Reference documentation for deal.II version 9.4.1
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
The 'Two phase flow interaction ' code gallery program

This program was contributed by Manuel Quezada de Luna <manuel.quezada.dl@gmail.com>.
It comes without any warranty or support by its authors or the authors of deal.II.

This program is part of the deal.II code gallery and consists of the following files (click to inspect):

Pictures from this code gallery program

Annotated version of Readme.md

Two Phase Flow

General description of the problem

We consider the problem of two-phase incompressible flow. We start with an initial state of two phases (fluids) that define density and viscosity fields. Using these fields we solve the incompressible Navier-Stokes equations to obtain a velocity field.

We use the initial state to define a representation of the interface via a Level Set function \(\phi\in[-1, 1]\). The zero level set \(\{\phi=0\}\) defines the interface of the phases. Positive values of the level set function represent water while negative values represent air.

Using the velocity field from the Navier-Stokes equations we transport the level set function. To do this we assume the velocity is divergence free and write the transport equation in conservation form.

Using the advected level set function we reconstruct density and viscosity fields. We repeat the process until the final desired time.

The Navier-Stokes equations are solved using a projection scheme based on [1]. To solve the level set we use continuous Galerkin Finite Elements with high-order stabilization based on the entropy residual of the solution [2] and artificial compression inspired by [3] and [4].


General description of the code

Driver code: MultiPhase

The driver code of the simulation is the run function within MultiPhase.cc. The general idea is to define here everything that has to do with the problem, set all the (physical and numerical) parameters and perform the time loop. The run function does the following: Set some physical parameters like final time, density and viscosity coefficients, etc. and numerical parameters like cfl, numerical constants, algorithms to be used, etc. Creates the geometry for the specified problem. Currently we have the following problems: Breaking Dam problem in 2D. Filling a tank in 2D. Small wave perturbation in 2D. Falling drop in 2D. Creates an object of the class NavierStokesSolver and an object of the class LevelSetSolver.
Set the initial condition for each of the solvers. Performs the time loop. Within the time loop we do the following: Pass the current level set function to the Navier Stokes Solver. Ask the Navier Stokes Solver to perform one time step. Get the velocity field from the Navier Stokes Solver. Pass the velocity field to the Level Set Solver. Ask the Level Set Solver to perform one time step. Get the level set function from the Level Set Solver. Repeat until the final time. Output the solution at the requested times.

Navier Stokes Solver

The NavierStokesSolver class is responsible for solving the Navier Stokes equation for just one time step. It requires density and viscosity information. This information can be passed by either a function or by passing a vector containing the DOFs of the level set function. For this reason the class contains the following two constructors: First constructor. Here we have to pass density and viscosity constants for the two phases. In addition, we have to pass a vector of DOFs defining the level set function. This constructor is meant to be used during the two-phase flow simulations. Second constructor. Here we have to pass functions to define the viscosity and density fields. This is meant to test the convergence properties of the method (and to validate the implementation).

Level Set Solver

The LevelSetSolver.cc code is responsible for solving the Level Set for just one time step. It requires information about the velocity field and provides the transported level set function. The velocity field can be interpolated (outside of this class) from a given function to test the method (and to validate the implementation). Alternatively, the velocity can be provided from the solution of the Navier-Stokes equations (for the two phase flow simulations).

Testing the Navier Stokes Solver

The TestNavierStokes.cc code is used to test the convergence (in time) of the Navier-Stokes solver. To run it uncomment the line SET(TARGET "TestNavierStokes") within CMakeLists.txt (and make sure to comment SET(TARGET "TestLevelSet") and SET(TARGET "MultiPhase"). Then cmake and compile. The convergence can be done in 2 or 3 dimensions. Different exact solutions (and force terms) are used in each case. The dimension can be set in the line TestNavierStokes<2> test_navier_stokes(degree_LS, degree_U) within the main function.

Testing the Level Set Solver

The TestLevelSet.cc code is used to test the level set solver. To run it uncomment the corresponding line within CMakeLists.txt. Then cmake and compile. There are currently just two problems implemented: diagonal advection and circular rotation. If the velocity is independent of time set the flag VARIABLE_VELOCITY to zero to avoid interpolating the velocity field at every time step.

Utility files

The files utilities.cc, utilities_test_LS.cc and utilities_test_NS.cc contain functions required in MultiPhase.cc, TestLevelSet.cc and TestNavierStokes.cc respectively. The script clean.sh ereases all files created by cmake, compile and run any example.


References

[1] J.-L. Guermond and A. Salgado. A splitting method for incompressible flows with variable density based on a pressure Poisson equation. Journal of Computational Physics, 228(8):2834–2846, 2009.

[2] J.-L. Guermond, R. Pasquetti, and B. Popov. Entropy viscosity method for nonlinear conservation laws. Journal of Computational Physics, 230(11):4248– 4267, 2011.

[3] A. Harten. The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws. Communications on Pure and Applied Mathematics, 30(5):611–638, 1977.

[4] A. Harten. The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Mathematics of Computation, 32:363–389, 1978.

Annotated version of LevelSetSolver.cc

#include <mpi.h>
#include <fstream>
#include <iostream>
#include <memory>
using namespace dealii;

FLAGS

#define NUM_ITER 1
#define CHECK_MAX_PRINCIPLE 0

LOG FOR LEVEL SET FROM -1 to 1

#define ENTROPY(phi) std::log(std::abs(1-phi*phi)+1E-14)
#define ENTROPY_GRAD(phi,phix) 2*phi*phix*((1-phi*phi>=0) ? -1 : 1)/(std::abs(1-phi*phi)+1E-14)

////////////////////////////////////////////////////// ////////////////// TRANSPORT SOLVER ////////////////// ////////////////////////////////////////////////////// This is a solver for the transpor solver. We assume the velocity is divergence free and solve the equation in conservation form. /////////////////////////////// -------— NOTATION -------— /////////////////////////////// We use notation popular in the literature of conservation laws. For this reason the solution is denoted as u, unm1, unp1, etc. and the velocity is treated as vx, vy and vz.

template <int dim>
class LevelSetSolver
{
public:

//////////////////// INITIAL CONDITIONS ////////////////////

void initial_condition(PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_vx,
PETScWrappers::MPI::Vector locally_relevant_solution_vy);
void initial_condition(PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_vx,
PETScWrappers::MPI::Vector locally_relevant_solution_vy,
PETScWrappers::MPI::Vector locally_relevant_solution_vz);

///////////////////// BOUNDARY CONDITIONS /////////////////////

void set_boundary_conditions(std::vector<types::global_dof_index> &boundary_values_id_u,
std::vector<double> boundary_values_u);

////////////// SET VELOCITY //////////////

void set_velocity(PETScWrappers::MPI::Vector locally_relevant_solution_vx,
PETScWrappers::MPI::Vector locally_relevant_solution_vy);
void set_velocity(PETScWrappers::MPI::Vector locally_relevant_solution_vx,
PETScWrappers::MPI::Vector locally_relevant_solution_vy,
PETScWrappers::MPI::Vector locally_relevant_solution_vz);

/////////////////// SET AND GET ALPHA ///////////////////

void get_unp1(PETScWrappers::MPI::Vector &locally_relevant_solution_u);

/////////////// NTH TIME STEP ///////////////

void nth_time_step();

/////// SETUP ///////

void setup();
LevelSetSolver (const unsigned int degree_LS,
const unsigned int degree_U,
const double time_step,
const double cK,
const double cE,
const bool verbose,
std::string ALGORITHM,
const unsigned int TIME_INTEGRATION,
MPI_Comm &mpi_communicator);
~LevelSetSolver();
private:
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation

//////////////////////////////////// ASSEMBLE MASS (and other) MATRICES ////////////////////////////////////

void assemble_ML();
void invert_ML();
void assemble_MC();

////////////////////////////////// LOW ORDER METHOD (DiJ Viscosity) //////////////////////////////////

void assemble_C_Matrix();
void assemble_K_times_vector(PETScWrappers::MPI::Vector &solution);
void assemble_K_DL_DH_times_vector(PETScWrappers::MPI::Vector &solution);

/////////////////// ENTROPY VISCOSITY ///////////////////

void assemble_EntRes_Matrix();

/////////////////////// FOR MAXIMUM PRINCIPLE ///////////////////////

void compute_bounds(PETScWrappers::MPI::Vector &un_solution);
void check_max_principle(PETScWrappers::MPI::Vector &unp1_solution);

/////////////////// COMPUTE SOLUTIONS ///////////////////

void compute_MPP_uL_and_NMPP_uH(PETScWrappers::MPI::Vector &MPP_uL_solution,
PETScWrappers::MPI::Vector &NMPP_uH_solution,
void compute_MPP_uH(PETScWrappers::MPI::Vector &MPP_uH_solution,
PETScWrappers::MPI::Vector &MPP_uL_solution_ghosted,
PETScWrappers::MPI::Vector &NMPP_uH_solution_ghosted,
void compute_MPP_uH_with_iterated_FCT(PETScWrappers::MPI::Vector &MPP_uH_solution,
PETScWrappers::MPI::Vector &MPP_uL_solution_ghosted,
PETScWrappers::MPI::Vector &NMPP_uH_solution_ghosted,
void compute_solution(PETScWrappers::MPI::Vector &unp1,
std::string algorithm);
void compute_solution_SSP33(PETScWrappers::MPI::Vector &unp1,
std::string algorithm);

