 0;
6740 * cell = triangulation.begin_active();
6741 * cell != triangulation.end(); ++cell)
6742 * if (cell->is_locally_owned())
6743 * ++our_cells;
6744 *
6745 * triangulation.clear_user_data();
6746 *
6747 * @endcode
6748 *
6749 * Next, allocate as many quadrature objects as we need. Since the
6750 * <code>resize</code> function does not actually shrink the amount of
6751 * allocated memory if the requested new size is smaller than the old
6752 * size, we resort to a trick to first free all memory, and then
6753 * reallocate it: we declare an empty vector as a temporary variable and
6754 * then swap the contents of the old vector and this temporary
6755 * variable. This makes sure that the
6756 * <code>quadrature_point_history</code> is now really empty, and we can
6757 * let the temporary variable that now holds the previous contents of the
6758 * vector go out of scope and be destroyed. In the next step. we can then
6759 * re-allocate as many elements as we need, with the vector
6760 * default-initializing the <code>PointHistory</code> objects, which
6761 * includes setting the stress variables to zero.
6762 *
6763 * @code
6764 * {
6765 * std::vector<PointHistory<dim> > tmp;
6766 * tmp.swap (quadrature_point_history);
6767 * }
6768 * quadrature_point_history.resize (our_cells *
6769 * quadrature_formula.size());
6770 *
6771 * @endcode
6772 *
6773 * Finally loop over all cells again and set the user pointers from the
6774 * cells that belong to the present processor to point to the first
6775 * quadrature point objects corresponding to this cell in the vector of
6776 * such objects:
6777 *
6778 * @code
6779 * unsigned int history_index = 0;
6781 * cell = triangulation.begin_active();
6782 * cell != triangulation.end(); ++cell)
6783 * if (cell->is_locally_owned())
6784 * {
6785 * cell->set_user_pointer (&quadrature_point_history[history_index]);
6786 * history_index += quadrature_formula.size();
6787 * }
6788 *
6789 * @endcode
6790 *
6791 * At the end, for good measure make sure that our count of elements was
6792 * correct and that we have both used up all objects we allocated
6793 * previously, and not point to any objects beyond the end of the
6794 * vector. Such defensive programming strategies are always good checks to
6795 * avoid accidental errors and to guard against future changes to this
6796 * function that forget to update all uses of a variable at the same
6797 * time. Recall that constructs using the <code>Assert</code> macro are
6798 * optimized away in optimized mode, so do not affect the run time of
6799 * optimized runs:
6800 *
6801 * @code
6802 * Assert (history_index == quadrature_point_history.size(),
6803 * ExcInternalError());
6804 * }
6805 *
6806 * @endcode
6807 *
6808 *
6809 * <a name="ElastoPlasticProblemupdate_quadrature_point_history"></a>
6810 * <h4>ElastoPlasticProblem::update_quadrature_point_history</h4>
6811 *
6812
6813 *
6814 * At the end of each time step, we should have computed an incremental
6815 * displacement update so that the material in its new configuration
6816 * accommodates for the difference between the external body and boundary
6817 * forces applied during this time step minus the forces exerted through
6818 * preexisting internal stresses. In order to have the preexisting
6819 * stresses available at the next time step, we therefore have to update the
6820 * preexisting stresses with the stresses due to the incremental
6821 * displacement computed during the present time step. Ideally, the
6822 * resulting sum of internal stresses would exactly counter all external
6823 * forces. Indeed, a simple experiment can make sure that this is so: if we
6824 * choose boundary conditions and body forces to be time independent, then
6825 * the forcing terms (the sum of external forces and internal stresses)
6826 * should be exactly zero. If you make this experiment, you will realize
6827 * from the output of the norm of the right hand side in each time step that
6828 * this is almost the case: it is not exactly zero, since in the first time
6829 * step the incremental displacement and stress updates were computed
6830 * relative to the undeformed mesh, which was then deformed. In the second
6831 * time step, we again compute displacement and stress updates, but this
6832 * time in the deformed mesh -- there, the resulting updates are very small
6833 * but not quite zero. This can be iterated, and in each such iteration the
6834 * residual, i.e. the norm of the right hand side vector, is reduced; if one
6835 * makes this little experiment, one realizes that the norm of this residual
6836 * decays exponentially with the number of iterations, and after an initial
6837 * very rapid decline is reduced by roughly a factor of about 3.5 in each
6838 * iteration (for one testcase I looked at, other testcases, and other
6839 * numbers of unknowns change the factor, but not the exponential decay).
6840 *
6841
6842 *
6843 * In a sense, this can then be considered as a quasi-timestepping scheme to
6844 * resolve the nonlinear problem of solving large-deformation elasticity on
6845 * a mesh that is moved along in a Lagrangian manner.
6846 *
6847
6848 *
6849 * Another complication is that the existing (old) stresses are defined on
6850 * the old mesh, which we will move around after updating the stresses. If
6851 * this mesh update involves rotations of the cell, then we need to also
6852 * rotate the updated stress, since it was computed relative to the
6853 * coordinate system of the old cell.
6854 *
6855
6856 *
6857 * Thus, what we need is the following: on each cell which the present
6858 * processor owns, we need to extract the old stress from the data stored
6859 * with each quadrature point, compute the stress update, add the two
6860 * together, and then rotate the result together with the incremental
6861 * rotation computed from the incremental displacement at the present
6862 * quadrature point. We will detail these steps below:
6863 *
6864 * @code
6865 * template <int dim>
6866 * void ElastoPlasticProblem<dim>::
6867 * update_quadrature_point_history ()
6868 * {
6869 * @endcode
6870 *
6871 * First, set up an <code>FEValues</code> object by which we will evaluate
6872 * the displacements and the gradients thereof at the
6873 * quadrature points, together with a vector that will hold this
6874 * information:
6875 *
6876 * @code
6877 * FEValues<dim> fe_values (fe, quadrature_formula,
6880 *
6881 * const unsigned int n_q_points = quadrature_formula.size();
6882 *
6883 * std::vector<SymmetricTensor<2, dim> > incremental_strain_tensor(n_q_points);
6884 * SymmetricTensor<4, dim> stress_strain_tensor;
6885 *
6886 *
6887 * @endcode
6888 *
6889 * Then loop over all cells and do the job in the cells that belong to our
6890 * subdomain:
6891 *
6892
6893 *
6894 *
6895 * @code
6897 * cell = dof_handler.begin_active(),
6898 * endc = dof_handler.end();
6899 *
6900 * const FEValuesExtractors::Vector displacement(0);
6901 *
6902 * for (; cell != endc; ++cell)
6903 * if (cell->is_locally_owned())
6904 * {
6905 * @endcode
6906 *
6907 * Next, get a pointer to the quadrature point history data local to
6908 * the present cell, and, as a defensive measure, make sure that
6909 * this pointer is within the bounds of the global array:
6910 *
6911 * @code
6912 * PointHistory<dim> *local_quadrature_points_history
6913 * = reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
6914 * Assert (local_quadrature_points_history >=
6915 * &quadrature_point_history.front(),
6916 * ExcInternalError());
6917 * Assert (local_quadrature_points_history <
6918 * &quadrature_point_history.back(),
6919 * ExcInternalError());
6920 *
6921 * @endcode
6922 *
6923 * Then initialize the <code>FEValues</code> object on the present
6924 * cell, and extract the strains of the displacement at the
6925 * quadrature points
6926 *
6927 * @code
6928 * fe_values.reinit (cell);
6929 * fe_values[displacement].get_function_symmetric_gradients(incremental_displacement,
6930 * incremental_strain_tensor);
6931 *
6932 * @endcode
6933 *
6934 * Then loop over the quadrature points of this cell:
6935 *
6936 * @code
6937 * for (unsigned int q=0; q<quadrature_formula.size(); ++q)
6938 * {
6939 * local_quadrature_points_history[q].old_strain +=
6940 * incremental_strain_tensor[q];
6941 *
6942 * constitutive_law.get_stress_strain_tensor(local_quadrature_points_history[q].old_strain,
6943 * stress_strain_tensor);
6944 *
6945 * @endcode
6946 *
6947 * The result of these operations is then written back into
6948 * the original place:
6949 *
6950 * @code
6951 * local_quadrature_points_history[q].old_stress
6952 * = stress_strain_tensor * local_quadrature_points_history[q].old_strain;
6953 *
6954 * local_quadrature_points_history[q].point
6955 * = fe_values.get_quadrature_points ()[q];
6956 * }
6957 * }
6958 * }
6959 *
6960 *
6961 * @endcode
6962 *
6963 *
6964 * <a name="PlasticityContactProblemmove_mesh"></a>
6965 * <h4>PlasticityContactProblem::move_mesh</h4>
6966 *
6967
6968 *
6969 * The remaining three functions before we get to <code>run()</code>
6970 * have to do with generating output. The following one is an attempt
6971 * at showing the deformed body in its deformed configuration. To this
6972 * end, this function takes a displacement vector field and moves every
6973 * vertex of the (local part) of the mesh by the previously computed
6974 * displacement. We will call this function with the current
6975 * displacement field before we generate graphical output, and we will
6976 * call it again after generating graphical output with the negative
6977 * displacement field to undo the changes to the mesh so made.
6978 *
6979
6980 *
6981 * The function itself is pretty straightforward. All we have to do
6982 * is keep track which vertices we have already touched, as we
6983 * encounter the same vertices multiple times as we loop over cells.
6984 *
6985 * @code
6986 * template <int dim>
6987 * void
6988 * ElastoPlasticProblem<dim>::
6989 * move_mesh (const TrilinosWrappers::MPI::Vector &displacement) const
6990 * {
6991 * std::vector<bool> vertex_touched(triangulation.n_vertices(), false);
6992 *
6993 * for (typename DoFHandler<dim>::active_cell_iterator cell =
6994 * dof_handler.begin_active();
6995 * cell != dof_handler.end(); ++cell)
6996 * if (cell->is_locally_owned())
6997 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_cell; ++v)
6998 * if (vertex_touched[cell->vertex_index(v)] == false)
6999 * {
7000 * vertex_touched[cell->vertex_index(v)] = true;
7001 *
7002 * Point<dim> vertex_displacement;
7003 * for (unsigned int d = 0; d < dim; ++d)
7004 * vertex_displacement[d] = displacement(cell->vertex_dof_index(v, d));
7005 *
7006 * cell->vertex(v) += vertex_displacement;
7007 * }
7008 * }
7009 *
7010 *
7011 *
7012 * @endcode
7013 *
7014 *
7015 * <a name="PlasticityContactProblemoutput_results"></a>
7016 * <h4>PlasticityContactProblem::output_results</h4>
7017 *
7018
7019 *
7020 * Next is the function we use to actually generate graphical output. The
7021 * function is a bit tedious, but not actually particularly complicated.
