Reference documentation for deal.II version 9.4.1
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
fe_raviart_thomas.cc
Go to the documentation of this file.
1// ---------------------------------------------------------------------
2//
3// Copyright (C) 2003 - 2021 by the deal.II authors
4//
5// This file is part of the deal.II library.
6//
7// The deal.II library is free software; you can use it, redistribute
8// it, and/or modify it under the terms of the GNU Lesser General
9// Public License as published by the Free Software Foundation; either
10// version 2.1 of the License, or (at your option) any later version.
11// The full text of the license can be found in the file LICENSE.md at
12// the top level directory of deal.II.
13//
14// ---------------------------------------------------------------------
15
16
22#include <deal.II/base/table.h>
24
26
27#include <deal.II/fe/fe.h>
29#include <deal.II/fe/fe_tools.h>
31#include <deal.II/fe/mapping.h>
32
33#include <deal.II/grid/tria.h>
35
36#include <iostream>
37#include <memory>
38#include <sstream>
39
40
42
43
44template <int dim>
46 : FE_PolyTensor<dim>(
48 FiniteElementData<dim>(get_dpo_vector(deg),
49 dim,
50 deg + 1,
51 FiniteElementData<dim>::Hdiv),
52 std::vector<bool>(PolynomialsRaviartThomas<dim>::n_polynomials(deg),
53 true),
54 std::vector<ComponentMask>(PolynomialsRaviartThomas<dim>::n_polynomials(
55 deg),
56 std::vector<bool>(dim, true)))
57{
58 Assert(dim >= 2, ExcImpossibleInDim(dim));
59 const unsigned int n_dofs = this->n_dofs_per_cell();
60
62 // First, initialize the
63 // generalized support points and
64 // quadrature weights, since they
65 // are required for interpolation.
67
68 // Now compute the inverse node matrix, generating the correct
69 // basis functions from the raw ones. For a discussion of what
70 // exactly happens here, see FETools::compute_node_matrix.
72 this->inverse_node_matrix.reinit(n_dofs, n_dofs);
74 // From now on, the shape functions provided by FiniteElement::shape_value
75 // and similar functions will be the correct ones, not
76 // the raw shape functions from the polynomial space anymore.
77
78 // Reinit the vectors of
79 // restriction and prolongation
80 // matrices to the right sizes.
81 // Restriction only for isotropic
82 // refinement
84 // Fill prolongation matrices with embedding operators
87
88 // TODO: the implementation makes the assumption that all faces have the
89 // same number of dofs
91 const unsigned int face_no = 0;
92
93 // TODO[TL]: for anisotropic refinement we will probably need a table of
94 // submatrices with an array for each refine case
96 for (unsigned int i = 0; i < GeometryInfo<dim>::max_children_per_face; ++i)
97 face_embeddings[i].reinit(this->n_dofs_per_face(face_no),
98 this->n_dofs_per_face(face_no));
99 FETools::compute_face_embedding_matrices<dim, double>(*this,
100 face_embeddings,
101 0,
102 0);
103 this->interface_constraints.reinit((1 << (dim - 1)) *
104 this->n_dofs_per_face(face_no),
105 this->n_dofs_per_face(face_no));
106 unsigned int target_row = 0;
107 for (unsigned int d = 0; d < GeometryInfo<dim>::max_children_per_face; ++d)
108 for (unsigned int i = 0; i < face_embeddings[d].m(); ++i)
109 {
110 for (unsigned int j = 0; j < face_embeddings[d].n(); ++j)
111 this->interface_constraints(target_row, j) = face_embeddings[d](i, j);
112 ++target_row;
113 }
114
115 // We need to initialize the dof permutation table and the one for the sign
116 // change.