/////////// UTILITIES ///////////

void get_sparsity_pattern();
void get_map_from_Q1_to_Q2();
void solve(const AffineConstraints<double> &constraints,
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner,
PETScWrappers::MPI::Vector &completely_distributed_solution,
void save_old_solution();
void save_old_vel_solution();

/////////////////// MY PETSC WRAPPERS ///////////////////

void get_vector_values(PETScWrappers::VectorBase &vector,
const std::vector<types::global_dof_index> &indices,
std::vector<PetscScalar> &values);
void get_vector_values(PETScWrappers::VectorBase &vector,
const std::vector<types::global_dof_index> &indices,
std::map<types::global_dof_index, types::global_dof_index> &map_from_Q1_to_Q2,
std::vector<PetscScalar> &values);
MPI_Comm mpi_communicator;

FINITE ELEMENT SPACE

int degree_MAX;
int degree_LS;
DoFHandler<dim> dof_handler_LS;
FE_Q<dim> fe_LS;
IndexSet locally_owned_dofs_LS;
IndexSet locally_relevant_dofs_LS;
int degree_U;
DoFHandler<dim> dof_handler_U;
FE_Q<dim> fe_U;
IndexSet locally_owned_dofs_U;
IndexSet locally_relevant_dofs_U;
Definition: fe_q.h:549

OPERATORS times SOLUTION VECTOR

PETScWrappers::MPI::Vector K_times_solution;
PETScWrappers::MPI::Vector DL_times_solution;
PETScWrappers::MPI::Vector DH_times_solution;

MASS MATRIX

std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> MC_preconditioner;

BOUNDARIES

std::vector<types::global_dof_index> boundary_values_id_u;
std::vector<double> boundary_values_u;

////////// MATRICES ////////// FOR FIRST ORDER VISCOSITY

PETScWrappers::MPI::SparseMatrix Cx_matrix, CTx_matrix, Cy_matrix, CTy_matrix, Cz_matrix, CTz_matrix;

FOR ENTROPY VISCOSITY

PETScWrappers::MPI::SparseMatrix EntRes_matrix, SuppSize_matrix, dCij_matrix;

FOR FCT (flux and limited flux)

PETScWrappers::MPI::SparseMatrix A_matrix, LxA_matrix;

FOR ITERATIVE FCT

PETScWrappers::MPI::SparseMatrix Akp1_matrix, LxAkp1_matrix;

GHOSTED VECTORS

PETScWrappers::MPI::Vector uStage1, uStage2;
PETScWrappers::MPI::Vector R_pos_vector, R_neg_vector;
PETScWrappers::MPI::Vector MPP_uL_solution_ghosted, MPP_uLkp1_solution_ghosted, NMPP_uH_solution_ghosted;
PETScWrappers::MPI::Vector locally_relevant_solution_vx;
PETScWrappers::MPI::Vector locally_relevant_solution_vy;
PETScWrappers::MPI::Vector locally_relevant_solution_vz;
PETScWrappers::MPI::Vector locally_relevant_solution_vx_old;
PETScWrappers::MPI::Vector locally_relevant_solution_vy_old;
PETScWrappers::MPI::Vector locally_relevant_solution_vz_old;

NON-GHOSTED VECTORS

PETScWrappers::MPI::Vector uStage1_nonGhosted, uStage2_nonGhosted;
PETScWrappers::MPI::Vector R_pos_vector_nonGhosted, R_neg_vector_nonGhosted;
PETScWrappers::MPI::Vector umin_vector, umax_vector;
PETScWrappers::MPI::Vector MPP_uL_solution, NMPP_uH_solution, MPP_uH_solution;

LUMPED MASS MATRIX

PETScWrappers::MPI::Vector ML_vector, ones_vector;
PETScWrappers::MPI::Vector inverse_ML_vector;

CONSTRAINTS

TIME STEPPING

double time_step;

SOME PARAMETERS

double cE, cK;
double solver_tolerance;
double entropy_normalization_factor;

UTILITIES

bool verbose;
std::string ALGORITHM;
unsigned int TIME_INTEGRATION;
std::map<types::global_dof_index, types::global_dof_index> map_from_Q1_to_Q2;
std::map<types::global_dof_index, std::vector<types::global_dof_index> > sparsity_pattern;
};
template <int dim>
LevelSetSolver<dim>::LevelSetSolver (const unsigned int degree_LS,
const unsigned int degree_U,
const double time_step,
const double cK,
const double cE,
const bool verbose,
std::string ALGORITHM,
const unsigned int TIME_INTEGRATION,
MPI_Comm &mpi_communicator)
:
mpi_communicator (mpi_communicator),
degree_LS(degree_LS),
dof_handler_LS (triangulation),
fe_LS (degree_LS),
degree_U(degree_U),
dof_handler_U (triangulation),
fe_U (degree_U),
time_step(time_step),
cE(cE),
cK(cK),
verbose(verbose),
ALGORITHM(ALGORITHM),
TIME_INTEGRATION(TIME_INTEGRATION),
pcout (std::cout,(Utilities::MPI::this_mpi_process(mpi_communicator)== 0))
{
pcout << "********** LEVEL SET SETUP **********" << std::endl;
setup();
}
template <int dim>
LevelSetSolver<dim>::~LevelSetSolver ()
{
dof_handler_LS.clear ();
dof_handler_U.clear ();
}
STL namespace.

/////////////////////////////////////////////////////// /////////////////// PUBLIC FUNCTIONS ////////////////// /////////////////////////////////////////////////////// //////////////////////////////////// //////// INITIAL CONDITIONS //////// ////////////////////////////////////

template<int dim>
void LevelSetSolver<dim>::initial_condition (PETScWrappers::MPI::Vector un,
PETScWrappers::MPI::Vector locally_relevant_solution_vx,
PETScWrappers::MPI::Vector locally_relevant_solution_vy)
{
this->un = un;
this->locally_relevant_solution_vx = locally_relevant_solution_vx;
this->locally_relevant_solution_vy = locally_relevant_solution_vy;

initialize old vectors with current solution, this just happens the first time

unm1 = un;
locally_relevant_solution_vx_old = locally_relevant_solution_vx;
locally_relevant_solution_vy_old = locally_relevant_solution_vy;
}
template<int dim>
void LevelSetSolver<dim>::initial_condition (PETScWrappers::MPI::Vector un,
PETScWrappers::MPI::Vector locally_relevant_solution_vx,
PETScWrappers::MPI::Vector locally_relevant_solution_vy,
PETScWrappers::MPI::Vector locally_relevant_solution_vz)
{
this->un = un;
this->locally_relevant_solution_vx = locally_relevant_solution_vx;
this->locally_relevant_solution_vy = locally_relevant_solution_vy;
this->locally_relevant_solution_vz = locally_relevant_solution_vz;

initialize old vectors with current solution, this just happens the first time

unm1 = un;
locally_relevant_solution_vx_old = locally_relevant_solution_vx;
locally_relevant_solution_vy_old = locally_relevant_solution_vy;
locally_relevant_solution_vz_old = locally_relevant_solution_vz;
}

///////////////////////////////////// //////// BOUNDARY CONDITIONS //////// /////////////////////////////////////

template <int dim>
void LevelSetSolver<dim>::set_boundary_conditions(std::vector<types::global_dof_index> &boundary_values_id_u,
std::vector<double> boundary_values_u)
{
this->boundary_values_id_u = boundary_values_id_u;
this->boundary_values_u = boundary_values_u;
}

////////////////////////////// //////// SET VELOCITY //////// //////////////////////////////

template <int dim>
void LevelSetSolver<dim>::set_velocity(PETScWrappers::MPI::Vector locally_relevant_solution_vx,
PETScWrappers::MPI::Vector locally_relevant_solution_vy)
{

SAVE OLD SOLUTION

save_old_vel_solution();

update velocity

this->locally_relevant_solution_vx=locally_relevant_solution_vx;
this->locally_relevant_solution_vy=locally_relevant_solution_vy;
}
template <int dim>
void LevelSetSolver<dim>::set_velocity(PETScWrappers::MPI::Vector locally_relevant_solution_vx,
PETScWrappers::MPI::Vector locally_relevant_solution_vy,
PETScWrappers::MPI::Vector locally_relevant_solution_vz)
{

SAVE OLD SOLUTION

save_old_vel_solution();

update velocity

this->locally_relevant_solution_vx=locally_relevant_solution_vx;
this->locally_relevant_solution_vy=locally_relevant_solution_vy;
this->locally_relevant_solution_vz=locally_relevant_solution_vz;
}

/////////////////////////////// //////// SET AND GET U //////// ///////////////////////////////

template<int dim>
void LevelSetSolver<dim>::get_unp1(PETScWrappers::MPI::Vector &unp1) {unp1=this->unp1;}

---------------------------— COMPUTE SOLUTIONS ---------------------------—

template <int dim>
void LevelSetSolver<dim>::nth_time_step()
{
assemble_EntRes_Matrix();

COMPUTE SOLUTION

if (TIME_INTEGRATION==FORWARD_EULER)
compute_solution(unp1,un,ALGORITHM);
else
compute_solution_SSP33(unp1,un,ALGORITHM);

BOUNDARY CONDITIONS

unp1.set(boundary_values_id_u,boundary_values_u);
unp1.compress(VectorOperation::insert);