7022 * It moves the mesh at the top (and moves it back at the end), then
7023 * computes the contact forces along the contact surface. We can do
7024 * so (as shown in the accompanying paper) by taking the untreated
7025 * residual vector and identifying which degrees of freedom
7026 * correspond to those with contact by asking whether they have an
7027 * inhomogeneous constraints associated with them. As always, we need
7028 * to be mindful that we can only write into completely distributed
7029 * vectors (i.e., vectors without ghost elements) but that when we
7030 * want to generate output, we need vectors that do indeed have
7031 * ghost entries for all locally relevant degrees of freedom.
7032 *
7033 * @code
7034 * template <int dim>
7035 * void
7036 * ElastoPlasticProblem<dim>::output_results (const std::string &filename_base)
7037 * {
7038 * TimerOutput::Scope t(computing_timer, "Graphical output");
7039 *
7040 * pcout << " Writing graphical output... " << std::flush;
7041 *
7042 * TrilinosWrappers::MPI::Vector magnified_solution(solution);
7043 *
7044 * const double magnified_factor = 3;
7045 * magnified_solution *= magnified_factor;
7046 *
7047 * move_mesh(magnified_solution);
7048 *
7049 * DataOut<dim> data_out;
7050 *
7051 * data_out.attach_dof_handler(dof_handler);
7052 *
7053 *
7054 * const std::vector<DataComponentInterpretation::DataComponentInterpretation>
7055 * data_component_interpretation(dim, DataComponentInterpretation::component_is_part_of_vector);
7056 * data_out.add_data_vector(solution,
7057 * std::vector<std::string> (dim, "displacement"),
7058 * DataOut<dim>::type_dof_data, data_component_interpretation);
7059 *
7060 *
7061 * std::vector<std::string> solution_names;
7062 *
7063 * switch (dim)
7064 * {
7065 * case 1:
7066 * solution_names.push_back ("displacement");
7067 * break;
7068 * case 2:
7069 * solution_names.push_back ("x_displacement");
7070 * solution_names.push_back ("y_displacement");
7071 * break;
7072 * case 3:
7073 * solution_names.push_back ("x_displacement");
7074 * solution_names.push_back ("y_displacement");
7075 * solution_names.push_back ("z_displacement");
7076 * break;
7077 * default:
7078 * AssertThrow (false, ExcNotImplemented());
7079 * }
7080 *
7081 * data_out.add_data_vector (solution, solution_names);
7082 *
7083 *
7084 *
7085 * Vector<float> subdomain(triangulation.n_active_cells());
7086 * for (unsigned int i = 0; i < subdomain.size(); ++i)
7087 * subdomain(i) = triangulation.locally_owned_subdomain();
7088 * data_out.add_data_vector(subdomain, "subdomain");
7089 *
7090 *
7091 * data_out.add_data_vector(fraction_of_plastic_q_points_per_cell,
7092 * "fraction_of_plastic_q_points");
7093 *
7094 *
7095 * data_out.build_patches();
7096 *
7097 * @endcode
7098 *
7099 * In the remainder of the function, we generate one VTU file on
7100 * every processor, indexed by the subdomain id of this processor.
7101 * On the first processor, we then also create a <code>.pvtu</code>
7102 * file that indexes <i>all</i> of the VTU files so that the entire
7103 * set of output files can be read at once. These <code>.pvtu</code>
7104 * are used by Paraview to describe an entire parallel computation's
7105 * output files. We then do the same again for the competitor of
7106 * Paraview, the Visit visualization program, by creating a matching
7107 * <code>.visit</code> file.
7108 *
7109 * @code
7110 * const std::string filename =
7111 * (output_dir + filename_base + "-"
7112 * + Utilities::int_to_string(triangulation.locally_owned_subdomain(), 4));
7113 *
7114 * std::ofstream output_vtu((filename + ".vtu").c_str());
7115 * data_out.write_vtu(output_vtu);
7116 * pcout << output_dir + filename_base << ".pvtu" << std::endl;
7117 *
7118 *
7119 * if (this_mpi_process == 0)
7120 * {
7121 * std::vector<std::string> filenames;
7122 * for (unsigned int i = 0; i < n_mpi_processes; ++i)
7123 * filenames.push_back(filename_base + "-" +
7124 * Utilities::int_to_string(i, 4) +
7125 * ".vtu");
7126 *
7127 * std::ofstream pvtu_master_output((output_dir + filename_base + ".pvtu").c_str());
7128 * data_out.write_pvtu_record(pvtu_master_output, filenames);
7129 *
7130 * std::ofstream visit_master_output((output_dir + filename_base + ".visit").c_str());
7131 * data_out.write_pvtu_record(visit_master_output, filenames);
7132 *
7133 * @endcode
7134 *
7135 * produce eps files for mesh illustration
7136 *
7137 * @code
7138 * std::ofstream output_eps((filename + ".eps").c_str());
7139 * GridOut grid_out;
7140 * grid_out.write_eps(triangulation, output_eps);
7141 * }
7142 *
7143 * @endcode
7144 *
7145 * Extrapolate the stresses from Gauss point to the nodes
7146 *
7147 * @code
7148 * SymmetricTensor<2, dim> stress_at_qpoint;
7149 *
7150 * FE_DGQ<dim> history_fe (1);
7151 * DoFHandler<dim> history_dof_handler (triangulation);
7152 * history_dof_handler.distribute_dofs (history_fe);
7153 * std::vector< std::vector< Vector<double> > >
7154 * history_stress_field (dim, std::vector< Vector<double> >(dim)),
7155 * local_history_stress_values_at_qpoints (dim, std::vector< Vector<double> >(dim)),
7156 * local_history_stress_fe_values (dim, std::vector< Vector<double> >(dim));
7157 * for (unsigned int i=0; i<dim; ++i)
7158 * for (unsigned int j=0; j<dim; ++j)
7159 * {
7160 * history_stress_field[i][j].reinit(history_dof_handler.n_dofs());
7161 * local_history_stress_values_at_qpoints[i][j].reinit(quadrature_formula.size());
7162 * local_history_stress_fe_values[i][j].reinit(history_fe.dofs_per_cell);
7163 * }
7164 *
7165 * Vector<double> VM_stress_field (history_dof_handler.n_dofs()),
7166 * local_VM_stress_values_at_qpoints (quadrature_formula.size()),
7167 * local_VM_stress_fe_values (history_fe.dofs_per_cell);
7168 *
7169 * FullMatrix<double> qpoint_to_dof_matrix (history_fe.dofs_per_cell,
7170 * quadrature_formula.size());
7171 * FETools::compute_projection_from_quadrature_points_matrix
7172 * (history_fe,
7173 * quadrature_formula, quadrature_formula,
7174 * qpoint_to_dof_matrix);
7175 *
7176 * typename DoFHandler<dim>::active_cell_iterator
7177 * cell = dof_handler.begin_active(),
7178 * endc = dof_handler.end(),
7179 * dg_cell = history_dof_handler.begin_active();
7180 *
7181 * const FEValuesExtractors::Vector displacement(0);
7182 *
7183 * for (; cell!=endc; ++cell, ++dg_cell)
7184 * if (cell->is_locally_owned())
7185 * {
7186 * PointHistory<dim> *local_quadrature_points_history
7187 * = reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
7188 * Assert (local_quadrature_points_history >=
7189 * &quadrature_point_history.front(),
7190 * ExcInternalError());
7191 * Assert (local_quadrature_points_history <
7192 * &quadrature_point_history.back(),
7193 * ExcInternalError());
7194 *
7195 * @endcode
7196 *
7197 * Then loop over the quadrature points of this cell:
7198 *
7199 * @code
7200 * for (unsigned int q=0; q<quadrature_formula.size(); ++q)
7201 * {
7202 * stress_at_qpoint = local_quadrature_points_history[q].old_stress;
7203 *
7204 * for (unsigned int i=0; i<dim; ++i)
7205 * for (unsigned int j=i; j<dim; ++j)
7206 * {
7207 * local_history_stress_values_at_qpoints[i][j](q) = stress_at_qpoint[i][j];
7208 * }
7209 *
7210 * local_VM_stress_values_at_qpoints(q) = Evaluation::get_von_Mises_stress(stress_at_qpoint);
7211 *
7212 * }
7213 *
7214 *
7215 * for (unsigned int i=0; i<dim; ++i)
7216 * for (unsigned int j=i; j<dim; ++j)
7217 * {
7218 * qpoint_to_dof_matrix.vmult (local_history_stress_fe_values[i][j],
7219 * local_history_stress_values_at_qpoints[i][j]);
7220 * dg_cell->set_dof_values (local_history_stress_fe_values[i][j],
7221 * history_stress_field[i][j]);
7222 * }
7223 *
7224 * qpoint_to_dof_matrix.vmult (local_VM_stress_fe_values,
7225 * local_VM_stress_values_at_qpoints);
7226 * dg_cell->set_dof_values (local_VM_stress_fe_values,
7227 * VM_stress_field);
7228 *
7229 *
7230 * }
7231 *
7232 * @endcode
7233 *
7234 * Save stresses on nodes by nodal averaging
7235 * construct a DoFHandler object based on FE_Q with 1 degree of freedom
7236 * in order to compute stresses on nodes (by applying nodal averaging)
7237 * Therefore, each vertex has one degree of freedom
7238 *
7239 * @code
7240 * FE_Q<dim> fe_1 (1);
7241 * DoFHandler<dim> dof_handler_1 (triangulation);
7242 * dof_handler_1.distribute_dofs (fe_1);
7243 *
7244 * AssertThrow(dof_handler_1.n_dofs() == triangulation.n_vertices(),
7245 * ExcDimensionMismatch(dof_handler_1.n_dofs(),triangulation.n_vertices()));
7246 *
7247 * std::vector< std::vector< Vector<double> > >
7248 * history_stress_on_vertices (dim, std::vector< Vector<double> >(dim));
7249 * for (unsigned int i=0; i<dim; ++i)
7250 * for (unsigned int j=0; j<dim; ++j)
7251 * {
7252 * history_stress_on_vertices[i][j].reinit(dof_handler_1.n_dofs());