118}
119
120
121
122template <int dim>
123std::string
125{
126 // note that the
127 // FETools::get_fe_by_name
128 // function depends on the
129 // particular format of the string
130 // this function returns, so they
131 // have to be kept in synch
132
133 // note that this->degree is the maximal
134 // polynomial degree and is thus one higher
135 // than the argument given to the
136 // constructor
137 std::ostringstream namebuf;
138 namebuf << "FE_RaviartThomas<" << dim << ">(" << this->degree - 1 << ")";
139
140 return namebuf.str();
141}
142
143
144template <int dim>
145std::unique_ptr<FiniteElement<dim, dim>>
147{
148 return std::make_unique<FE_RaviartThomas<dim>>(*this);
149}
150
151
152//---------------------------------------------------------------------------
153// Auxiliary and internal functions
154//---------------------------------------------------------------------------
155
156
157template <int dim>
158void
160{
161 QGauss<dim> cell_quadrature(deg + 1);
162 const unsigned int n_interior_points = (deg > 0) ? cell_quadrature.size() : 0;
163
164 // TODO: the implementation makes the assumption that all faces have the
165 // same number of dofs
166 AssertDimension(this->n_unique_faces(), 1);
167 const unsigned int face_no = 0;
168
169 unsigned int n_face_points = (dim > 1) ? 1 : 0;
170 // compute (deg+1)^(dim-1)
171 for (unsigned int d = 1; d < dim; ++d)
172 n_face_points *= deg + 1;
173
174
175 this->generalized_support_points.resize(
176 GeometryInfo<dim>::faces_per_cell * n_face_points + n_interior_points);
177 this->generalized_face_support_points[face_no].resize(n_face_points);
178
179 // Number of the point being entered
180 unsigned int current = 0;
181
182 if (dim > 1)
183 {
184 QGauss<dim - 1> face_points(deg + 1);
185 TensorProductPolynomials<dim - 1> legendre =
187
188 boundary_weights.reinit(n_face_points, legendre.n());
189
190 for (unsigned int k = 0; k < n_face_points; ++k)
191 {
192 this->generalized_face_support_points[face_no][k] =
193 face_points.point(k);
194 // Compute its quadrature
195 // contribution for each
196 // moment.
197 for (unsigned int i = 0; i < legendre.n(); ++i)
198 {
199 boundary_weights(k, i) =
200 face_points.weight(k) *
201 legendre.compute_value(i, face_points.point(k));
202 }
203 }
204
205 Quadrature<dim> faces =
206 QProjector<dim>::project_to_all_faces(this->reference_cell(),
207 face_points);
208 for (; current < GeometryInfo<dim>::faces_per_cell * n_face_points;
209 ++current)
210 {
211 // Enter the support point
212 // into the vector
213 this->generalized_support_points[current] = faces.point(
214 current +
216 this->reference_cell(), 0, true, false, false, n_face_points));
217 }
218 }
219
220 if (deg == 0)
221 return;
222
223 // Create Legendre basis for the space D_xi Q_k
224 std::unique_ptr<AnisotropicPolynomials<dim>> polynomials[dim];
225 for (unsigned int dd = 0; dd < dim; ++dd)
226 {
227 std::vector<std::vector<Polynomials::Polynomial<double>>> poly(dim);
228 for (unsigned int d = 0; d < dim; ++d)
231
232 polynomials[dd] = std::make_unique<AnisotropicPolynomials<dim>>(poly);
233 }
234
235 interior_weights.reinit(
236 TableIndices<3>(n_interior_points, polynomials[0]->n(), dim));
237
238 for (unsigned int k = 0; k < cell_quadrature.size(); ++k)
239 {
240 this->generalized_support_points[current++] = cell_quadrature.point(k);
241 for (unsigned int i = 0; i < polynomials[0]->n(); ++i)
242 for (unsigned int d = 0; d < dim; ++d)
243 interior_weights(k, i, d) =
244 cell_quadrature.weight(k) *
245 polynomials[d]->compute_value(i, cell_quadrature.point(k));
246 }
247
248 Assert(current == this->generalized_support_points.size(),
250}
251
252
253template <int dim>
254void
256{
257 // For 1D do nothing.