CHECK MAXIMUM PRINCIPLE

if (CHECK_MAX_PRINCIPLE)
{
compute_bounds(un);
check_max_principle(unp1);
}

pcout << "*********************************************************************... " << unp1.min() << ", " << unp1.max() << std::endl;

save_old_solution();
}

---------------------------— SETUP ---------------------------—

template <int dim>
void LevelSetSolver<dim>::setup()
{
solver_tolerance=1E-6;
degree_MAX = std::max(degree_LS,degree_U);
::VectorizedArray< Number, width > max(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)

//////////////////////// SETUP FOR DOF HANDLERS //////////////////////// setup system LS

dof_handler_LS.distribute_dofs (fe_LS);
locally_owned_dofs_LS = dof_handler_LS.locally_owned_dofs ();
DoFTools::extract_locally_relevant_dofs (dof_handler_LS,locally_relevant_dofs_LS);
IndexSet extract_locally_relevant_dofs(const DoFHandler< dim, spacedim > &dof_handler)
Definition: dof_tools.cc:1144

setup system U

dof_handler_U.distribute_dofs (fe_U);
locally_owned_dofs_U = dof_handler_U.locally_owned_dofs ();
DoFTools::extract_locally_relevant_dofs (dof_handler_U,locally_relevant_dofs_U);

////////////////// INIT CONSTRAINTS //////////////////

constraints.clear ();
constraints.reinit (locally_relevant_dofs_LS);
DoFTools::make_hanging_node_constraints (dof_handler_LS, constraints);
constraints.close ();
void make_hanging_node_constraints(const DoFHandler< dim, spacedim > &dof_handler, AffineConstraints< number > &constraints)

///////////////////// NON-GHOSTED VECTORS /////////////////////

MPP_uL_solution.reinit(locally_owned_dofs_LS,mpi_communicator);
NMPP_uH_solution.reinit(locally_owned_dofs_LS,mpi_communicator);
RHS.reinit(locally_owned_dofs_LS,mpi_communicator);
uStage1_nonGhosted.reinit (locally_owned_dofs_LS,mpi_communicator);
uStage2_nonGhosted.reinit (locally_owned_dofs_LS,mpi_communicator);
unp1.reinit (locally_owned_dofs_LS,mpi_communicator);
MPP_uH_solution.reinit (locally_owned_dofs_LS,mpi_communicator);

vectors for lumped mass matrix

ML_vector.reinit(locally_owned_dofs_LS,mpi_communicator);
inverse_ML_vector.reinit(locally_owned_dofs_LS,mpi_communicator);
ones_vector.reinit(locally_owned_dofs_LS,mpi_communicator);
ones_vector = 1.;

operators times solution

K_times_solution.reinit(locally_owned_dofs_LS,mpi_communicator);
DL_times_solution.reinit(locally_owned_dofs_LS,mpi_communicator);
DH_times_solution.reinit(locally_owned_dofs_LS,mpi_communicator);

LIMITERS (FCT)

R_pos_vector_nonGhosted.reinit (locally_owned_dofs_LS,mpi_communicator);
R_neg_vector_nonGhosted.reinit (locally_owned_dofs_LS,mpi_communicator);
umin_vector.reinit (locally_owned_dofs_LS,mpi_communicator);
umax_vector.reinit (locally_owned_dofs_LS,mpi_communicator);

///////////////////////////////////////////////////// GHOSTED VECTORS (used within some assemble process) /////////////////////////////////////////////////////

uStage1.reinit (locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
uStage2.reinit (locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
unm1.reinit (locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
un.reinit (locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
MPP_uL_solution_ghosted.reinit (locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
MPP_uLkp1_solution_ghosted.reinit (locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
NMPP_uH_solution_ghosted.reinit (locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);

init vectors for vx

locally_relevant_solution_vx.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);
locally_relevant_solution_vx_old.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);

init vectors for vy

locally_relevant_solution_vy.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);
locally_relevant_solution_vy_old.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);

init vectors for vz

locally_relevant_solution_vz.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);
locally_relevant_solution_vz_old.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);

LIMITERS (FCT)

R_pos_vector.reinit(locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
R_neg_vector.reinit(locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);

//////////////// SETUP MATRICES //////////////// MATRICES

DynamicSparsityPattern dsp (locally_relevant_dofs_LS);
DoFTools::make_sparsity_pattern (dof_handler_LS,dsp,constraints,false);
dof_handler_LS.locally_owned_dofs(),
mpi_communicator,
locally_relevant_dofs_LS);
MC_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
Cx_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
CTx_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
Cy_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
CTy_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
if (dim==3)
{
Cz_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
CTz_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
}
dLij_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
EntRes_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
SuppSize_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
dCij_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
A_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
LxA_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
Akp1_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
LxAkp1_matrix.reinit (dof_handler_LS.locally_owned_dofs(),
dof_handler_LS.locally_owned_dofs(),
dsp, mpi_communicator);
void make_sparsity_pattern(const DoFHandler< dim, spacedim > &dof_handler, SparsityPatternType &sparsity_pattern, const AffineConstraints< number > &constraints=AffineConstraints< number >(), const bool keep_constrained_dofs=true, const types::subdomain_id subdomain_id=numbers::invalid_subdomain_id)
void distribute_sparsity_pattern(DynamicSparsityPattern &dsp, const IndexSet &locally_owned_rows, const MPI_Comm &mpi_comm, const IndexSet &locally_relevant_rows)

COMPUTE MASS MATRICES (AND OTHERS) FOR FIRST TIME STEP

assemble_ML();
invert_ML();
assemble_MC();
assemble_C_Matrix();

get mat for DOFs between Q1 and Q2

get_map_from_Q1_to_Q2();
get_sparsity_pattern();
}

---------------------------— MASS MATRICES ---------------------------—

template<int dim>
void LevelSetSolver<dim>::assemble_ML()
{
ML_vector=0;
const QGauss<dim> quadrature_formula(degree_MAX+1);
FEValues<dim> fe_values_LS (fe_LS, quadrature_formula,
const unsigned int dofs_per_cell = fe_LS.dofs_per_cell;
const unsigned int n_q_points = quadrature_formula.size();
Vector<double> cell_ML (dofs_per_cell);
std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
cell_LS = dof_handler_LS.begin_active(),
endc_LS = dof_handler_LS.end();
for (; cell_LS!=endc_LS; ++cell_LS)
if (cell_LS->is_locally_owned())
{
cell_ML = 0;
fe_values_LS.reinit (cell_LS);
for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
{
const double JxW = fe_values_LS.JxW(q_point);
for (unsigned int i=0; i<dofs_per_cell; ++i)
cell_ML (i) += fe_values_LS.shape_value(i,q_point)*JxW;
}
Definition: vector.h:109
@ update_values
Shape function values.
@ update_JxW_values
Transformed quadrature weights.
@ update_gradients
Shape function gradients.
@ update_quadrature_points
Transformed quadrature points.
typename ActiveSelector::active_cell_iterator active_cell_iterator
Definition: dof_handler.h:438

distribute

cell_LS->get_dof_indices (local_dof_indices);
constraints.distribute_local_to_global (cell_ML,local_dof_indices,ML_vector);
}

compress

ML_vector.compress(VectorOperation::add);
}
template<int dim>
void LevelSetSolver<dim>::invert_ML()
{

loop on locally owned i-DOFs (rows)

IndexSet::ElementIterator idofs_iter = locally_owned_dofs_LS.begin();
for (; idofs_iter!=locally_owned_dofs_LS.end(); ++idofs_iter)
{
int gi = *idofs_iter;
inverse_ML_vector(gi) = 1./ML_vector(gi);
}
inverse_ML_vector.compress(VectorOperation::insert);
}
template<int dim>
void LevelSetSolver<dim>::assemble_MC()
{
MC_matrix=0;
const QGauss<dim> quadrature_formula(degree_MAX+1);
FEValues<dim> fe_values_LS (fe_LS, quadrature_formula,
const unsigned int dofs_per_cell = fe_LS.dofs_per_cell;
const unsigned int n_q_points = quadrature_formula.size();
FullMatrix<double> cell_MC (dofs_per_cell, dofs_per_cell);
std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
std::vector<double> shape_values(dofs_per_cell);
cell_LS = dof_handler_LS.begin_active(),
endc_LS = dof_handler_LS.end();
for (; cell_LS!=endc_LS; ++cell_LS)
if (cell_LS->is_locally_owned())
{
cell_MC = 0;
fe_values_LS.reinit (cell_LS);
for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
{
const double JxW = fe_values_LS.JxW(q_point);
for (unsigned int i=0; i<dofs_per_cell; ++i)
shape_values[i] = fe_values_LS.shape_value(i,q_point);
for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
cell_MC(i,j) += shape_values[i]*shape_values[j]*JxW;
}
active_cell_iterator begin_active(const unsigned int level=0) const

distribute

cell_LS->get_dof_indices (local_dof_indices);
constraints.distribute_local_to_global (cell_MC,local_dof_indices,MC_matrix);
}

compress


---------------------------— LO METHOD (Dij Viscosity) ---------------------------—