7253 * }
7254 *
7255 * Vector<double> VM_stress_on_vertices (dof_handler_1.n_dofs()),
7256 * counter_on_vertices (dof_handler_1.n_dofs());
7257 * VM_stress_on_vertices = 0;
7258 * counter_on_vertices = 0;
7259 *
7260 * cell = dof_handler.begin_active();
7261 * dg_cell = history_dof_handler.begin_active();
7262 * typename DoFHandler<dim>::active_cell_iterator
7263 * cell_1 = dof_handler_1.begin_active();
7264 * for (; cell!=endc; ++cell, ++dg_cell, ++cell_1)
7265 * if (cell->is_locally_owned())
7266 * {
7267 * dg_cell->get_dof_values (VM_stress_field,
7268 * local_VM_stress_fe_values);
7269 *
7270 * for (unsigned int i=0; i<dim; ++i)
7271 * for (unsigned int j=0; j<dim; ++j)
7272 * {
7273 * dg_cell->get_dof_values (history_stress_field[i][j],
7274 * local_history_stress_fe_values[i][j]);
7275 * }
7276 *
7277 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_cell; ++v)
7278 * {
7279 * types::global_dof_index dof_1_vertex = cell_1->vertex_dof_index(v, 0);
7280 *
7281 * @endcode
7282 *
7283 * begin check
7284 * Point<dim> point1, point2;
7285 * point1 = cell_1->vertex(v);
7286 * point2 = dg_cell->vertex(v);
7287 * AssertThrow(point1.distance(point2) < cell->diameter()*1e-8, ExcInternalError());
7288 * end check
7289 *
7290
7291 *
7292 *
7293 * @code
7294 * counter_on_vertices (dof_1_vertex) += 1;
7295 *
7296 * VM_stress_on_vertices (dof_1_vertex) += local_VM_stress_fe_values (v);
7297 *
7298 * for (unsigned int i=0; i<dim; ++i)
7299 * for (unsigned int j=0; j<dim; ++j)
7300 * {
7301 * history_stress_on_vertices[i][j](dof_1_vertex) +=
7302 * local_history_stress_fe_values[i][j](v);
7303 * }
7304 *
7305 * }
7306 * }
7307 *
7308 * for (unsigned int id=0; id<dof_handler_1.n_dofs(); ++id)
7309 * {
7310 * VM_stress_on_vertices(id) /= counter_on_vertices(id);
7311 *
7312 * for (unsigned int i=0; i<dim; ++i)
7313 * for (unsigned int j=0; j<dim; ++j)
7314 * {
7315 * history_stress_on_vertices[i][j](id) /= counter_on_vertices(id);
7316 * }
7317 * }
7318 *
7319 * @endcode
7320 *
7321 * Save figures of stresses
7322 *
7323 * @code
7324 * if (show_stresses)
7325 * {
7326 * {
7327 * DataOut<dim> data_out;
7328 * data_out.attach_dof_handler (history_dof_handler);
7329 *
7330 *
7331 * data_out.add_data_vector (history_stress_field[0][0], "stress_xx");
7332 * data_out.add_data_vector (history_stress_field[1][1], "stress_yy");
7333 * data_out.add_data_vector (history_stress_field[0][1], "stress_xy");
7334 * data_out.add_data_vector (VM_stress_field, "Von_Mises_stress");
7335 *
7336 * if (dim == 3)
7337 * {
7338 * data_out.add_data_vector (history_stress_field[0][2], "stress_xz");
7339 * data_out.add_data_vector (history_stress_field[1][2], "stress_yz");
7340 * data_out.add_data_vector (history_stress_field[2][2], "stress_zz");
7341 * }
7342 *
7343 * data_out.build_patches ();
7344 *
7345 * const std::string filename_base_stress = ("stress-" + filename_base);
7346 *
7347 * const std::string filename =
7348 * (output_dir + filename_base_stress + "-"
7349 * + Utilities::int_to_string(triangulation.locally_owned_subdomain(), 4));
7350 *
7351 * std::ofstream output_vtu((filename + ".vtu").c_str());
7352 * data_out.write_vtu(output_vtu);
7353 * pcout << output_dir + filename_base_stress << ".pvtu" << std::endl;
7354 *
7355 * if (this_mpi_process == 0)
7356 * {
7357 * std::vector<std::string> filenames;
7358 * for (unsigned int i = 0; i < n_mpi_processes; ++i)
7359 * filenames.push_back(filename_base_stress + "-" +
7360 * Utilities::int_to_string(i, 4) +
7361 * ".vtu");
7362 *
7363 * std::ofstream pvtu_master_output((output_dir + filename_base_stress + ".pvtu").c_str());
7364 * data_out.write_pvtu_record(pvtu_master_output, filenames);
7365 *
7366 * std::ofstream visit_master_output((output_dir + filename_base_stress + ".visit").c_str());
7367 * data_out.write_pvtu_record(visit_master_output, filenames);
7368 * }
7369 *
7370 *
7371 * }
7372 *
7373 * {
7374 * DataOut<dim> data_out;
7375 * data_out.attach_dof_handler (dof_handler_1);
7376 *
7377 *
7378 * data_out.add_data_vector (history_stress_on_vertices[0][0], "stress_xx_averaged");
7379 * data_out.add_data_vector (history_stress_on_vertices[1][1], "stress_yy_averaged");
7380 * data_out.add_data_vector (history_stress_on_vertices[0][1], "stress_xy_averaged");
7381 * data_out.add_data_vector (VM_stress_on_vertices, "Von_Mises_stress_averaged");
7382 *
7383 * if (dim == 3)
7384 * {
7385 * data_out.add_data_vector (history_stress_on_vertices[0][2], "stress_xz_averaged");
7386 * data_out.add_data_vector (history_stress_on_vertices[1][2], "stress_yz_averaged");
7387 * data_out.add_data_vector (history_stress_on_vertices[2][2], "stress_zz_averaged");
7388 * }
7389 *
7390 * data_out.build_patches ();
7391 *
7392 * const std::string filename_base_stress = ("averaged-stress-" + filename_base);
7393 *
7394 * const std::string filename =
7395 * (output_dir + filename_base_stress + "-"
7396 * + Utilities::int_to_string(triangulation.locally_owned_subdomain(), 4));
7397 *
7398 * std::ofstream output_vtu((filename + ".vtu").c_str());
7399 * data_out.write_vtu(output_vtu);
7400 * pcout << output_dir + filename_base_stress << ".pvtu" << std::endl;
7401 *
7402 * if (this_mpi_process == 0)
7403 * {
7404 * std::vector<std::string> filenames;
7405 * for (unsigned int i = 0; i < n_mpi_processes; ++i)
7406 * filenames.push_back(filename_base_stress + "-" +
7407 * Utilities::int_to_string(i, 4) +
7408 * ".vtu");
7409 *
7410 * std::ofstream pvtu_master_output((output_dir + filename_base_stress + ".pvtu").c_str());
7411 * data_out.write_pvtu_record(pvtu_master_output, filenames);
7412 *
7413 * std::ofstream visit_master_output((output_dir + filename_base_stress + ".visit").c_str());
7414 * data_out.write_pvtu_record(visit_master_output, filenames);
7415 * }
7416 *
7417 *
7418 * }
7419 * @endcode
7420 *
7421 * +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
7422 *
7423
7424 *
7425 *
7426 * @code
7427 * }
7428 *
7429 * magnified_solution *= -1;
7430 * move_mesh(magnified_solution);
7431 *
7432 * @endcode
7433 *
7434 * Timoshenko beam
7435 *
7436 * @code
7437 * if (base_mesh == "Timoshenko beam")
7438 * {
7439 * const double length = .48,
7440 * depth = .12;
7441 *
7442 * Point<dim> intersted_point(length, -depth/2);
7443 * Point<dim> vertex_displacement;
7444 * bool vertex_found = false;
7445 *
7446 * for (typename DoFHandler<dim>::active_cell_iterator cell =
7447 * dof_handler.begin_active();
7448 * cell != dof_handler.end(); ++cell)
7449 * if (cell->is_locally_owned() && !vertex_found)
7450 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_cell; ++v)
7451 * if ( std::fabs(cell->vertex(v)[0] - intersted_point[0])<1e-6 &&
7452 * std::fabs(cell->vertex(v)[1] - intersted_point[1])<1e-6)
7453 * {
7454 * vertex_found = true;
7455 *
7456 * for (unsigned int d = 0; d < dim; ++d)
7457 * vertex_displacement[d] = solution(cell->vertex_dof_index(v, d));
7458 *
7459 * break;
7460 * }
7461 *
7462 * pcout << " Number of active cells: "
7463 * << triangulation.n_global_active_cells() << std::endl
7464 * << " Number of degrees of freedom: " << dof_handler.n_dofs()
7465 * << std::endl;
7466 *
7467 * AssertThrow(vertex_found, ExcInternalError());
7468 * std::cout << "Displacement at the point (" << intersted_point[0]
7469 * << ", " << intersted_point[1] << ") is "
7470 * << "(" << vertex_displacement[0]
7471 * << ", " << vertex_displacement[1] << ").\n";
7472 *
7473 * Vector<double> vertex_exact_displacement(dim);
7474 * EquationData::IncrementalBoundaryValues<dim> incremental_boundary_values(present_time, end_time);
7475 * incremental_boundary_values.vector_value (intersted_point, vertex_exact_displacement);
7476 *
7477 * std::cout << "Exact displacement at the point (" << intersted_point[0]
7478 * << ", " << intersted_point[1] << ") is "
7479 * << "(" << vertex_exact_displacement[0]
7480 * << ", " << vertex_exact_displacement[1] << ").\n\n";
7481 *
7482 * }
7483 * else if (base_mesh == "Thick_tube_internal_pressure")
7484 * {
7485 * const double pressure (0.6*2.4e8),
7486 * inner_radius (.1);
7487 * @endcode
7488 *
7489 * const double pressure (1.94e8),
7490 * inner_radius (.1);
7491 *
7492
7493 *
7494 *
7495
7496 *
7497 * Plane stress
7498 * const double mu (((e_modulus*(1+2*nu)) / (std::pow((1+nu),2))) / (2 * (1 + (nu / (1+nu)))));
7499 * 3d and plane strain
7500 *
7501 * @code
7502 * const double mu (e_modulus / (2 * (1 + nu)));
7503 *
7504 * const Point<dim> point_A(inner_radius, 0.);
7505 * Vector<double> disp_A(dim);
7506 *
7507 * @endcode
7508 *
7509 * make a non-parallel copy of solution
7510 *
7511 * @code
7512 * Vector<double> copy_solution(solution);
7513 *
7514 * Evaluation::PointValuesEvaluation<dim> point_values_evaluation(point_A);
7515 *