258 //
259 // TODO: For 2D we simply keep the legacy behavior for now. This should be
260 // changed in the future and can be taken care of by similar means as the 3D
261 // case below. The legacy behavior can be found in fe_poly_tensor.cc in the
262 // function internal::FE_PolyTensor::get_dof_sign_change_h_div(...)
263 if (dim < 3)
264 return;
265
266 // TODO: the implementation makes the assumption that all faces have the
267 // same number of dofs
268 AssertDimension(this->n_unique_faces(), 1);
269 const unsigned int face_no = 0;
270
271 Assert(this->adjust_quad_dof_index_for_face_orientation_table[0]
272 .n_elements() == 8 * this->n_dofs_per_quad(face_no),
274
275 // The 3D RaviartThomas space has tensor_degree*tensor_degree face dofs
276 const unsigned int n = this->tensor_degree();
277 Assert(n * n == this->n_dofs_per_quad(face_no), ExcInternalError());
278
279 // The vector of tables adjust_quad_dof_index_for_face_orientation_table
280 // contains offsets for local face_dofs and is being filled with zeros in
281 // fe.cc. We need to fill it with the correct values in case of non-standard,
282 // flipped (rotated by +180 degrees) or rotated (rotated by +90 degrees) faces
283
284 // The dofs on a face are connected to a n x n matrix. for example, for
285 // tensor_degree==3 we have the following dofs on a quad:
286
287 // ___________
288 // | |
289 // | 6 7 8 |
290 // | |
291 // | 3 4 5 |
292 // | |
293 // | 0 1 2 |
294 // |___________|
295 //
296 // We have dof_index=i+n*j with index i in x-direction and index j in
297 // y-direction running from 0 to n-1. to extract i and j we can use
298 // i=dof_index%n and j=dof_index/n. The indices i and j can then be used to
299 // compute the offset.
300
301 // Example: if the switches are (true | true | true) that means we rotate the
302 // face first by + 90 degree(counterclockwise) then by another +180
303 // degrees but we do not flip it since the face has standard
304 // orientation. The flip axis is the diagonal from the lower left to the upper
305 // right corner of the face. With these flags the configuration above becomes:
306 // ___________
307 // | |
308 // | 2 5 8 |
309 // | |
310 // | 1 4 7 |
311 // | |
312 // | 0 3 6 |
313 // |___________|
314 //
315 // This is exactly what is realized by the formulas implemented below. Note
316 // that the necessity of a permuattion depends on the three flags.
317
318 // There is also a pattern for the sign change of the mapped face_dofs
319 // depending on the switches. In the above example it would be
320 // ___________
321 // | |
322 // | + - + |
323 // | |
324 // | + - + |
325 // | |
326 // | + - + |
327 // |___________|
328 //
329
330 for (unsigned int local_face_dof = 0;
331 local_face_dof < this->n_dofs_per_quad(face_no);
332 ++local_face_dof)
333 {
334 // Row and column
335 unsigned int i = local_face_dof % n;
336 unsigned int j = local_face_dof / n;
337
338 // We have 8 cases that are all treated the same way. Note that the
339 // corresponding case to case_no is just its binary representation.