template <int dim>
void LevelSetSolver<dim>::assemble_C_Matrix ()
{
Cx_matrix=0;
CTx_matrix=0;
Cy_matrix=0;
CTy_matrix=0;
Cz_matrix=0;
CTz_matrix=0;
const QGauss<dim> quadrature_formula(degree_MAX+1);
FEValues<dim> fe_values_LS (fe_LS, quadrature_formula,
const unsigned int dofs_per_cell_LS = fe_LS.dofs_per_cell;
const unsigned int n_q_points = quadrature_formula.size();
FullMatrix<double> cell_Cij_x (dofs_per_cell_LS, dofs_per_cell_LS);
FullMatrix<double> cell_Cij_y (dofs_per_cell_LS, dofs_per_cell_LS);
FullMatrix<double> cell_Cij_z (dofs_per_cell_LS, dofs_per_cell_LS);
FullMatrix<double> cell_Cji_x (dofs_per_cell_LS, dofs_per_cell_LS);
FullMatrix<double> cell_Cji_y (dofs_per_cell_LS, dofs_per_cell_LS);
FullMatrix<double> cell_Cji_z (dofs_per_cell_LS, dofs_per_cell_LS);
std::vector<Tensor<1, dim> > shape_grads_LS(dofs_per_cell_LS);
std::vector<double> shape_values_LS(dofs_per_cell_LS);
std::vector<types::global_dof_index> local_dof_indices_LS (dofs_per_cell_LS);
typename DoFHandler<dim>::active_cell_iterator cell_LS, endc_LS;
cell_LS = dof_handler_LS.begin_active();
endc_LS = dof_handler_LS.end();
for (; cell_LS!=endc_LS; ++cell_LS)
if (cell_LS->is_locally_owned())
{
cell_Cij_x = 0;
cell_Cij_y = 0;
cell_Cji_x = 0;
cell_Cji_y = 0;
if (dim==3)
{
cell_Cij_z = 0;
cell_Cji_z = 0;
}
fe_values_LS.reinit (cell_LS);
cell_LS->get_dof_indices (local_dof_indices_LS);
for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
{
const double JxW = fe_values_LS.JxW(q_point);
for (unsigned int i=0; i<dofs_per_cell_LS; ++i)
{
shape_values_LS[i] = fe_values_LS.shape_value(i,q_point);
shape_grads_LS [i] = fe_values_LS.shape_grad (i,q_point);
}
for (unsigned int i=0; i<dofs_per_cell_LS; ++i)
for (unsigned int j=0; j < dofs_per_cell_LS; ++j)
{
cell_Cij_x(i,j) += (shape_grads_LS[j][0])*shape_values_LS[i]*JxW;
cell_Cij_y(i,j) += (shape_grads_LS[j][1])*shape_values_LS[i]*JxW;
cell_Cji_x(i,j) += (shape_grads_LS[i][0])*shape_values_LS[j]*JxW;
cell_Cji_y(i,j) += (shape_grads_LS[i][1])*shape_values_LS[j]*JxW;
if (dim==3)
{
cell_Cij_z(i,j) += (shape_grads_LS[j][2])*shape_values_LS[i]*JxW;
cell_Cji_z(i,j) += (shape_grads_LS[i][2])*shape_values_LS[j]*JxW;
}
}
}
cell_iterator end() const

Distribute

constraints.distribute_local_to_global(cell_Cij_x,local_dof_indices_LS,Cx_matrix);
constraints.distribute_local_to_global(cell_Cji_x,local_dof_indices_LS,CTx_matrix);
constraints.distribute_local_to_global(cell_Cij_y,local_dof_indices_LS,Cy_matrix);
constraints.distribute_local_to_global(cell_Cji_y,local_dof_indices_LS,CTy_matrix);
if (dim==3)
{
constraints.distribute_local_to_global(cell_Cij_z,local_dof_indices_LS,Cz_matrix);
constraints.distribute_local_to_global(cell_Cji_z,local_dof_indices_LS,CTz_matrix);
}
}

COMPRESS

Cx_matrix.compress(VectorOperation::add);
CTx_matrix.compress(VectorOperation::add);
Cy_matrix.compress(VectorOperation::add);
CTy_matrix.compress(VectorOperation::add);
if (dim==3)
{
Cz_matrix.compress(VectorOperation::add);
CTz_matrix.compress(VectorOperation::add);
}
}
template<int dim>
void LevelSetSolver<dim>::assemble_K_times_vector(PETScWrappers::MPI::Vector &solution)
{
K_times_solution = 0;
const QGauss<dim> quadrature_formula(degree_MAX+1);
FEValues<dim> fe_values_LS (fe_LS, quadrature_formula,
FEValues<dim> fe_values_U (fe_U, quadrature_formula,
const unsigned int dofs_per_cell = fe_LS.dofs_per_cell;
const unsigned int n_q_points = quadrature_formula.size();
Vector<double> cell_K_times_solution (dofs_per_cell);
std::vector<Tensor<1,dim> > un_grads (n_q_points);
std::vector<double> old_vx_values (n_q_points);
std::vector<double> old_vy_values (n_q_points);
std::vector<double> old_vz_values (n_q_points);
std::vector<double> shape_values(dofs_per_cell);
std::vector<Tensor<1,dim> > shape_grads(dofs_per_cell);
Vector<double> un_dofs(dofs_per_cell);
std::vector<types::global_dof_index> indices_LS (dofs_per_cell);

loop on cells

cell_LS = dof_handler_LS.begin_active(),
endc_LS = dof_handler_LS.end();
cell_U = dof_handler_U.begin_active();
for (; cell_LS!=endc_LS; ++cell_U, ++cell_LS)
if (cell_LS->is_locally_owned())
{
cell_K_times_solution=0;
fe_values_LS.reinit (cell_LS);
cell_LS->get_dof_indices (indices_LS);
fe_values_LS.get_function_gradients(solution,un_grads);
fe_values_U.reinit (cell_U);
fe_values_U.get_function_values(locally_relevant_solution_vx,old_vx_values);
fe_values_U.get_function_values(locally_relevant_solution_vy,old_vy_values);
if (dim==3) fe_values_U.get_function_values(locally_relevant_solution_vz,old_vz_values);
void reinit(const Triangulation< dim, spacedim > &tria)
Definition: tensor.h:503

compute cell_K_times_solution

for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
{
v[0] = old_vx_values[q_point];
v[1] = old_vy_values[q_point];
if (dim==3) v[2] = old_vz_values[q_point]; //dim=3
for (unsigned int i=0; i<dofs_per_cell; ++i)
cell_K_times_solution(i) += (v*un_grads[q_point])
*fe_values_LS.shape_value(i,q_point)*fe_values_LS.JxW(q_point);
}

distribute

constraints.distribute_local_to_global (cell_K_times_solution, indices_LS, K_times_solution);
}
K_times_solution.compress(VectorOperation::add);
}
template <int dim>
void LevelSetSolver<dim>::assemble_K_DL_DH_times_vector
{

K_times_solution=0;

DL_times_solution=0;
DH_times_solution=0;
dLij_matrix = 0;
dCij_matrix = 0;
PetscInt ncolumns;
const PetscInt *gj;
const PetscScalar *Cxi, *Cyi, *Czi, *CTxi, *CTyi, *CTzi;
const PetscScalar *EntResi, *SuppSizei, *MCi;
double solni;

loop on locally owned i-DOFs (rows)

IndexSet::ElementIterator idofs_iter = locally_owned_dofs_LS.begin();
for (; idofs_iter!=locally_owned_dofs_LS.end(); ++idofs_iter)
{
PetscInt gi = *idofs_iter;

double ith_K_times_solution = 0;

read velocity of i-th DOF

vi[0] = locally_relevant_solution_vx(map_from_Q1_to_Q2[gi]);
vi[1] = locally_relevant_solution_vy(map_from_Q1_to_Q2[gi]);
if (dim==3) vi[2] = locally_relevant_solution_vz(map_from_Q1_to_Q2[gi]);
solni = solution(gi);

get i-th row of C matrices

MatGetRow(Cx_matrix,gi,&ncolumns,&gj,&Cxi);
MatGetRow(Cy_matrix,gi,&ncolumns,&gj,&Cyi);
MatGetRow(CTx_matrix,gi,&ncolumns,&gj,&CTxi);
MatGetRow(CTy_matrix,gi,&ncolumns,&gj,&CTyi);
if (dim==3)
{
MatGetRow(Cz_matrix,gi,&ncolumns,&gj,&Czi);
MatGetRow(CTz_matrix,gi,&ncolumns,&gj,&CTzi);
}
MatGetRow(EntRes_matrix,gi,&ncolumns,&gj,&EntResi);
MatGetRow(SuppSize_matrix,gi,&ncolumns,&gj,&SuppSizei);
MatGetRow(MC_matrix,gi,&ncolumns,&gj,&MCi);

get vector values for column indices

const std::vector<types::global_dof_index> gj_indices (gj,gj+ncolumns);
std::vector<double> soln(ncolumns);
std::vector<double> vx(ncolumns);
std::vector<double> vy(ncolumns);
std::vector<double> vz(ncolumns);
get_vector_values(solution,gj_indices,soln);
get_vector_values(locally_relevant_solution_vx,gj_indices,map_from_Q1_to_Q2,vx);
get_vector_values(locally_relevant_solution_vy,gj_indices,map_from_Q1_to_Q2,vy);
if (dim==3)
get_vector_values(locally_relevant_solution_vz,gj_indices,map_from_Q1_to_Q2,vz);