7516 * point_values_evaluation.compute (dof_handler, copy_solution, disp_A);
7517 *
7518 * table_results.add_value("time step", timestep_no);
7519 * table_results.add_value("Cells", triangulation.n_global_active_cells());
7520 * table_results.add_value("DoFs", dof_handler.n_dofs());
7521 * table_results.add_value("pressure/sigma_0", (pressure*present_time/end_time)/sigma_0);
7522 * table_results.add_value("4*mu*u_A/(sigma_0*a)", 4*mu*disp_A(0)/(sigma_0*inner_radius));
7523 *
7524 * @endcode
7525 *
7526 * Compute stresses in the POLAR coordinates, 1- save it on Gauss points,
7527 * 2- extrapolate them to nodes and taking their avarages (nodal avaraging)
7528 *
7529 * @code
7530 * AssertThrow (dim == 2, ExcNotImplemented());
7531 *
7532 * @endcode
7533 *
7534 * we define a rotation matrix to be able to transform the stress
7535 * from the Cartesian coordinate to the polar coordinate
7536 *
7537 * @code
7538 * Tensor<2, dim> rotation_matrix; // [cos sin; -sin cos] , sigma_r = rot * sigma * rot^T
7539 *
7540 * FEValues<dim> fe_values (fe, quadrature_formula, update_quadrature_points |
7541 * update_values | update_gradients);
7542 *
7543 * const unsigned int n_q_points = quadrature_formula.size();
7544 *
7545 * std::vector<SymmetricTensor<2, dim> > strain_tensor(n_q_points);
7546 * SymmetricTensor<4, dim> stress_strain_tensor;
7547 * Tensor<2, dim> stress_at_qpoint;
7548 *
7549 * FE_DGQ<dim> history_fe (1);
7550 * DoFHandler<dim> history_dof_handler (triangulation);
7551 * history_dof_handler.distribute_dofs (history_fe);
7552 * std::vector< std::vector< Vector<double> > >
7553 * history_stress_field (dim, std::vector< Vector<double> >(dim)),
7554 * local_history_stress_values_at_qpoints (dim, std::vector< Vector<double> >(dim)),
7555 * local_history_stress_fe_values (dim, std::vector< Vector<double> >(dim));
7556 * for (unsigned int i=0; i<dim; ++i)
7557 * for (unsigned int j=0; j<dim; ++j)
7558 * {
7559 * history_stress_field[i][j].reinit(history_dof_handler.n_dofs());
7560 * local_history_stress_values_at_qpoints[i][j].reinit(quadrature_formula.size());
7561 * local_history_stress_fe_values[i][j].reinit(history_fe.dofs_per_cell);
7562 * }
7563 *
7564 * FullMatrix<double> qpoint_to_dof_matrix (history_fe.dofs_per_cell,
7565 * quadrature_formula.size());
7566 * FETools::compute_projection_from_quadrature_points_matrix
7567 * (history_fe,
7568 * quadrature_formula, quadrature_formula,
7569 * qpoint_to_dof_matrix);
7570 *
7571 * typename DoFHandler<dim>::active_cell_iterator
7572 * cell = dof_handler.begin_active(),
7573 * endc = dof_handler.end(),
7574 * dg_cell = history_dof_handler.begin_active();
7575 *
7576 * const FEValuesExtractors::Vector displacement(0);
7577 *
7578 * for (; cell!=endc; ++cell, ++dg_cell)
7579 * if (cell->is_locally_owned())
7580 * {
7581 * PointHistory<dim> *local_quadrature_points_history
7582 * = reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
7583 * Assert (local_quadrature_points_history >=
7584 * &quadrature_point_history.front(),
7585 * ExcInternalError());
7586 * Assert (local_quadrature_points_history <
7587 * &quadrature_point_history.back(),
7588 * ExcInternalError());
7589 *
7590 * @endcode
7591 *
7592 * Then loop over the quadrature points of this cell:
7593 *
7594 * @code
7595 * for (unsigned int q=0; q<quadrature_formula.size(); ++q)
7596 * {
7597 * stress_at_qpoint = local_quadrature_points_history[q].old_stress;
7598 *
7599 * @endcode
7600 *
7601 * transform the stress from the Cartesian coordinate to the polar coordinate
7602 *
7603 * @code
7604 * const Point<dim> point = local_quadrature_points_history[q].point;
7605 * const double theta = std::atan2(point(1),point(0));
7606 *
7607 * @endcode
7608 *
7609 * rotation matrix
7610 *
7611 * @code
7612 * rotation_matrix[0][0] = std::cos(theta);
7613 * rotation_matrix[0][1] = std::sin(theta);
7614 * rotation_matrix[1][0] = -std::sin(theta);
7615 * rotation_matrix[1][1] = std::cos(theta);
7616 *
7617 * @endcode
7618 *
7619 * stress in polar coordinate
7620 *
7621 * @code
7622 * stress_at_qpoint = rotation_matrix * stress_at_qpoint * transpose(rotation_matrix);
7623 *
7624 * for (unsigned int i=0; i<dim; ++i)
7625 * for (unsigned int j=i; j<dim; ++j)
7626 * {
7627 * local_history_stress_values_at_qpoints[i][j](q) = stress_at_qpoint[i][j];
7628 * }
7629 *
7630 * }
7631 *
7632 *
7633 * for (unsigned int i=0; i<dim; ++i)
7634 * for (unsigned int j=i; j<dim; ++j)
7635 * {
7636 * qpoint_to_dof_matrix.vmult (local_history_stress_fe_values[i][j],
7637 * local_history_stress_values_at_qpoints[i][j]);
7638 * dg_cell->set_dof_values (local_history_stress_fe_values[i][j],
7639 * history_stress_field[i][j]);
7640 * }
7641 *
7642 * }
7643 *
7644 * {
7645 * DataOut<dim> data_out;
7646 * data_out.attach_dof_handler (history_dof_handler);
7647 *
7648 *
7649 * data_out.add_data_vector (history_stress_field[0][0], "stress_rr");
7650 * data_out.add_data_vector (history_stress_field[1][1], "stress_tt");
7651 * data_out.add_data_vector (history_stress_field[0][1], "stress_rt");
7652 *
7653 * data_out.build_patches ();
7654 *
7655 * const std::string filename_base_stress = ("stress-polar-" + filename_base);
7656 *
7657 * const std::string filename =
7658 * (output_dir + filename_base_stress + "-"
7659 * + Utilities::int_to_string(triangulation.locally_owned_subdomain(), 4));
7660 *
7661 * std::ofstream output_vtu((filename + ".vtu").c_str());
7662 * data_out.write_vtu(output_vtu);
7663 * pcout << output_dir + filename_base_stress << ".pvtu" << std::endl;
7664 *
7665 * if (this_mpi_process == 0)
7666 * {
7667 * std::vector<std::string> filenames;
7668 * for (unsigned int i = 0; i < n_mpi_processes; ++i)
7669 * filenames.push_back(filename_base_stress + "-" +
7670 * Utilities::int_to_string(i, 4) +
7671 * ".vtu");
7672 *
7673 * std::ofstream pvtu_master_output((output_dir + filename_base_stress + ".pvtu").c_str());
7674 * data_out.write_pvtu_record(pvtu_master_output, filenames);
7675 *
7676 * std::ofstream visit_master_output((output_dir + filename_base_stress + ".visit").c_str());
7677 * data_out.write_pvtu_record(visit_master_output, filenames);
7678 * }
7679 *
7680 *
7681 * }
7682 *
7683 * @endcode
7684 *
7685 * +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
7686 * construct a DoFHandler object based on FE_Q with 1 degree of freedom
7687 * in order to compute stresses on nodes (by applying nodal averaging)
7688 * Therefore, each vertex has one degree of freedom
7689 *
7690 * @code
7691 * FE_Q<dim> fe_1 (1);
7692 * DoFHandler<dim> dof_handler_1 (triangulation);
7693 * dof_handler_1.distribute_dofs (fe_1);
7694 *
7695 * AssertThrow(dof_handler_1.n_dofs() == triangulation.n_vertices(),
7696 * ExcDimensionMismatch(dof_handler_1.n_dofs(),triangulation.n_vertices()));
7697 *
7698 * std::vector< std::vector< Vector<double> > >
7699 * history_stress_on_vertices (dim, std::vector< Vector<double> >(dim));
7700 * for (unsigned int i=0; i<dim; ++i)
7701 * for (unsigned int j=0; j<dim; ++j)
7702 * {
7703 * history_stress_on_vertices[i][j].reinit(dof_handler_1.n_dofs());
7704 * }
7705 *
7706 * Vector<double> counter_on_vertices (dof_handler_1.n_dofs());
7707 * counter_on_vertices = 0;
7708 *
7709 * cell = dof_handler.begin_active();
7710 * dg_cell = history_dof_handler.begin_active();
7711 * typename DoFHandler<dim>::active_cell_iterator
7712 * cell_1 = dof_handler_1.begin_active();
7713 * for (; cell!=endc; ++cell, ++dg_cell, ++cell_1)
7714 * if (cell->is_locally_owned())
7715 * {
7716 *
7717 * for (unsigned int i=0; i<dim; ++i)
7718 * for (unsigned int j=0; j<dim; ++j)
7719 * {
7720 * dg_cell->get_dof_values (history_stress_field[i][j],
7721 * local_history_stress_fe_values[i][j]);
7722 * }
7723 *
7724 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_cell; ++v)
7725 * {
7726 * types::global_dof_index dof_1_vertex = cell_1->vertex_dof_index(v, 0);
7727 *
7728 * @endcode
7729 *
7730 * begin check
7731 * Point<dim> point1, point2;
7732 * point1 = cell_1->vertex(v);
7733 * point2 = dg_cell->vertex(v);
7734 * AssertThrow(point1.distance(point2) < cell->diameter()*1e-8, ExcInternalError());
7735 * end check
7736 *
7737
7738 *
7739 *
7740 * @code
7741 * counter_on_vertices (dof_1_vertex) += 1;
7742 *
7743 * for (unsigned int i=0; i<dim; ++i)
7744 * for (unsigned int j=0; j<dim; ++j)
7745 * {
7746 * history_stress_on_vertices[i][j](dof_1_vertex) +=
7747 * local_history_stress_fe_values[i][j](v);
7748 * }
7749 *
7750 * }
7751 * }
7752 *
7753 * for (unsigned int id=0; id<dof_handler_1.n_dofs(); ++id)
7754 * {
7755 * for (unsigned int i=0; i<dim; ++i)
7756 * for (unsigned int j=0; j<dim; ++j)
7757 * {
7758 * history_stress_on_vertices[i][j](id) /= counter_on_vertices(id);
7759 * }
7760 * }
7761 *
7762 *
7763 * {
7764 * DataOut<dim> data_out;