340 // The above example of (false | true | true) would be case_no=3
341 for (unsigned int case_no = 0; case_no < 8; ++case_no)
342 {
343 // Get the binary representation of the case
344 const bool face_orientation = Utilities::get_bit(case_no, 2);
345 const bool face_flip = Utilities::get_bit(case_no, 1);
346 const bool face_rotation = Utilities::get_bit(case_no, 0);
347
348 if (((!face_orientation) && (!face_rotation)) ||
349 ((face_orientation) && (face_rotation)))
350 {
351 // We flip across the diagonal
352 // This is the local face dof offset
353 this->adjust_quad_dof_index_for_face_orientation_table[face_no](
354 local_face_dof, case_no) = j + i * n - local_face_dof;
355 }
356 else
357 {
358 // Offset is zero
359 this->adjust_quad_dof_index_for_face_orientation_table[face_no](
360 local_face_dof, case_no) = 0;
361 } // if face needs dof permutation
362
363 // Get new local face_dof by adding offset
364 const unsigned int new_local_face_dof =
365 local_face_dof +
366 this->adjust_quad_dof_index_for_face_orientation_table[face_no](
367 local_face_dof, case_no);
368 // compute new row and column index
369 i = new_local_face_dof % n;
370 j = new_local_face_dof / n;
371
372 /*
373 * Now compute if a sign change is necessary. This is done for the
374 * case of face_orientation==true
375 */
376 // flip = false, rotation=true
377 if (!face_flip && face_rotation)
378 {
379 this->adjust_quad_dof_sign_for_face_orientation_table[face_no](
380 local_face_dof, case_no) = ((j % 2) == 1);
381 }
382 // flip = true, rotation=false
383 else if (face_flip && !face_rotation)
384 {
385 // This case is symmetric (although row and column may be
386 // switched)
387 this->adjust_quad_dof_sign_for_face_orientation_table[face_no](
388 local_face_dof, case_no) = ((j % 2) == 1) != ((i % 2) == 1);
389 }
390 // flip = true, rotation=true
391 else if (face_flip && face_rotation)
392 {
393 this->adjust_quad_dof_sign_for_face_orientation_table[face_no](
394 local_face_dof, case_no) = ((i % 2) == 1);
395 }
396 /*
397 * flip = false, rotation=false => nothing to do
398 */
399
400 /*
401 * If face_orientation==false the sign flip is exactly the opposite.
402 */
403 if (!face_orientation)
404 this->adjust_quad_dof_sign_for_face_orientation_table[face_no](
405 local_face_dof, case_no) =
406 !this->adjust_quad_dof_sign_for_face_orientation_table[face_no](
407 local_face_dof, case_no);
408 } // case_no
409 } // local_face_dof
410}
411
412
413template <>
414void
416{
417 // there is only one refinement case in 1d,
418 // which is the isotropic one (first index of
419 // the matrix array has to be 0)
420 for (unsigned int i = 0; i < GeometryInfo<1>::max_children_per_cell; ++i)
421 this->restriction[0][i].reinit(0, 0);
422}
423
424
425
426// This function is the same Raviart-Thomas interpolation performed by
427// interpolate. Still, we cannot use interpolate, since it was written
428// for smooth functions. The functions interpolated here are not
429// smooth, maybe even not continuous. Therefore, we must double the
430// number of quadrature points in each direction in order to integrate
431// only smooth functions.
432
433// Then again, the interpolated function is chosen such that the
434// moments coincide with the function to be interpolated.
435
436template <int dim>
437void
439{
440 const unsigned int iso = RefinementCase<dim>::isotropic_refinement - 1;
441
442 QGauss<dim - 1> q_base(this->degree);
443 const unsigned int n_face_points = q_base.size();
444 // First, compute interpolation on
445 // subfaces
446 for (unsigned int face : GeometryInfo<dim>::face_indices())
447 {
448 // The shape functions of the
449 // child cell are evaluated
450 // in the quadrature points
451 // of a full face.
452 Quadrature<dim> q_face =
453 QProjector<dim>::project_to_face(this->reference_cell(), q_base, face);
454 // Store shape values, since the
455 // evaluation suffers if not
456 // ordered by point
457 Table<2, double> cached_values_on_face(this->n_dofs_per_cell(),
458 q_face.size());
459 for (unsigned int k = 0; k < q_face.size(); ++k)
460 for (unsigned int i = 0; i < this->n_dofs_per_cell(); ++i)
461 cached_values_on_face(i, k) = this->shape_value_component(
463
464 for (unsigned int sub = 0; sub < GeometryInfo<dim>::max_children_per_face;
465 ++sub)
466 {
467 // The weight functions for
468 // the coarse face are
469 // evaluated on the subface
470 // only.