Array for i-th row of matrices

std::vector<double> dLi(ncolumns), dCi(ncolumns);
double dLii = 0, dCii = 0;

loop on sparsity pattern of i-th DOF

for (int j =0; j < ncolumns; ++j)
{
C[0] = Cxi[j];
C[1] = Cyi[j];
CT[0]= CTxi[j];
CT[1]= CTyi[j];
vj[0] = vx[j];
vj[1] = vy[j];
if (dim==3)
{
C[2] = Czi[j];
CT[2] = CTzi[j];
vj[2] = vz[j];
}

ith_K_times_solution += soln[j]*(vj*C);

if (gi!=gj[j])
{

low order dissipative matrix

dLi[j] = -std::max(std::abs(vi*C),std::abs(vj*CT));
dLii -= dLi[j];
::VectorizedArray< Number, width > abs(const ::VectorizedArray< Number, width > &)

high order dissipative matrix (entropy viscosity)

double dEij = -std::min(-dLi[j],
cE*std::abs(EntResi[j])/(entropy_normalization_factor*MCi[j]/SuppSizei[j]));
::VectorizedArray< Number, width > min(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)

high order compression matrix

double Compij = cK*std::max(1-std::pow(0.5*(solni+soln[j]),2),0.0)/(std::abs(solni-soln[j])+1E-14);
dCi[j] = dEij*std::max(1-Compij,0.0);
dCii -= dCi[j];
}
}
::VectorizedArray< Number, width > pow(const ::VectorizedArray< Number, width > &, const Number p)

save K times solution vector K_times_solution(gi)=ith_K_times_solution; save i-th row of matrices on global matrices

MatSetValuesRow(dLij_matrix,gi,&dLi[0]); // BTW: there is a dealii wrapper for this
dLij_matrix.set(gi,gi,dLii);
MatSetValuesRow(dCij_matrix,gi,&dCi[0]); // BTW: there is a dealii wrapper for this
dCij_matrix.set(gi,gi,dCii);

Restore matrices after reading rows

MatRestoreRow(Cx_matrix,gi,&ncolumns,&gj,&Cxi);
MatRestoreRow(Cy_matrix,gi,&ncolumns,&gj,&Cyi);
MatRestoreRow(CTx_matrix,gi,&ncolumns,&gj,&CTxi);
MatRestoreRow(CTy_matrix,gi,&ncolumns,&gj,&CTyi);
if (dim==3)
{
MatRestoreRow(Cz_matrix,gi,&ncolumns,&gj,&Czi);
MatRestoreRow(CTz_matrix,gi,&ncolumns,&gj,&CTzi);
}
MatRestoreRow(EntRes_matrix,gi,&ncolumns,&gj,&EntResi);
MatRestoreRow(SuppSize_matrix,gi,&ncolumns,&gj,&SuppSizei);
MatRestoreRow(MC_matrix,gi,&ncolumns,&gj,&MCi);
}

compress K_times_solution.compress(VectorOperation::insert);

dLij_matrix.compress(VectorOperation::insert);
dCij_matrix.compress(VectorOperation::insert);

get matrices times vector

dLij_matrix.vmult(DL_times_solution,solution);
dCij_matrix.vmult(DH_times_solution,solution);
}

---------------------------— ENTROPY VISCOSITY ---------------------------—

template <int dim>
void LevelSetSolver<dim>::assemble_EntRes_Matrix ()
{
EntRes_matrix=0;
entropy_normalization_factor=0;
SuppSize_matrix=0;
const QGauss<dim> quadrature_formula(degree_MAX+1);
FEValues<dim> fe_values_U (fe_U, quadrature_formula,
FEValues<dim> fe_values_LS (fe_LS, quadrature_formula,
const unsigned int dofs_per_cell_LS = fe_LS.dofs_per_cell;
const unsigned int n_q_points = quadrature_formula.size();
std::vector<double> uqn (n_q_points); // un at q point
std::vector<double> uqnm1 (n_q_points);
std::vector<Tensor<1,dim> > guqn (n_q_points); //grad of uqn
std::vector<Tensor<1,dim> > guqnm1 (n_q_points);
std::vector<double> vxqn (n_q_points);
std::vector<double> vyqn (n_q_points);
std::vector<double> vzqn (n_q_points);
std::vector<double> vxqnm1 (n_q_points);
std::vector<double> vyqnm1 (n_q_points);
std::vector<double> vzqnm1 (n_q_points);
FullMatrix<double> cell_EntRes (dofs_per_cell_LS, dofs_per_cell_LS);
FullMatrix<double> cell_volume (dofs_per_cell_LS, dofs_per_cell_LS);
std::vector<Tensor<1, dim> > shape_grads_LS(dofs_per_cell_LS);
std::vector<double> shape_values_LS(dofs_per_cell_LS);
std::vector<types::global_dof_index> local_dof_indices_LS (dofs_per_cell_LS);
typename DoFHandler<dim>::active_cell_iterator cell_LS, endc_LS;
cell_LS = dof_handler_LS.begin_active();
endc_LS = dof_handler_LS.end();
cell_U = dof_handler_U.begin_active();
double Rk;
double max_entropy=-1E10, min_entropy=1E10;
double cell_max_entropy, cell_min_entropy;
double cell_entropy_mass, entropy_mass=0;
double cell_volume_double, volume=0;
for (; cell_LS!=endc_LS; ++cell_LS, ++cell_U)
if (cell_LS->is_locally_owned())
{
cell_entropy_mass = 0;
cell_volume_double = 0;
cell_max_entropy = -1E10;
cell_min_entropy = 1E10;
cell_EntRes = 0;
cell_volume = 0;

get solutions at quadrature points

fe_values_LS.reinit(cell_LS);
cell_LS->get_dof_indices (local_dof_indices_LS);
fe_values_LS.get_function_values(un,uqn);
fe_values_LS.get_function_values(unm1,uqnm1);
fe_values_LS.get_function_gradients(un,guqn);
fe_values_LS.get_function_gradients(unm1,guqnm1);
fe_values_U.reinit(cell_U);
fe_values_U.get_function_values(locally_relevant_solution_vx,vxqn);
fe_values_U.get_function_values(locally_relevant_solution_vy,vyqn);
if (dim==3) fe_values_U.get_function_values(locally_relevant_solution_vz,vzqn);
fe_values_U.get_function_values(locally_relevant_solution_vx_old,vxqnm1);
fe_values_U.get_function_values(locally_relevant_solution_vy_old,vyqnm1);
if (dim==3) fe_values_U.get_function_values(locally_relevant_solution_vz_old,vzqnm1);
for (unsigned int q=0; q<n_q_points; ++q)
{
Rk = 1./time_step*(ENTROPY(uqn[q])-ENTROPY(uqnm1[q]))
+(vxqn[q]*ENTROPY_GRAD(uqn[q],guqn[q][0])+vyqn[q]*ENTROPY_GRAD(uqn[q],guqn[q][1]))/2.
+(vxqnm1[q]*ENTROPY_GRAD(uqnm1[q],guqnm1[q][0])+vyqnm1[q]*ENTROPY_GRAD(uqnm1[q],guqnm1[q][1]))/2.;
if (dim==3)
Rk += 0.5*(vzqn[q]*ENTROPY_GRAD(uqn[q],guqn[q][2])+vzqnm1[q]*ENTROPY_GRAD(uqnm1[q],guqnm1[q][2]));
const double JxW = fe_values_LS.JxW(q);
for (unsigned int i=0; i<dofs_per_cell_LS; ++i)
{
shape_values_LS[i] = fe_values_LS.shape_value(i,q);
shape_grads_LS [i] = fe_values_LS.shape_grad (i,q);
}
for (unsigned int i=0; i<dofs_per_cell_LS; ++i)
for (unsigned int j=0; j < dofs_per_cell_LS; ++j)
{
cell_EntRes (i,j) += Rk*shape_values_LS[i]*shape_values_LS[j]*JxW;
cell_volume (i,j) += JxW;
}
cell_entropy_mass += ENTROPY(uqn[q])*JxW;
cell_volume_double += JxW;
cell_min_entropy = std::min(cell_min_entropy,ENTROPY(uqn[q]));
cell_max_entropy = std::max(cell_max_entropy,ENTROPY(uqn[q]));
}
entropy_mass += cell_entropy_mass;
volume += cell_volume_double;
min_entropy = std::min(min_entropy,cell_min_entropy);
max_entropy = std::max(max_entropy,cell_max_entropy);
double volume(const Triangulation< dim, spacedim > &tria, const Mapping< dim, spacedim > &mapping=(ReferenceCells::get_hypercube< dim >() .template get_default_linear_mapping< dim, spacedim >()))
Definition: grid_tools.cc:139

Distribute

constraints.distribute_local_to_global(cell_EntRes,local_dof_indices_LS,EntRes_matrix);
constraints.distribute_local_to_global(cell_volume,local_dof_indices_LS,SuppSize_matrix);
}
EntRes_matrix.compress(VectorOperation::add);
SuppSize_matrix.compress(VectorOperation::add);

ENTROPY NORM FACTOR

volume = Utilities::MPI::sum(volume,mpi_communicator);
entropy_mass = Utilities::MPI::sum(entropy_mass,mpi_communicator)/volume;
min_entropy = Utilities::MPI::min(min_entropy,mpi_communicator);
max_entropy = Utilities::MPI::max(max_entropy,mpi_communicator);
entropy_normalization_factor = std::max(std::abs(max_entropy-entropy_mass), std::abs(min_entropy-entropy_mass));
}
T min(const T &t, const MPI_Comm &mpi_communicator)
T sum(const T &t, const MPI_Comm &mpi_communicator)
T max(const T &t, const MPI_Comm &mpi_communicator)