7765 * data_out.attach_dof_handler (dof_handler_1);
7766 *
7767 *
7768 * data_out.add_data_vector (history_stress_on_vertices[0][0], "stress_rr_averaged");
7769 * data_out.add_data_vector (history_stress_on_vertices[1][1], "stress_tt_averaged");
7770 * data_out.add_data_vector (history_stress_on_vertices[0][1], "stress_rt_averaged");
7771 *
7772 * data_out.build_patches ();
7773 *
7774 * const std::string filename_base_stress = ("averaged-stress-polar-" + filename_base);
7775 *
7776 * const std::string filename =
7777 * (output_dir + filename_base_stress + "-"
7778 * + Utilities::int_to_string(triangulation.locally_owned_subdomain(), 4));
7779 *
7780 * std::ofstream output_vtu((filename + ".vtu").c_str());
7781 * data_out.write_vtu(output_vtu);
7782 * pcout << output_dir + filename_base_stress << ".pvtu" << std::endl;
7783 *
7784 * if (this_mpi_process == 0)
7785 * {
7786 * std::vector<std::string> filenames;
7787 * for (unsigned int i = 0; i < n_mpi_processes; ++i)
7788 * filenames.push_back(filename_base_stress + "-" +
7789 * Utilities::int_to_string(i, 4) +
7790 * ".vtu");
7791 *
7792 * std::ofstream pvtu_master_output((output_dir + filename_base_stress + ".pvtu").c_str());
7793 * data_out.write_pvtu_record(pvtu_master_output, filenames);
7794 *
7795 * std::ofstream visit_master_output((output_dir + filename_base_stress + ".visit").c_str());
7796 * data_out.write_pvtu_record(visit_master_output, filenames);
7797 * }
7798 *
7799 *
7800 * }
7801 * @endcode
7802 *
7803 * +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
7804 *
7805
7806 *
7807 *
7808 * @code
7809 * if ( std::abs( (present_time/end_time)*(pressure/sigma_0) - 0.6 ) <
7810 * .501*(present_timestep/end_time)*(pressure/sigma_0) )
7811 * {
7812 *
7813 * @endcode
7814 *
7815 * table_results_2: presenting the stress_rr and stress_tt on the nodes of bottom edge
7816 *
7817 * @code
7818 * const unsigned int face_id = 3;
7819 *
7820 * std::vector<bool> vertices_found (dof_handler_1.n_dofs(), false);
7821 *
7822 * bool evaluation_face_found = false;
7823 *
7824 * typename DoFHandler<dim>::active_cell_iterator
7825 * cell = dof_handler.begin_active(),
7826 * endc = dof_handler.end(),
7827 * cell_1 = dof_handler_1.begin_active();
7828 * for (; cell!=endc; ++cell, ++cell_1)
7829 * if (cell->is_locally_owned())
7830 * {
7831 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
7832 * {
7833 * if (cell->face(face)->at_boundary()
7834 * &&
7835 * cell->face(face)->boundary_id() == face_id)
7836 * {
7837 * if (!evaluation_face_found)
7838 * {
7839 * evaluation_face_found = true;
7840 * }
7841 *
7842 *
7843 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_face; ++v)
7844 * {
7845 * types::global_dof_index dof_1_vertex =
7846 * cell_1->face(face)->vertex_dof_index(v, 0);
7847 * if (!vertices_found[dof_1_vertex])
7848 * {
7849 *
7850 * const Point<dim> vertex_coordinate = cell_1->face(face)->vertex(v);
7851 *
7852 * table_results_2.add_value("x coordinate", vertex_coordinate[0]);
7853 * table_results_2.add_value("stress_rr", history_stress_on_vertices[0][0](dof_1_vertex));
7854 * table_results_2.add_value("stress_tt", history_stress_on_vertices[1][1](dof_1_vertex));
7855 * table_results_2.add_value("pressure/sigma_0", (pressure*present_time/end_time)/sigma_0);
7856 *
7857 * vertices_found[dof_1_vertex] = true;
7858 * }
7859 * }
7860 *
7861 * }
7862 * }
7863 *
7864 * }
7865 *
7866 * AssertThrow(evaluation_face_found, ExcInternalError());
7867 *
7868 * @endcode
7869 *
7870 * table_results_3: presenting the mean stress_rr of the nodes on the inner radius
7871 *
7872 * @code
7873 * const unsigned int face_id_2 = 0;
7874 *
7875 * Tensor<2, dim> stress_node,
7876 * mean_stress_polar;
7877 * mean_stress_polar = 0;
7878 *
7879 * std::vector<bool> vertices_found_2 (dof_handler_1.n_dofs(), false);
7880 * unsigned int no_vertices_found = 0;
7881 *
7882 * evaluation_face_found = false;
7883 *
7884 * cell = dof_handler.begin_active(),
7885 * endc = dof_handler.end(),
7886 * cell_1 = dof_handler_1.begin_active();
7887 * for (; cell!=endc; ++cell, ++cell_1)
7888 * if (cell->is_locally_owned())
7889 * {
7890 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
7891 * {
7892 * if (cell->face(face)->at_boundary()
7893 * &&
7894 * cell->face(face)->boundary_id() == face_id_2)
7895 * {
7896 * if (!evaluation_face_found)
7897 * {
7898 * evaluation_face_found = true;
7899 * }
7900 *
7901 *
7902 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_face; ++v)
7903 * {
7904 * types::global_dof_index dof_1_vertex =
7905 * cell_1->face(face)->vertex_dof_index(v, 0);
7906 * if (!vertices_found_2[dof_1_vertex])
7907 * {
7908 * for (unsigned int ir=0; ir<dim; ++ir)
7909 * for (unsigned int ic=0; ic<dim; ++ic)
7910 * stress_node[ir][ic] = history_stress_on_vertices[ir][ic](dof_1_vertex);
7911 *
7912 * mean_stress_polar += stress_node;
7913 *
7914 * vertices_found_2[dof_1_vertex] = true;
7915 * ++no_vertices_found;
7916 * }
7917 * }
7918 *
7919 * }
7920 * }
7921 *
7922 * }
7923 *
7924 * AssertThrow(evaluation_face_found, ExcInternalError());
7925 *
7926 * mean_stress_polar /= no_vertices_found;
7927 *
7928 * table_results_3.add_value("time step", timestep_no);
7929 * table_results_3.add_value("pressure/sigma_0", (pressure*present_time/end_time)/sigma_0);
7930 * table_results_3.add_value("Cells", triangulation.n_global_active_cells());
7931 * table_results_3.add_value("DoFs", dof_handler.n_dofs());
7932 * table_results_3.add_value("radius", inner_radius);
7933 * table_results_3.add_value("mean stress_rr", mean_stress_polar[0][0]);
7934 * table_results_3.add_value("mean stress_tt", mean_stress_polar[1][1]);
7935 *
7936 *
7937 * }
7938 *
7939 *
7940 * }
7941 * else if (base_mesh == "Perforated_strip_tension")
7942 * {
7943 * const double imposed_displacement (0.00055),
7944 * inner_radius (0.05);
7945 *
7946 * @endcode
7947 *
7948 * Plane stress
7949 * const double mu (((e_modulus*(1+2*nu)) / (std::pow((1+nu),2))) / (2 * (1 + (nu / (1+nu)))));
7950 * 3d and plane strain
7951 *
7952
7953 *
7954 * table_results: Demonstrates the result of displacement at the top left corner versus imposed tension
7955 *
7956 * @code
7957 * /*
7958 * {
7959 * const Point<dim> point_C(0., height);
7960 * Vector<double> disp_C(dim);
7961 *
7962 * @endcode
7963 *
7964 * make a non-parallel copy of solution
7965 *
7966 * @code
7967 * Vector<double> copy_solution(solution);
7968 *
7969 * typename Evaluation::PointValuesEvaluation<dim>::
7970 * PointValuesEvaluation point_values_evaluation(point_C);
7971 *
7972 * point_values_evaluation.compute (dof_handler, copy_solution, disp_C);
7973 *
7974 * table_results.add_value("time step", timestep_no);
7975 * table_results.add_value("Cells", triangulation.n_global_active_cells());
7976 * table_results.add_value("DoFs", dof_handler.n_dofs());
7977 * table_results.add_value("4*mu*u_C/(sigma_0*r)", 4*mu*disp_C(1)/(sigma_0*inner_radius));
7978 * }
7979 * */
7980 *
7981 * @endcode
7982 *
7983 * compute average sigma_yy on the bottom edge
7984 *
7985 * @code
7986 * double stress_yy_av;
7987 * {
7988 * stress_yy_av = 0;
7989 * const unsigned int face_id = 1;
7990 *
7991 * std::vector<bool> vertices_found (dof_handler_1.n_dofs(), false);
7992 * unsigned int no_vertices_in_face = 0;
7993 *
7994 * bool evaluation_face_found = false;
7995 *
7996 * typename DoFHandler<dim>::active_cell_iterator
7997 * cell = dof_handler.begin_active(),
7998 * endc = dof_handler.end(),
7999 * cell_1 = dof_handler_1.begin_active();
8000 * for (; cell!=endc; ++cell, ++cell_1)
8001 * if (cell->is_locally_owned())
8002 * {
8003 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
8004 * {
8005 * if (cell->face(face)->at_boundary()
8006 * &&
8007 * cell->face(face)->boundary_id() == face_id)
8008 * {
8009 * if (!evaluation_face_found)
8010 * {
8011 * evaluation_face_found = true;
8012 * }
8013 *
8014 *
8015 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_face; ++v)
8016 * {
8017 * types::global_dof_index dof_1_vertex =
8018 * cell_1->face(face)->vertex_dof_index(v, 0);
8019 * if (!vertices_found[dof_1_vertex])
8020 * {
8021 * stress_yy_av += history_stress_on_vertices[1][1](dof_1_vertex);
8022 * ++no_vertices_in_face;
8023 *
8024 * vertices_found[dof_1_vertex] = true;
8025 * }
8026 * }
8027 *
8028 * }
8029 * }
8030 *
8031 * }
8032 *
8033 * AssertThrow(evaluation_face_found, ExcInternalError());
8034 *
8035 * stress_yy_av /= no_vertices_in_face;
8036 *
8037 * }
8038 *
8039 * @endcode
8040 *
8041 * table_results_2: Demonstrate the stress_yy on the nodes of bottom edge
8042 *
8043
8044 *
8045 * if ( std::abs( (stress_yy_av/sigma_0) - .91 ) < .2 )
8046 *
8047 * @code
8048 * if ( (timestep_no) % 19 == 0 )
8049 * @endcode
8050 *
8051 * if ( true )