472 this->reference_cell(), q_base, face, sub);
473 const unsigned int child = GeometryInfo<dim>::child_cell_on_face(
475
476 // On a certain face, we must
477 // compute the moments of ALL
478 // fine level functions with
479 // the coarse level weight
480 // functions belonging to
481 // that face. Due to the
482 // orthogonalization process
483 // when building the shape
484 // functions, these weights
485 // are equal to the
486 // corresponding shape
487 // functions.
488 for (unsigned int k = 0; k < n_face_points; ++k)
489 for (unsigned int i_child = 0; i_child < this->n_dofs_per_cell();
490 ++i_child)
491 for (unsigned int i_face = 0;
492 i_face < this->n_dofs_per_face(face);
493 ++i_face)
494 {
495 // The quadrature
496 // weights on the
497 // subcell are NOT
498 // transformed, so we
499 // have to do it here.
500 this->restriction[iso][child](
501 face * this->n_dofs_per_face(face) + i_face, i_child) +=
502 Utilities::fixed_power<dim - 1>(.5) * q_sub.weight(k) *
503 cached_values_on_face(i_child, k) *
504 this->shape_value_component(
505 face * this->n_dofs_per_face(face) + i_face,
506 q_sub.point(k),
508 }
509 }
510 }
511
512 if (this->degree == 1)
513 return;
514
515 // Create Legendre basis for the space D_xi Q_k. Here, we cannot
516 // use the shape functions
517 std::unique_ptr<AnisotropicPolynomials<dim>> polynomials[dim];
518 for (unsigned int dd = 0; dd < dim; ++dd)
519 {
520 std::vector<std::vector<Polynomials::Polynomial<double>>> poly(dim);
521 for (unsigned int d = 0; d < dim; ++d)
522 poly[d] =
524 poly[dd] =
526
527 polynomials[dd] = std::make_unique<AnisotropicPolynomials<dim>>(poly);
528 }
529
530 // TODO: the implementation makes the assumption that all faces have the
531 // same number of dofs
532 AssertDimension(this->n_unique_faces(), 1);
533 const unsigned int face_no = 0;
534
535 QGauss<dim> q_cell(this->degree);
536 const unsigned int start_cell_dofs =
537 GeometryInfo<dim>::faces_per_cell * this->n_dofs_per_face(face_no);
538
539 // Store shape values, since the
540 // evaluation suffers if not
541 // ordered by point
542 Table<3, double> cached_values_on_cell(this->n_dofs_per_cell(),
543 q_cell.size(),
544 dim);
545 for (unsigned int k = 0; k < q_cell.size(); ++k)
546 for (unsigned int i = 0; i < this->n_dofs_per_cell(); ++i)
547 for (unsigned int d = 0; d < dim; ++d)
548 cached_values_on_cell(i, k, d) =
549 this->shape_value_component(i, q_cell.point(k), d);
550
551 for (unsigned int child = 0; child < GeometryInfo<dim>::max_children_per_cell;
552 ++child)
553 {
554 Quadrature<dim> q_sub =
555 QProjector<dim>::project_to_child(this->reference_cell(),
556 q_cell,
557 child);
558
559 for (unsigned int k = 0; k < q_sub.size(); ++k)
560 for (unsigned int i_child = 0; i_child < this->n_dofs_per_cell();
561 ++i_child)
562 for (unsigned int d = 0; d < dim; ++d)
563 for (unsigned int i_weight = 0; i_weight < polynomials[d]->n();
564 ++i_weight)
565 {
566 this->restriction[iso][child](start_cell_dofs + i_weight * dim +
567 d,
568 i_child) +=
569 q_sub.weight(k) * cached_values_on_cell(i_child, k, d) *
570 polynomials[d]->compute_value(i_weight, q_sub.point(k));
571 }
572 }
573}
574
575
576
577template <int dim>
578std::vector<unsigned int>
580{
581 // the element is face-based and we have
582 // (deg+1)^(dim-1) DoFs per face
583 unsigned int dofs_per_face = 1;
584 for (unsigned int d = 1; d < dim; ++d)
585 dofs_per_face *= deg + 1;
586
587 // and then there are interior dofs
588 const unsigned int interior_dofs = dim * deg * dofs_per_face;
589
590 std::vector<unsigned int> dpo(dim + 1);