---------------------------— TO CHECK MAX PRINCIPLE ---------------------------—

template<int dim>
void LevelSetSolver<dim>::compute_bounds(PETScWrappers::MPI::Vector &un_solution)
{
umin_vector = 0;
umax_vector = 0;

loop on locally owned i-DOFs (rows)

IndexSet::ElementIterator idofs_iter = locally_owned_dofs_LS.begin();
for (; idofs_iter!=locally_owned_dofs_LS.end(); ++idofs_iter)
{
int gi = *idofs_iter;

get solution at DOFs on the sparsity pattern of i-th DOF

std::vector<types::global_dof_index> gj_indices = sparsity_pattern[gi];
std::vector<double> soln(gj_indices.size());
get_vector_values(un_solution,gj_indices,soln);

compute bounds, ith row of flux matrix, P vectors

double mini=1E10, maxi=-1E10;
for (unsigned int j =0; j < gj_indices.size(); ++j)
{

bounds

mini = std::min(mini,soln[j]);
maxi = std::max(maxi,soln[j]);
}
umin_vector(gi) = mini;
umax_vector(gi) = maxi;
}
umin_vector.compress(VectorOperation::insert);
umax_vector.compress(VectorOperation::insert);
}
template<int dim>
void LevelSetSolver<dim>::check_max_principle(PETScWrappers::MPI::Vector &unp1_solution)
{

compute min and max vectors

const unsigned int dofs_per_cell = fe_LS.dofs_per_cell;
std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);
double tol=1e-10;
cell_LS = dof_handler_LS.begin_active(),
endc_LS = dof_handler_LS.end();
for (; cell_LS!=endc_LS; ++cell_LS)
if (cell_LS->is_locally_owned() && !cell_LS->at_boundary())
{
cell_LS->get_dof_indices(local_dof_indices);
for (unsigned int i=0; i<dofs_per_cell; ++i)
if (locally_owned_dofs_LS.is_element(local_dof_indices[i]))
{
double solni = unp1_solution(local_dof_indices[i]);
if (solni - umin_vector(local_dof_indices[i]) < -tol || umax_vector(local_dof_indices[i]) - solni < -tol)
{
pcout << "MAX Principle violated" << std::endl;
abort();
}
}
}
}

---------------------------— COMPUTE SOLUTIONS ---------------------------—

template<int dim>
void LevelSetSolver<dim>::compute_MPP_uL_and_NMPP_uH
(PETScWrappers::MPI::Vector &MPP_uL_solution,
PETScWrappers::MPI::Vector &NMPP_uH_solution,
{

NON-GHOSTED VECTORS: MPP_uL_solution, NMPP_uH_solution GHOSTED VECTORS: un_solution

MPP_uL_solution=un_solution;
NMPP_uH_solution=un_solution; // to start iterative solver at un_solution (instead of zero)

assemble RHS VECTORS

assemble_K_times_vector(un_solution);
assemble_K_DL_DH_times_vector(un_solution);

///////////////////////// COMPUTE MPP u1 solution /////////////////////////

MPP_uL_solution.scale(ML_vector);
MPP_uL_solution.add(-time_step,K_times_solution);
MPP_uL_solution.add(-time_step,DL_times_solution);
MPP_uL_solution.scale(inverse_ML_vector);
void scale(const VectorBase &scaling_factors)
void add(const std::vector< size_type > &indices, const std::vector< PetscScalar > &values)

////////////////////////////// COMPUTE GALERKIN u2 solution //////////////////////////////

MC_matrix.vmult(RHS,un_solution);
RHS.add(-time_step,K_times_solution,-time_step,DH_times_solution);
solve(constraints,MC_matrix,MC_preconditioner,NMPP_uH_solution,RHS);
}
template <int dim>
void LevelSetSolver<dim>::compute_MPP_uH
(PETScWrappers::MPI::Vector &MPP_uH_solution,
PETScWrappers::MPI::Vector &MPP_uL_solution_ghosted,
PETScWrappers::MPI::Vector &NMPP_uH_solution_ghosted,
{
MPP_uH_solution=0;

loop on locally owned i-DOFs (rows)

IndexSet::ElementIterator idofs_iter = locally_owned_dofs_LS.begin();
PetscInt ncolumns;
const PetscInt *gj;
const PetscScalar *MCi, *dLi, *dCi;
double solni, mi, solLi, solHi;
for (; idofs_iter!=locally_owned_dofs_LS.end(); ++idofs_iter)
{
int gi = *idofs_iter;

read vectors at i-th DOF

solni=solution(gi);
solHi=NMPP_uH_solution_ghosted(gi);
solLi=MPP_uL_solution_ghosted(gi);
mi=ML_vector(gi);

get i-th row of matrices

MatGetRow(MC_matrix,gi,&ncolumns,&gj,&MCi);
MatGetRow(dLij_matrix,gi,&ncolumns,&gj,&dLi);
MatGetRow(dCij_matrix,gi,&ncolumns,&gj,&dCi);

get vector values for support of i-th DOF

const std::vector<types::global_dof_index> gj_indices (gj,gj+ncolumns);
std::vector<double> soln(ncolumns);
std::vector<double> solH(ncolumns);
get_vector_values(solution,gj_indices,soln);
get_vector_values(NMPP_uH_solution_ghosted,gj_indices,solH);

Array for i-th row of matrices

std::vector<double> Ai(ncolumns);

compute bounds, ith row of flux matrix, P vectors

double mini=1E10, maxi=-1E10;
double Pposi=0 ,Pnegi=0;
for (int j =0; j < ncolumns; ++j)
{

bounds

mini = std::min(mini,soln[j]);
maxi = std::max(maxi,soln[j]);

i-th row of flux matrix A

Ai[j] = (((gi==gj[j]) ? 1 : 0)*mi - MCi[j])*(solH[j]-soln[j] - (solHi-solni))
+time_step*(dLi[j]-dCi[j])*(soln[j]-solni);

compute P vectors

Pposi += Ai[j]*((Ai[j] > 0) ? 1. : 0.);
Pnegi += Ai[j]*((Ai[j] < 0) ? 1. : 0.);
}

save i-th row of flux matrix A

MatSetValuesRow(A_matrix,gi,&Ai[0]);

compute Q vectors

double Qposi = mi*(maxi-solLi);
double Qnegi = mi*(mini-solLi);

compute R vectors

R_pos_vector_nonGhosted(gi) = ((Pposi==0) ? 1. : std::min(1.0,Qposi/Pposi));
R_neg_vector_nonGhosted(gi) = ((Pnegi==0) ? 1. : std::min(1.0,Qnegi/Pnegi));

Restore matrices after reading rows

MatRestoreRow(MC_matrix,gi,&ncolumns,&gj,&MCi);
MatRestoreRow(dLij_matrix,gi,&ncolumns,&gj,&dLi);
MatRestoreRow(dCij_matrix,gi,&ncolumns,&gj,&dCi);
}

compress A matrix

A_matrix.compress(VectorOperation::insert);

compress R vectors

R_pos_vector_nonGhosted.compress(VectorOperation::insert);
R_neg_vector_nonGhosted.compress(VectorOperation::insert);

update ghost values for R vectors

R_pos_vector = R_pos_vector_nonGhosted;
R_neg_vector = R_neg_vector_nonGhosted;

compute limiters. NOTE: this is a different loop due to need of i- and j-th entries of R vectors

const double *Ai;
double Rposi, Rnegi;
idofs_iter=locally_owned_dofs_LS.begin();
for (; idofs_iter!=locally_owned_dofs_LS.end(); ++idofs_iter)
{
int gi = *idofs_iter;
Rposi = R_pos_vector(gi);
Rnegi = R_neg_vector(gi);

get i-th row of A matrix

MatGetRow(A_matrix,gi,&ncolumns,&gj,&Ai);

get vector values for column indices

const std::vector<types::global_dof_index> gj_indices (gj,gj+ncolumns);
std::vector<double> Rpos(ncolumns);
std::vector<double> Rneg(ncolumns);
get_vector_values(R_pos_vector,gj_indices,Rpos);
get_vector_values(R_neg_vector,gj_indices,Rneg);

Array for i-th row of A_times_L matrix

std::vector<double> LxAi(ncolumns);

loop in sparsity pattern of i-th DOF

for (int j =0; j < ncolumns; ++j)
LxAi[j] = Ai[j] * ((Ai[j]>0) ? std::min(Rposi,Rneg[j]) : std::min(Rnegi,Rpos[j]));

save i-th row of LxA

MatSetValuesRow(LxA_matrix,gi,&LxAi[0]); // BTW: there is a dealii wrapper for this

restore A matrix after reading it

MatRestoreRow(A_matrix,gi,&ncolumns,&gj,&Ai);
}
LxA_matrix.compress(VectorOperation::insert);
LxA_matrix.vmult(MPP_uH_solution,ones_vector);
MPP_uH_solution.scale(inverse_ML_vector);
MPP_uH_solution.add(1.0,MPP_uL_solution_ghosted);
}
template<int dim>
void LevelSetSolver<dim>::compute_MPP_uH_with_iterated_FCT
(PETScWrappers::MPI::Vector &MPP_uH_solution,
PETScWrappers::MPI::Vector &MPP_uL_solution_ghosted,
PETScWrappers::MPI::Vector &NMPP_uH_solution_ghosted,
{
MPP_uH_solution=0;
compute_MPP_uH(MPP_uH_solution,MPP_uL_solution_ghosted,NMPP_uH_solution_ghosted,un_solution);
if (NUM_ITER>0)
{
Akp1_matrix.copy_from(A_matrix);
LxAkp1_matrix.copy_from(LxA_matrix);

loop in num of FCT iterations

PetscInt ncolumns;
const PetscInt *gj;
const PetscScalar *Akp1i;
double mi;
for (int iter=0; iter<NUM_ITER; ++iter)
{
MPP_uLkp1_solution_ghosted = MPP_uH_solution;
Akp1_matrix.add(-1.0, LxAkp1_matrix); //new matrix to limit: A-LxA

loop on locally owned i-DOFs (rows)