8052 *
8053 * @code
8054 * {
8055 * const unsigned int face_id = 1;
8056 *
8057 * std::vector<bool> vertices_found (dof_handler_1.n_dofs(), false);
8058 *
8059 * bool evaluation_face_found = false;
8060 *
8061 * typename DoFHandler<dim>::active_cell_iterator
8062 * cell = dof_handler.begin_active(),
8063 * endc = dof_handler.end(),
8064 * cell_1 = dof_handler_1.begin_active();
8065 * for (; cell!=endc; ++cell, ++cell_1)
8066 * if (cell->is_locally_owned())
8067 * {
8068 * for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
8069 * {
8070 * if (cell->face(face)->at_boundary()
8071 * &&
8072 * cell->face(face)->boundary_id() == face_id)
8073 * {
8074 * if (!evaluation_face_found)
8075 * {
8076 * evaluation_face_found = true;
8077 * }
8078 *
8079 *
8080 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_face; ++v)
8081 * {
8082 * types::global_dof_index dof_1_vertex =
8083 * cell_1->face(face)->vertex_dof_index(v, 0);
8084 *
8085 * const Point<dim> vertex_coordinate = cell_1->face(face)->vertex(v);
8086 *
8087 * if (!vertices_found[dof_1_vertex] && std::abs(vertex_coordinate[2])<1.e-8)
8088 * {
8089 * table_results_2.add_value("x", vertex_coordinate[0]);
8090 * table_results_2.add_value("x/r", vertex_coordinate[0]/inner_radius);
8091 * table_results_2.add_value("stress_xx/sigma_0", history_stress_on_vertices[0][0](dof_1_vertex)/sigma_0);
8092 * table_results_2.add_value("stress_yy/sigma_0", history_stress_on_vertices[1][1](dof_1_vertex)/sigma_0);
8093 * table_results_2.add_value("stress_yy_av/sigma_0", stress_yy_av/sigma_0);
8094 * table_results_2.add_value("Imposed u_y", (imposed_displacement*present_time/end_time));
8095 *
8096 * vertices_found[dof_1_vertex] = true;
8097 * }
8098 * }
8099 *
8100 * }
8101 * }
8102 *
8103 * }
8104 *
8105 * AssertThrow(evaluation_face_found, ExcInternalError());
8106 *
8107 * }
8108 *
8109 * @endcode
8110 *
8111 * table_results_3: Demonstrate the Stress_mean (average tensile stress)
8112 * on the bottom edge versus epsilon_yy on the bottom left corner
8113 *
8114 * @code
8115 * {
8116 * double strain_yy_A = 0.;
8117 *
8118 * @endcode
8119 *
8120 * compute strain_yy_A
8121 * Since the point A is the node on the bottom left corner,
8122 * we need to work just with one element
8123 *
8124 * @code
8125 * {
8126 * const Point<dim> point_A(inner_radius, 0, 0);
8127 *
8128 * Vector<double> local_strain_yy_values_at_qpoints (quadrature_formula.size()),
8129 * local_strain_yy_fe_values (history_fe.dofs_per_cell);
8130 *
8131 * SymmetricTensor<2, dim> strain_at_qpoint;
8132 *
8133 * typename DoFHandler<dim>::active_cell_iterator
8134 * cell = dof_handler.begin_active(),
8135 * endc = dof_handler.end(),
8136 * dg_cell = history_dof_handler.begin_active();
8137 *
8138 * bool cell_found = false;
8139 *
8140 * for (; cell!=endc; ++cell, ++dg_cell)
8141 * if (cell->is_locally_owned() && !cell_found)
8142 * {
8143 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_cell; ++v)
8144 * if ( std::fabs(cell->vertex(v)[0] - point_A[0])<1e-6 &&
8145 * std::fabs(cell->vertex(v)[1] - point_A[1])<1e-6 &&
8146 * std::fabs(cell->vertex(v)[2] - point_A[2])<1e-6)
8147 * {
8148 * PointHistory<dim> *local_quadrature_points_history
8149 * = reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
8150 * Assert (local_quadrature_points_history >=
8151 * &quadrature_point_history.front(),
8152 * ExcInternalError());
8153 * Assert (local_quadrature_points_history <
8154 * &quadrature_point_history.back(),
8155 * ExcInternalError());
8156 *
8157 * @endcode
8158 *
8159 * Then loop over the quadrature points of this cell:
8160 *
8161 * @code
8162 * for (unsigned int q=0; q<quadrature_formula.size(); ++q)
8163 * {
8164 * strain_at_qpoint = local_quadrature_points_history[q].old_strain;
8165 *
8166 * local_strain_yy_values_at_qpoints(q) = strain_at_qpoint[1][1];
8167 * }
8168 *
8169 * qpoint_to_dof_matrix.vmult (local_strain_yy_fe_values,
8170 * local_strain_yy_values_at_qpoints);
8171 *
8172 * strain_yy_A = local_strain_yy_fe_values (v);
8173 *
8174 * cell_found = true;
8175 * break;
8176 * }
8177 *
8178 * }
8179 *
8180 * }
8181 *
8182 * table_results_3.add_value("time step", timestep_no);
8183 * table_results_3.add_value("Cells", triangulation.n_global_active_cells());
8184 * table_results_3.add_value("DoFs", dof_handler.n_dofs());
8185 * table_results_3.add_value("Imposed u_y", (imposed_displacement*present_time/end_time));
8186 * table_results_3.add_value("mean_tensile_stress/sigma_0", stress_yy_av/sigma_0);
8187 * table_results_3.add_value("E*strain_yy-A/sigma_0", e_modulus*strain_yy_A/sigma_0);
8188 *
8189 * }
8190 *
8191 *
8192 * if (std::abs(present_time-end_time) < 1.e-7)
8193 * {
8194 * table_results_2.set_precision("Imposed u_y", 6);
8195 * table_results_3.set_precision("Imposed u_y", 6);
8196 * }
8197 *
8198 * }
8199 * else if (base_mesh == "Cantiliver_beam_3d")
8200 * {
8201 * const double pressure (6e6),
8202 * length (.7),
8203 * height (200e-3);
8204 *
8205 * @endcode
8206 *
8207 * table_results: Demonstrates the result of displacement at the top front point, Point A
8208 *
8209 * @code
8210 * {
8211 * @endcode
8212 *
8213 * Quantity of interest:
8214 * displacement at Point A (x=0, y=height/2, z=length)
8215 *
8216
8217 *
8218 *
8219 * @code
8220 * const Point<dim> point_A(0, height/2, length);
8221 * Vector<double> disp_A(dim);
8222 *
8223 * @endcode
8224 *
8225 * make a non-parallel copy of solution
8226 *
8227 * @code
8228 * Vector<double> copy_solution(solution);
8229 *
8230 * Evaluation::PointValuesEvaluation<dim> point_values_evaluation(point_A);
8231 *
8232 * point_values_evaluation.compute (dof_handler, copy_solution, disp_A);
8233 *
8234 * table_results.add_value("time step", timestep_no);
8235 * table_results.add_value("Cells", triangulation.n_global_active_cells());
8236 * table_results.add_value("DoFs", dof_handler.n_dofs());
8237 * table_results.add_value("pressure", pressure*present_time/end_time);
8238 * table_results.add_value("u_A", disp_A(1));
8239 * }
8240 *
8241 * {
8242 * @endcode
8243 *
8244 * demonstrate the location and maximum von-Mises stress in the
8245 * specified domain close to the clamped face, z = 0
8246 * top domain: height/2 - thickness_flange <= y <= height/2
8247 * 0 <= z <= 2 * thickness_flange
8248 * bottom domain: -height/2 <= y <= -height/2 + thickness_flange
8249 * 0 <= z <= 2 * thickness_flange
8250 *
8251
8252 *
8253 *
8254 * @code
8255 * double VM_stress_max (0);
8256 * Point<dim> point_max;
8257 *
8258 * SymmetricTensor<2, dim> stress_at_qpoint;
8259 *
8260 * typename DoFHandler<dim>::active_cell_iterator
8261 * cell = dof_handler.begin_active(),
8262 * endc = dof_handler.end();
8263 *
8264 * const FEValuesExtractors::Vector displacement(0);
8265 *
8266 * for (; cell!=endc; ++cell)
8267 * if (cell->is_locally_owned())
8268 * {
8269 * PointHistory<dim> *local_quadrature_points_history
8270 * = reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
8271 * Assert (local_quadrature_points_history >=
8272 * &quadrature_point_history.front(),
8273 * ExcInternalError());
8274 * Assert (local_quadrature_points_history <
8275 * &quadrature_point_history.back(),
8276 * ExcInternalError());
8277 *
8278 * @endcode
8279 *
8280 * Then loop over the quadrature points of this cell:
8281 *
8282 * @code
8283 * for (unsigned int q=0; q<quadrature_formula.size(); ++q)
8284 * {
8285 * stress_at_qpoint = local_quadrature_points_history[q].old_stress;
8286 *
8287 * const double VM_stress = Evaluation::get_von_Mises_stress(stress_at_qpoint);
8288 * if (VM_stress > VM_stress_max)
8289 * {
8290 * VM_stress_max = VM_stress;
8291 * point_max = local_quadrature_points_history[q].point;
8292 * }
8293 *
8294 * }
8295 * }
8296 *
8297 * table_results.add_value("maximum von_Mises stress", VM_stress_max);
8298 * table_results.add_value("x", point_max[0]);
8299 * table_results.add_value("y", point_max[1]);
8300 * table_results.add_value("z", point_max[2]);
8301 *
8302 * }
8303 *
8304 * }
8305 *
8306 *
8307 * }
8308 *
8309 *
8310 * @endcode
8311 *
8312 *
8313 * <a name="PlasticityContactProblemrun"></a>
8314 * <h4>PlasticityContactProblem::run</h4>
8315 *
8316
8317 *
8318 * As in all other tutorial programs, the <code>run()</code> function contains
8319 * the overall logic. There is not very much to it here: in essence, it
8320 * performs the loops over all mesh refinement cycles, and within each, hands
8321 * things over to the Newton solver in <code>solve_newton()</code> on the
8322 * current mesh and calls the function that creates graphical output for
8323 * the so-computed solution. It then outputs some statistics concerning both
8324 * run times and memory consumption that has been collected over the course of
8325 * computations on this mesh.