591 dpo[dim - 1] = dofs_per_face;
592 dpo[dim] = interior_dofs;
593
594 return dpo;
595}
596
597
598
599template <int dim>
600std::pair<Table<2, bool>, std::vector<unsigned int>>
602{
603 Table<2, bool> constant_modes(dim, this->n_dofs_per_cell());
604 for (unsigned int d = 0; d < dim; ++d)
605 for (unsigned int i = 0; i < this->n_dofs_per_cell(); ++i)
606 constant_modes(d, i) = true;
607 std::vector<unsigned int> components;
608 for (unsigned int d = 0; d < dim; ++d)
609 components.push_back(d);
610 return std::pair<Table<2, bool>, std::vector<unsigned int>>(constant_modes,
611 components);
612}
613
614
615
616//---------------------------------------------------------------------------
617// Data field initialization
618//---------------------------------------------------------------------------
619
620
621template <int dim>
622bool
623FE_RaviartThomas<dim>::has_support_on_face(const unsigned int shape_index,
624 const unsigned int face_index) const
625{
626 AssertIndexRange(shape_index, this->n_dofs_per_cell());
628
629 // Return computed values if we
630 // know them easily. Otherwise, it
631 // is always safe to return true.
632 switch (this->degree)
633 {
634 case 1:
635 {
636 switch (dim)
637 {
638 case 2:
639 {
640 // only on the one
641 // non-adjacent face
642 // are the values
643 // actually zero. list
644 // these in a table
645 return (face_index !=
647 }
648
649 default:
650 return true;
651 }
652 }
653
654 default: // other rt_order
655 return true;
656 }
657
658 return true;
659}
660
661
662
663template <int dim>
664void
666 const std::vector<Vector<double>> &support_point_values,
667 std::vector<double> & nodal_values) const
668{
669 Assert(support_point_values.size() == this->generalized_support_points.size(),
670 ExcDimensionMismatch(support_point_values.size(),
671 this->generalized_support_points.size()));
672 Assert(nodal_values.size() == this->n_dofs_per_cell(),
673 ExcDimensionMismatch(nodal_values.size(), this->n_dofs_per_cell()));
674 Assert(support_point_values[0].size() == this->n_components(),
675 ExcDimensionMismatch(support_point_values[0].size(),
676 this->n_components()));
677
678 std::fill(nodal_values.begin(), nodal_values.end(), 0.);
679
680 const unsigned int n_face_points = boundary_weights.size(0);
681 for (unsigned int face : GeometryInfo<dim>::face_indices())
682 for (unsigned int k = 0; k < n_face_points; ++k)
683 for (unsigned int i = 0; i < boundary_weights.size(1); ++i)
684 {
685 nodal_values[i + face * this->n_dofs_per_face(face)] +=
686 boundary_weights(k, i) *
687 support_point_values[face * n_face_points + k](
689 }
690
691 // TODO: the implementation makes the assumption that all faces have the
692 // same number of dofs
693 AssertDimension(this->n_unique_faces(), 1);
694 const unsigned int face_no = 0;
695
696 const unsigned int start_cell_dofs =
697 GeometryInfo<dim>::faces_per_cell * this->n_dofs_per_face(face_no);
698 const unsigned int start_cell_points =
699 GeometryInfo<dim>::faces_per_cell * n_face_points;
700
701 for (unsigned int k = 0; k < interior_weights.size(0); ++k)
702 for (unsigned int i = 0; i < interior_weights.size(1); ++i)
703 for (unsigned int d = 0; d < dim; ++d)
704 nodal_values[start_cell_dofs + i * dim + d] +=
705 interior_weights(k, i, d) *
706 support_point_values[k + start_cell_points](d);
707}
708
709
710
711template <int dim>
712std::size_t
714{
715 Assert(false, ExcNotImplemented());
716 return 0;
717}
718
719
720
721// explicit instantiations
722#include "fe_raviart_thomas.inst"
723
724
FullMatrix< double > inverse_node_matrix