IndexSet::ElementIterator idofs_iter = locally_owned_dofs_LS.begin();
for (; idofs_iter!=locally_owned_dofs_LS.end(); ++idofs_iter)
{
int gi = *idofs_iter;

read vectors at i-th DOF

mi=ML_vector(gi);
double solLi = MPP_uLkp1_solution_ghosted(gi);

get i-th row of matrices

MatGetRow(Akp1_matrix,gi,&ncolumns,&gj,&Akp1i);

get vector values for support of i-th DOF

const std::vector<types::global_dof_index> gj_indices (gj,gj+ncolumns);
std::vector<double> soln(ncolumns);
get_vector_values(un_solution,gj_indices,soln);

compute bounds, ith row of flux matrix, P vectors

double mini=1E10, maxi=-1E10;
double Pposi=0 ,Pnegi=0;
for (int j =0; j < ncolumns; ++j)
{

bounds

mini = std::min(mini,soln[j]);
maxi = std::max(maxi,soln[j]);

compute P vectors

Pposi += Akp1i[j]*((Akp1i[j] > 0) ? 1. : 0.);
Pnegi += Akp1i[j]*((Akp1i[j] < 0) ? 1. : 0.);
}

compute Q vectors

double Qposi = mi*(maxi-solLi);
double Qnegi = mi*(mini-solLi);

compute R vectors

R_pos_vector_nonGhosted(gi) = ((Pposi==0) ? 1. : std::min(1.0,Qposi/Pposi));
R_neg_vector_nonGhosted(gi) = ((Pnegi==0) ? 1. : std::min(1.0,Qnegi/Pnegi));

Restore matrices after reading rows

MatRestoreRow(Akp1_matrix,gi,&ncolumns,&gj,&Akp1i);
}

compress R vectors

R_pos_vector_nonGhosted.compress(VectorOperation::insert);
R_neg_vector_nonGhosted.compress(VectorOperation::insert);

update ghost values for R vectors

R_pos_vector = R_pos_vector_nonGhosted;
R_neg_vector = R_neg_vector_nonGhosted;

compute limiters. NOTE: this is a different loop due to need of i- and j-th entries of R vectors

double Rposi, Rnegi;
idofs_iter=locally_owned_dofs_LS.begin();
for (; idofs_iter!=locally_owned_dofs_LS.end(); ++idofs_iter)
{
int gi = *idofs_iter;
Rposi = R_pos_vector(gi);
Rnegi = R_neg_vector(gi);

get i-th row of Akp1 matrix

MatGetRow(Akp1_matrix,gi,&ncolumns,&gj,&Akp1i);

get vector values for column indices

const std::vector<types::global_dof_index> gj_indices(gj,gj+ncolumns);
std::vector<double> Rpos(ncolumns);
std::vector<double> Rneg(ncolumns);
get_vector_values(R_pos_vector,gj_indices,Rpos);
get_vector_values(R_neg_vector,gj_indices,Rneg);

Array for i-th row of LxAkp1 matrix

std::vector<double> LxAkp1i(ncolumns);
for (int j =0; j < ncolumns; ++j)
LxAkp1i[j] = Akp1i[j] * ((Akp1i[j]>0) ? std::min(Rposi,Rneg[j]) : std::min(Rnegi,Rpos[j]));

save i-th row of LxA

MatSetValuesRow(LxAkp1_matrix,gi,&LxAkp1i[0]); // BTW: there is a dealii wrapper for this

restore A matrix after reading it

MatRestoreRow(Akp1_matrix,gi,&ncolumns,&gj,&Akp1i);
}
LxAkp1_matrix.compress(VectorOperation::insert);
LxAkp1_matrix.vmult(MPP_uH_solution,ones_vector);
MPP_uH_solution.scale(inverse_ML_vector);
MPP_uH_solution.add(1.0,MPP_uLkp1_solution_ghosted);
}
}
}
template<int dim>
void LevelSetSolver<dim>::compute_solution(PETScWrappers::MPI::Vector &unp1,
std::string algorithm)
{
unp1=0;

COMPUTE MPP LOW-ORDER SOLN and NMPP HIGH-ORDER SOLN

compute_MPP_uL_and_NMPP_uH(MPP_uL_solution,NMPP_uH_solution,un);
if (algorithm.compare("MPP_u1")==0)
unp1=MPP_uL_solution;
else if (algorithm.compare("NMPP_uH")==0)
unp1=NMPP_uH_solution;
else if (algorithm.compare("MPP_uH")==0)
{
MPP_uL_solution_ghosted = MPP_uL_solution;
NMPP_uH_solution_ghosted=NMPP_uH_solution;
compute_MPP_uH_with_iterated_FCT(MPP_uH_solution,MPP_uL_solution_ghosted,NMPP_uH_solution_ghosted,un);
unp1=MPP_uH_solution;
}
else
{
pcout << "Error in algorithm" << std::endl;
abort();
}
}
template<int dim>
void LevelSetSolver<dim>::compute_solution_SSP33(PETScWrappers::MPI::Vector &unp1,
std::string algorithm)
{

GHOSTED VECTORS: un NON-GHOSTED VECTORS: unp1

unp1=0;
uStage1=0., uStage2=0.;
uStage1_nonGhosted=0., uStage2_nonGhosted=0.;

///////////// FIRST STAGE ///////////// u1=un-dt*RH*un

compute_solution(uStage1_nonGhosted,un,algorithm);
uStage1=uStage1_nonGhosted;

////////////// SECOND STAGE ////////////// u2=3/4*un+1/4*(u1-dt*RH*u1)

compute_solution(uStage2_nonGhosted,uStage1,algorithm);
uStage2_nonGhosted*=1./4;
uStage2_nonGhosted.add(3./4,un);
uStage2=uStage2_nonGhosted;

///////////// THIRD STAGE ///////////// unp1=1/3*un+2/3*(u2-dt*RH*u2)

compute_solution(unp1,uStage2,algorithm);
unp1*=2./3;
unp1.add(1./3,un);
}

---------------------------— UTILITIES ---------------------------—

template<int dim>
void LevelSetSolver<dim>::get_sparsity_pattern()
{

loop on DOFs

IndexSet::ElementIterator idofs_iter = locally_owned_dofs_LS.begin();
PetscInt ncolumns;
const PetscInt *gj;
const PetscScalar *MCi;
for (; idofs_iter!=locally_owned_dofs_LS.end(); ++idofs_iter)
{
PetscInt gi = *idofs_iter;

get i-th row of mass matrix (dummy, I just need the indices gj)

MatGetRow(MC_matrix,gi,&ncolumns,&gj,&MCi);
sparsity_pattern[gi] = std::vector<types::global_dof_index>(gj,gj+ncolumns);
MatRestoreRow(MC_matrix,gi,&ncolumns,&gj,&MCi);
}
}
template<int dim>
void LevelSetSolver<dim>::get_map_from_Q1_to_Q2()
{
map_from_Q1_to_Q2.clear();
const unsigned int dofs_per_cell_LS = fe_LS.dofs_per_cell;
std::vector<types::global_dof_index> local_dof_indices_LS (dofs_per_cell_LS);
const unsigned int dofs_per_cell_U = fe_U.dofs_per_cell;
std::vector<types::global_dof_index> local_dof_indices_U (dofs_per_cell_U);
cell_LS = dof_handler_LS.begin_active(),
endc_LS = dof_handler_LS.end();
cell_U = dof_handler_U.begin_active();
for (; cell_LS!=endc_LS; ++cell_LS, ++cell_U)
if (!cell_LS->is_artificial()) // loop on ghost cells as well
{
cell_LS->get_dof_indices(local_dof_indices_LS);
cell_U->get_dof_indices(local_dof_indices_U);
for (unsigned int i=0; i<dofs_per_cell_LS; ++i)
map_from_Q1_to_Q2[local_dof_indices_LS[i]] = local_dof_indices_U[i];
}
}
template <int dim>
void LevelSetSolver<dim>::solve(const AffineConstraints<double> &constraints,
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner,
PETScWrappers::MPI::Vector &completely_distributed_solution,
{

all vectors are NON-GHOSTED

SolverControl solver_control (dof_handler_LS.n_dofs(), solver_tolerance);
PETScWrappers::SolverCG solver(solver_control, mpi_communicator);
constraints.distribute (completely_distributed_solution);
solver.solve (Matrix, completely_distributed_solution, rhs, *preconditioner);
constraints.distribute (completely_distributed_solution);
if (verbose==true) pcout << " Solved in " << solver_control.last_step() << " iterations." << std::endl;
}
template <int dim>
void LevelSetSolver<dim>::save_old_solution()
{
unm1 = un;
un = unp1;
}
template <int dim>
void LevelSetSolver<dim>::save_old_vel_solution()
{
locally_relevant_solution_vx_old = locally_relevant_solution_vx;
locally_relevant_solution_vy_old = locally_relevant_solution_vy;
if (dim==3)
locally_relevant_solution_vz_old = locally_relevant_solution_vz;
}
void distribute(VectorType &vec) const