8326 *
8327 * @code
8328 * template <int dim>
8329 * void
8330 * ElastoPlasticProblem<dim>::run ()
8331 * {
8332 * computing_timer.reset();
8333 *
8334 * present_time = 0;
8335 * present_timestep = 1;
8336 * end_time = 10;
8337 * timestep_no = 0;
8338 *
8339 * make_grid();
8340 *
8341 * @endcode
8342 *
8343 * ----------------------------------------------------------------
8344 * base_mesh == "Thick_tube_internal_pressure"
8345 *
8346 * @code
8347 * /*
8348 * const Point<dim> center(0, 0);
8349 * const double inner_radius = .1,
8350 * outer_radius = .2;
8351 *
8352 * const SphericalManifold<dim> inner_boundary_description(center, inner_radius);
8353 * triangulation.set_manifold (0, inner_boundary_description);
8354 *
8355 * const SphericalManifold<dim> outer_boundary_description(center, outer_radius);
8356 * triangulation.set_manifold (1, outer_boundary_description);
8357 * */
8358 * @endcode
8359 *
8360 * ----------------------------------------------------------------
8361 * base_mesh == "Perforated_strip_tension"
8362 *
8363 * @code
8364 * /*
8365 * const double inner_radius = 0.05;
8366 *
8367 * const CylinderBoundary<dim> inner_boundary_description(inner_radius, 2);
8368 * triangulation.set_manifold (10, inner_boundary_description);
8369 * */
8370 * @endcode
8371 *
8372 * ----------------------------------------------------------------
8373 *
8374
8375 *
8376 *
8377 * @code
8378 * setup_quadrature_point_history ();
8379 *
8380 * while (present_time < end_time)
8381 * {
8382 * present_time += present_timestep;
8383 * ++timestep_no;
8384 *
8385 * if (present_time > end_time)
8386 * {
8387 * present_timestep -= (present_time - end_time);
8388 * present_time = end_time;
8389 * }
8390 * pcout << std::endl;
8391 * pcout << "Time step " << timestep_no << " at time " << present_time
8392 * << std::endl;
8393 *
8394 * relative_error = max_relative_error * 10;
8395 * current_refinement_cycle = 0;
8396 *
8397 * setup_system();
8398 *
8399 *
8400 * @endcode
8401 *
8402 * ------------------------ Refinement based on the relative error -------------------------------
8403 *
8404
8405 *
8406 *
8407 * @code
8408 * while (relative_error >= max_relative_error)
8409 * {
8410 * solve_newton();
8411 * compute_error();
8412 *
8413 * if ( (timestep_no > 1) && (current_refinement_cycle>0) && (relative_error >= max_relative_error) )
8414 * {
8415 * pcout << "The relative error, " << relative_error
8416 * << " , is still more than maximum relative error, "
8417 * << max_relative_error << ", but we move to the next increment.\n";
8418 * relative_error = .1 * max_relative_error;
8419 * }
8420 *
8421 * if (relative_error >= max_relative_error)
8422 * {
8423 * TimerOutput::Scope t(computing_timer, "Setup: refine mesh");
8424 * ++current_refinement_cycle;
8425 * refine_grid();
8426 * }
8427 *
8428 * }
8429 *
8430 * @endcode
8431 *
8432 * ------------------------ Refinement based on the number of refinement --------------------------
8433 *
8434 * @code
8435 * /*
8436 * bool continue_loop = true;
8437 * while (continue_loop)
8438 * {
8439 * solve_newton();
8440 * compute_error();
8441 *
8442 * if ( (timestep_no == 1) && (current_refinement_cycle < 1) )
8443 * {
8444 * TimerOutput::Scope t(computing_timer, "Setup: refine mesh");
8445 * ++current_refinement_cycle;
8446 * refine_grid();
8447 * }else
8448 * {
8449 * continue_loop = false;
8450 * }
8451 *
8452 * }
8453 * */
8454 *
8455 * @endcode
8456 *
8457 * -------------------------------------------------------------------------------------------------
8458 *
8459
8460 *
8461 *
8462 * @code
8463 * solution += incremental_displacement;
8464 *
8465 * update_quadrature_point_history ();
8466 *
8467 * output_results((std::string("solution-") +
8468 * Utilities::int_to_string(timestep_no, 4)).c_str());
8469 *
8470 * computing_timer.print_summary();
8471 * computing_timer.reset();
8472 *
8473 * Utilities::System::MemoryStats stats;
8474 * Utilities::System::get_memory_stats(stats);
8475 * pcout << "Peak virtual memory used, resident in kB: " << stats.VmSize << " "
8476 * << stats.VmRSS << std::endl;
8477 *
8478 *
8479 * if (std::abs(present_time-end_time) < 1.e-7)
8480 * {
8481 * const std::string filename = (output_dir + "Results");
8482 *
8483 * std::ofstream output_txt((filename + ".txt").c_str());
8484 *
8485 * pcout << std::endl;
8486 * table_results.write_text(output_txt);
8487 * pcout << std::endl;
8488 * table_results_2.write_text(output_txt);
8489 * pcout << std::endl;
8490 * table_results_3.write_text(output_txt);
8491 * pcout << std::endl;
8492 * }
8493 *
8494 * }
8495 *
8496 * if (base_mesh == "Thick_tube_internal_pressure")
8497 * {
8498 * triangulation.reset_manifold (0);
8499 * triangulation.reset_manifold (1);
8500 * }
8501 * else if (base_mesh == "Perforated_strip_tension")
8502 * {
8503 * triangulation.reset_manifold (10);
8504 * }
8505 *
8506 * }
8507 * }
8508 *
8509 * @endcode
8510 *
8511 *
8512 * <a name="Thecodemaincodefunction"></a>
8513 * <h3>The <code>main</code> function</h3>
8514 *
8515
8516 *
8517 * There really isn't much to the <code>main()</code> function. It looks
8518 * like they always do:
8519 *
8520 * @code
8521 * int main (int argc, char *argv[])
8522 * {
8523 * using namespace dealii;
8524 * using namespace ElastoPlastic;
8525 *
8526 * try
8527 * {
8529 * ParameterHandler prm;
8530 * const int dim = 3;
8531 * ElastoPlasticProblem<dim>::declare_parameters(prm);
8532 * if (argc != 2)
8533 * {
8534 * std::cerr << "*** Call this program as <./elastoplastic input.prm>" << std::endl;
8535 * return 1;
8536 * }
8537 *
8538 * prm.parse_input(argv[1]);
8539 * Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv);
8540 * {
8541 * ElastoPlasticProblem<dim> problem(prm);
8542 * problem.run();
8543 * }
8544 * }
8545 * catch (std::exception &exc)
8546 * {
8547 * std::cerr << std::endl << std::endl
8548 * << "----------------------------------------------------"
8549 * << std::endl;
8550 * std::cerr << "Exception on processing: " << std::endl
8551 * << exc.what() << std::endl
8552 * << "Aborting!" << std::endl
8553 * << "----------------------------------------------------"
8554 * << std::endl;
8555 *
8556 * return 1;
8557 * }
8558 * catch (...)
8559 * {
8560 * std::cerr << std::endl << std::endl
8561 * << "----------------------------------------------------"
8562 * << std::endl;
8563 * std::cerr << "Unknown exception!" << std::endl
8564 * << "Aborting!" << std::endl
8565 * << "----------------------------------------------------"
8566 * << std::endl;
8567 * return 1;
8568 * }
8569 *
8570 * return 0;
8571 * }
8572 * @endcode
8573
8574
8575*/
void merge(const AffineConstraints &other_constraints, const MergeConflictBehavior merge_conflict_behavior=no_conflicts_allowed, const bool allow_different_local_lines=false)
void reinit(const IndexSet &local_constraints=IndexSet())
void distribute_local_to_global(const InVector &local_vector, const std::vector< size_type > &local_dof_indices, OutVector &global_vector) const
void distribute(VectorType &vec) const
void set_zero(VectorType &vec) const
void attach_dof_handler(const DoFHandler< dim, spacedim > &)
void add_data_vector(const VectorType &data, const std::vector< std::string > &names, const DataVectorType type=type_automatic, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation={})
virtual void build_patches(const unsigned int n_subdivisions=0)
Definition: data_out.cc:1064
cell_iterator end() const
void distribute_dofs(const FiniteElement< dim, spacedim > &fe)
const IndexSet & locally_owned_dofs() const
active_cell_iterator begin_active(const unsigned int level=0) const
types::global_dof_index n_dofs() const
Definition: fe_dgq.h:111
Definition: fe_q.h:549
const unsigned int dofs_per_cell
Definition: fe_data.h:433
virtual void vector_value_list(const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
virtual void vector_value(const Point< dim > &p, Vector< RangeNumberType > &values) const
void clear()
Definition: index_set.h:1612
unsigned int depth_console(const unsigned int n)
Definition: logstream.cc:350
virtual void parse_input(std::istream &input, const std::string &filename="input file", const std::string &last_line="", const bool skip_undefined=false)
Definition: point.h:111
void initialize(const SparsityPattern &sparsity_pattern)
constexpr numbers::NumberTraits< Number >::real_type norm() const
Definition: tensor.h:503
numbers::NumberTraits< Number >::real_type norm() const
@ wall_times
Definition: timer.h:653
Definition: vector.h:109
Point< 3 > center
float depth
Point< 3 > vertices[4]
@ update_hessians
Second derivatives of shape functions.