std::vector< MappingKind > mapping_kind
virtual std::size_t memory_consumption() const override
virtual void convert_generalized_support_point_values_to_dof_values(const std::vector< Vector< double > > &support_point_values, std::vector< double > &nodal_values) const override
virtual bool has_support_on_face(const unsigned int shape_index, const unsigned int face_index) const override
virtual std::pair< Table< 2, bool >, std::vector< unsigned int > > get_constant_modes() const override
void initialize_quad_dof_index_permutation_and_sign_change()
virtual std::unique_ptr< FiniteElement< dim, dim > > clone() const override
friend class FE_RaviartThomas
void initialize_support_points(const unsigned int rt_degree)
static std::vector< unsigned int > get_dpo_vector(const unsigned int degree)
virtual std::string get_name() const override
unsigned int n_dofs_per_cell() const
unsigned int n_dofs_per_face(unsigned int face_no=0, unsigned int child=0) const
unsigned int n_unique_faces() const
void reinit_restriction_and_prolongation_matrices(const bool isotropic_restriction_only=false, const bool isotropic_prolongation_only=false)
FullMatrix< double > interface_constraints
Definition: fe.h:2439
std::vector< std::vector< FullMatrix< double > > > prolongation
Definition: fe.h:2427
size_type n() const
void invert(const FullMatrix< number2 > &M)
size_type m() const
static std::vector< Polynomial< double > > generate_complete_basis(const unsigned int degree)
Definition: polynomial.cc:745
static void project_to_subface(const SubQuadrature &quadrature, const unsigned int face_no, const unsigned int subface_no, std::vector< Point< dim > > &q_points, const RefinementCase< dim - 1 > &ref_case=RefinementCase< dim - 1 >::isotropic_refinement)
static Quadrature< dim > project_to_all_faces(const Quadrature< dim - 1 > &quadrature)
Definition: qprojector.h:579
static Quadrature< dim > project_to_child(const Quadrature< dim > &quadrature, const unsigned int child_no)
Definition: qprojector.cc:1238
static void project_to_face(const SubQuadrature &quadrature, const unsigned int face_no, std::vector< Point< dim > > &q_points)
const Point< dim > & point(const unsigned int i) const
double weight(const unsigned int i) const
unsigned int size() const
Definition: vector.h:109
#define DEAL_II_NAMESPACE_OPEN
Definition: config.h:442
#define DEAL_II_NAMESPACE_CLOSE
Definition: config.h:443
static ::ExceptionBase & ExcNotImplemented()
#define Assert(cond, exc)
Definition: exceptions.h:1473
static ::ExceptionBase & ExcImpossibleInDim(int arg1)
#define AssertDimension(dim1, dim2)
Definition: exceptions.h:1667
#define AssertIndexRange(index, range)
Definition: exceptions.h:1732
static ::ExceptionBase & ExcInternalError()
static ::ExceptionBase & ExcDimensionMismatch(std::size_t arg1, std::size_t arg2)
@ mapping_raviart_thomas
Definition: mapping.h:127
void compute_embedding_matrices(const FiniteElement< dim, spacedim > &fe, std::vector< std::vector< FullMatrix< number > > > &matrices, const bool isotropic_only=false, const double threshold=1.e-12)
FullMatrix< double > compute_node_matrix(const FiniteElement< dim, spacedim > &fe)
bool get_bit(const unsigned char number, const unsigned int n)
Definition: utilities.h:1707
STL namespace.
static unsigned int child_cell_on_face(const RefinementCase< dim > &ref_case, const unsigned int face, const unsigned int subface, const bool face_orientation=true, const bool face_flip=false, const bool face_rotation=false, const RefinementCase< dim - 1 > &face_refinement_case=RefinementCase< dim - 1 >::isotropic_refinement)