@ update_values
Shape function values.
@ update_normal_vectors
Normal vectors.
@ update_JxW_values
Transformed quadrature weights.
@ update_gradients
Shape function gradients.
@ update_quadrature_points
Transformed quadrature points.
Point< 2 > second
Definition: grid_out.cc:4604
Point< 2 > first
Definition: grid_out.cc:4603
__global__ void set(Number *val, const Number s, const size_type N)
#define Assert(cond, exc)
Definition: exceptions.h:1473
void write_vtk(std::ostream &out) const
#define DeclException1(Exception1, type1, outsequence)
Definition: exceptions.h:509
#define AssertThrow(cond, exc)
Definition: exceptions.h:1583
typename ActiveSelector::cell_iterator cell_iterator
Definition: dof_handler.h:466
typename ActiveSelector::face_iterator face_iterator
Definition: dof_handler.h:484
typename ActiveSelector::active_cell_iterator active_cell_iterator
Definition: dof_handler.h:438
void loop(ITERATOR begin, typename identity< ITERATOR >::type end, DOFINFO &dinfo, INFOBOX &info, const std::function< void(DOFINFO &, typename INFOBOX::CellInfo &)> &cell_worker, const std::function< void(DOFINFO &, typename INFOBOX::CellInfo &)> &boundary_worker, const std::function< void(DOFINFO &, DOFINFO &, typename INFOBOX::CellInfo &, typename INFOBOX::CellInfo &)> &face_worker, ASSEMBLER &assembler, const LoopControl &lctrl=LoopControl())
Definition: loop.h:439
void initialize(const MatrixType &A, const AdditionalData &parameters=AdditionalData())
void reinit(const Vector &v, const bool omit_zeroing_entries=false, const bool allow_different_maps=false)
void compress(::VectorOperation::values operation)
size_type size() const
virtual void reinit(const size_type N, const bool omit_zeroing_entries=false)
void make_hanging_node_constraints(const DoFHandler< dim, spacedim > &dof_handler, AffineConstraints< number > &constraints)
void make_sparsity_pattern(const DoFHandler< dim, spacedim > &dof_handler, SparsityPatternType &sparsity_pattern, const AffineConstraints< number > &constraints=AffineConstraints< number >(), const bool keep_constrained_dofs=true, const types::subdomain_id subdomain_id=numbers::invalid_subdomain_id)
LogStream deallog
Definition: logstream.cc:37
const Event initial
Definition: event.cc:65
void downstream(DoFHandler< dim, spacedim > &dof_handler, const Tensor< 1, spacedim > &direction, const bool dof_wise_renumbering=false)
IndexSet extract_locally_relevant_dofs(const DoFHandler< dim, spacedim > &dof_handler)
Definition: dof_tools.cc:1144
void extract_constant_modes(const DoFHandler< dim, spacedim > &dof_handler, const ComponentMask &component_mask, std::vector< std::vector< bool > > &constant_modes)
Definition: dof_tools.cc:1255
void interpolation_difference(const DoFHandler< dim, spacedim > &dof1, const InVector &z1, const FiniteElement< dim, spacedim > &fe2, OutVector &z1_difference)
void compute_interpolation_to_quadrature_points_matrix(const FiniteElement< dim, spacedim > &fe, const Quadrature< dim > &quadrature, FullMatrix< double > &I_q)
void compute_projection_from_quadrature_points_matrix(const FiniteElement< dim, spacedim > &fe, const Quadrature< dim > &lhs_quadrature, const Quadrature< dim > &rhs_quadrature, FullMatrix< double > &X)
void interpolate(const DoFHandler< dim, spacedim > &dof1, const InVector &u1, const DoFHandler< dim, spacedim > &dof2, OutVector &u2)
SignedDistance::Plane< dim > Plane
void hyper_rectangle(Triangulation< dim, spacedim > &tria, const Point< dim > &p1, const Point< dim > &p2, const bool colorize=false)
void extrude_triangulation(const Triangulation< 2, 2 > &input, const unsigned int n_slices, const double height, Triangulation< 3, 3 > &result, const bool copy_manifold_ids=false, const std::vector< types::manifold_id > &manifold_priorities={})
void merge_triangulations(const Triangulation< dim, spacedim > &triangulation_1, const Triangulation< dim, spacedim > &triangulation_2, Triangulation< dim, spacedim > &result, const double duplicated_vertex_tolerance=1.0e-12, const bool copy_manifold_ids=false)
void subdivided_hyper_rectangle(Triangulation< dim, spacedim > &tria, const std::vector< unsigned int > &repetitions, const Point< dim > &p1, const Point< dim > &p2, const bool colorize=false)
void quarter_hyper_shell(Triangulation< dim > &tria, const Point< dim > &center, const double inner_radius, const double outer_radius, const unsigned int n_cells=0, const bool colorize=false)
void half_hyper_ball(Triangulation< dim > &tria, const Point< dim > &center=Point< dim >(), const double radius=1.)
void refine(Triangulation< dim, spacedim > &tria, const Vector< Number > &criteria, const double threshold, const unsigned int max_to_mark=numbers::invalid_unsigned_int)
void shift(const Tensor< 1, spacedim > &shift_vector, Triangulation< dim, spacedim > &triangulation)
Definition: grid_tools.cc:2050
void rotate(const double angle, Triangulation< dim > &triangulation)
double volume(const Triangulation< dim, spacedim > &tria, const Mapping< dim, spacedim > &mapping=(ReferenceCells::get_hypercube< dim >() .template get_default_linear_mapping< dim, spacedim >()))
Definition: grid_tools.cc:139
@ valid
Iterator points to a valid object.
@ matrix
Contents is actually a matrix.
@ symmetric
Matrix is symmetric.
@ diagonal
Matrix is diagonal.
@ general
No special properties.
void cell_matrix(FullMatrix< double > &M, const FEValuesBase< dim > &fe, const FEValuesBase< dim > &fetest, const ArrayView< const std::vector< double > > &velocity, const double factor=1.)
Definition: advection.h:75
double norm(const FEValuesBase< dim > &fe, const ArrayView< const std::vector< Tensor< 1, dim > > > &Du)
Definition: divergence.h:472
Point< spacedim > point(const gp_Pnt &p, const double tolerance=1e-10)
Definition: utilities.cc:190
SymmetricTensor< 2, dim, Number > e(const Tensor< 2, dim, Number > &F)
Tensor< 2, dim, Number > l(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
Number angle(const Tensor< 1, spacedim, Number > &a, const Tensor< 1, spacedim, Number > &b)
constexpr ReturnType< rank, T >::value_type & extract(T &t, const ArrayType &indices)
void call(const std::function< RT()> &function, internal::return_value< RT > &ret_val)
VectorType::value_type * end(VectorType &V)
void free(T *&pointer)
Definition: cuda.h:97
unsigned int this_mpi_process(const MPI_Comm &mpi_communicator)
Definition: mpi.cc:151
T sum(const T &t, const MPI_Comm &mpi_communicator)
unsigned int n_mpi_processes(const MPI_Comm &mpi_communicator)
Definition: mpi.cc:140
std::string int_to_string(const unsigned int value, const unsigned int digits=numbers::invalid_unsigned_int)
Definition: utilities.cc:473
std::vector< typename FEPointEvaluation< n_components, dim, spacedim, typename VectorType::value_type >::value_type > point_values(const Mapping< dim > &mapping, const DoFHandler< dim, spacedim > &dof_handler, const VectorType &vector, const std::vector< Point< spacedim > > &evaluation_points, Utilities::MPI::RemotePointEvaluation< dim, spacedim > &cache, const EvaluationFlags::EvaluationFlags flags=EvaluationFlags::avg)
void interpolate_boundary_values(const Mapping< dim, spacedim > &mapping, const DoFHandler< dim, spacedim > &dof, const std::map< types::boundary_id, const Function< spacedim, number > * > &function_map, std::map< types::global_dof_index, number > &boundary_values, const ComponentMask &component_mask=ComponentMask())
void run(const Iterator &begin, const typename identity< Iterator >::type &end, Worker worker, Copier copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const unsigned int queue_length, const unsigned int chunk_size)
Definition: work_stream.h:474
long double gamma(const unsigned int n)
int(&) functions(const void *v1, const void *v2)
const types::boundary_id invalid_boundary_id
Definition: types.h:244
::VectorizedArray< Number, width > max(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > cos(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sin(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sqrt(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > pow(const ::VectorizedArray< Number, width > &, const Number p)
::VectorizedArray< Number, width > abs(const ::VectorizedArray< Number, width > &)
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation
void swap(SmartPointer< T, P > &t1, SmartPointer< T, Q > &t2)
Definition: smartpointer.h:447
std::vector< unsigned int > vertices
types::material_id material_id
types::boundary_id boundary_id
std::vector< CellData< 2 > > boundary_quads
constexpr SymmetricTensor< 2, dim, Number > deviator(const SymmetricTensor< 2, dim, Number > &)
constexpr SymmetricTensor< 4, dim, Number > outer_product(const SymmetricTensor< 2, dim, Number > &t1, const SymmetricTensor< 2, dim, Number > &t2)
const ::Triangulation< dim, spacedim > & tria