---------------------------— MY PETSC WRAPPERS ---------------------------—

template<int dim>
void LevelSetSolver<dim>::get_vector_values (PETScWrappers::VectorBase &vector,
const std::vector<types::global_dof_index> &indices,
std::vector<PetscScalar> &values)
{

PETSc wrapper to get sets of values from a petsc vector. we assume the vector is ghosted We need to figure out which elements we own locally. Then get a pointer to the elements that are stored here (both the ones we own as well as the ghost elements). In this array, the locally owned elements come first followed by the ghost elements whose position we can get from an index set

IndexSet ghost_indices = locally_relevant_dofs_LS;
ghost_indices.subtract_set(locally_owned_dofs_LS);
PetscInt n_idx, begin, end, i;
n_idx = indices.size();
VecGetOwnershipRange (vector, &begin, &end);
Vec solution_in_local_form = PETSC_NULL;
VecGhostGetLocalForm(vector, &solution_in_local_form);
PetscScalar *soln;
VecGetArray(solution_in_local_form, &soln);
for (i = 0; i < n_idx; ++i)
{
int index = indices[i];
if (index >= begin && index < end)
values[i] = *(soln+index-begin);
else //ghost
{
const unsigned int ghostidx = ghost_indices.index_within_set(index);
values[i] = *(soln+ghostidx+end-begin);
}
}
VecRestoreArray(solution_in_local_form, &soln);
VecGhostRestoreLocalForm(vector, &solution_in_local_form);
}
template<int dim>
void LevelSetSolver<dim>::get_vector_values (PETScWrappers::VectorBase &vector,
const std::vector<types::global_dof_index> &indices,
std::map<types::global_dof_index, types::global_dof_index> &map_from_Q1_to_Q2,
std::vector<PetscScalar> &values)
{
size_type index_within_set(const size_type global_index) const
Definition: index_set.h:1923
void subtract_set(const IndexSet &other)
Definition: index_set.cc:266

THIS IS MEANT TO BE USED WITH VELOCITY VECTORS PETSc wrapper to get sets of values from a petsc vector. we assume the vector is ghosted We need to figure out which elements we own locally. Then get a pointer to the elements that are stored here (both the ones we own as well as the ghost elements). In this array, the locally owned elements come first followed by the ghost elements whose position we can get from an index set

IndexSet ghost_indices = locally_relevant_dofs_U;
ghost_indices.subtract_set(locally_owned_dofs_U);
PetscInt n_idx, begin, end, i;
n_idx = indices.size();
VecGetOwnershipRange (vector, &begin, &end);
Vec solution_in_local_form = PETSC_NULL;
VecGhostGetLocalForm(vector, &solution_in_local_form);
PetscScalar *soln;
VecGetArray(solution_in_local_form, &soln);
for (i = 0; i < n_idx; ++i)
{
int index = map_from_Q1_to_Q2[indices[i]];
if (index >= begin && index < end)
values[i] = *(soln+index-begin);
else //ghost
{
const unsigned int ghostidx = ghost_indices.index_within_set(index);
values[i] = *(soln+ghostidx+end-begin);
}
}
VecRestoreArray(solution_in_local_form, &soln);
VecGhostRestoreLocalForm(vector, &solution_in_local_form);
}

Annotated version of MultiPhase.cc

/////////////////////// FOR TRANSPORT PROBLEM /////////////////////// TIME_INTEGRATION

#define FORWARD_EULER 0
#define SSP33 1

PROBLEM

#define FILLING_TANK 0
#define BREAKING_DAM 1
#define FALLING_DROP 2
#define SMALL_WAVE_PERTURBATION 3
#include "NavierStokesSolver.cc"
#include "LevelSetSolver.cc"
#include "utilities.cc"

/////////////////////////////////////////////////// /////////////////// MAIN CLASS //////////////////// ///////////////////////////////////////////////////

template <int dim>
class MultiPhase
{
public:
MultiPhase (const unsigned int degree_LS,
const unsigned int degree_U);
~MultiPhase ();
void run ();
private:
void set_boundary_inlet();
void get_boundary_values_U();
void get_boundary_values_phi(std::vector<types::global_dof_index> &boundary_values_id_phi,
std::vector<double> &boundary_values_phi);
void output_results();
void output_vectors();
void output_rho();
void setup();
void initial_condition();
void init_constraints();
MPI_Comm mpi_communicator;
int degree_LS;
DoFHandler<dim> dof_handler_LS;
FE_Q<dim> fe_LS;
IndexSet locally_owned_dofs_LS;
IndexSet locally_relevant_dofs_LS;
int degree_U;
DoFHandler<dim> dof_handler_U;
FE_Q<dim> fe_U;
IndexSet locally_owned_dofs_U;
IndexSet locally_relevant_dofs_U;
DoFHandler<dim> dof_handler_P;
FE_Q<dim> fe_P;
IndexSet locally_owned_dofs_P;
IndexSet locally_relevant_dofs_P;

SOLUTION VECTORS

PETScWrappers::MPI::Vector locally_relevant_solution_phi;
PETScWrappers::MPI::Vector locally_relevant_solution_u;
PETScWrappers::MPI::Vector locally_relevant_solution_v;
PETScWrappers::MPI::Vector locally_relevant_solution_p;
PETScWrappers::MPI::Vector completely_distributed_solution_phi;
PETScWrappers::MPI::Vector completely_distributed_solution_u;
PETScWrappers::MPI::Vector completely_distributed_solution_v;
PETScWrappers::MPI::Vector completely_distributed_solution_p;

BOUNDARY VECTORS

std::vector<types::global_dof_index> boundary_values_id_u;
std::vector<types::global_dof_index> boundary_values_id_v;
std::vector<types::global_dof_index> boundary_values_id_phi;
std::vector<double> boundary_values_u;
std::vector<double> boundary_values_v;
std::vector<double> boundary_values_phi;
double time;
double time_step;
double final_time;
unsigned int timestep_number;
double cfl;
double umax;
double min_h;
double sharpness;
int sharpness_integer;
unsigned int n_refinement;
unsigned int output_number;
double output_time;
bool get_output;
bool verbose;

FOR NAVIER STOKES

double rho_fluid;
double nu_fluid;
double rho_air;
double nu_air;
double nu;
double eps;

FOR TRANSPORT

double cK; //compression coeff
double cE; //entropy-visc coeff
unsigned int TRANSPORT_TIME_INTEGRATION;
std::string ALGORITHM;
unsigned int PROBLEM;
};
template <int dim>
MultiPhase<dim>::MultiPhase (const unsigned int degree_LS,
const unsigned int degree_U)
:
mpi_communicator (MPI_COMM_WORLD),
triangulation (mpi_communicator,
typename Triangulation<dim>::MeshSmoothing
(Triangulation<dim>::smoothing_on_refinement |
Triangulation<dim>::smoothing_on_coarsening)),
degree_LS(degree_LS),
dof_handler_LS (triangulation),
fe_LS (degree_LS),
degree_U(degree_U),
dof_handler_U (triangulation),
fe_U (degree_U),
dof_handler_P (triangulation),
fe_P (degree_U-1),
pcout (std::cout,(Utilities::MPI::this_mpi_process(mpi_communicator)== 0))
{}
template <int dim>
MultiPhase<dim>::~MultiPhase ()
{
dof_handler_LS.clear ();
dof_handler_U.clear ();
dof_handler_P.clear ();
}

///////////////////////////////////// /////////////// SETUP /////////////// /////////////////////////////////////

template <int dim>
void MultiPhase<dim>::setup()
{

setup system LS

dof_handler_LS.distribute_dofs (fe_LS);
locally_owned_dofs_LS = dof_handler_LS.locally_owned_dofs ();
locally_relevant_dofs_LS);

setup system U

dof_handler_U.distribute_dofs (fe_U);
locally_owned_dofs_U = dof_handler_U.locally_owned_dofs ();
locally_relevant_dofs_U);

setup system P

dof_handler_P.distribute_dofs (fe_P);
locally_owned_dofs_P = dof_handler_P.locally_owned_dofs ();
locally_relevant_dofs_P);

init vectors for phi

locally_relevant_solution_phi.reinit(locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
locally_relevant_solution_phi = 0;
completely_distributed_solution_phi.reinit (locally_owned_dofs_P,mpi_communicator);

init vectors for u

locally_relevant_solution_u.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);
locally_relevant_solution_u = 0;
completely_distributed_solution_u.reinit (locally_owned_dofs_U,mpi_communicator);

init vectors for v

locally_relevant_solution_v.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);
locally_relevant_solution_v = 0;
completely_distributed_solution_v.reinit (locally_owned_dofs_U,mpi_communicator);

init vectors for p

locally_relevant_solution_p.reinit (locally_owned_dofs_P,locally_relevant_dofs_P,mpi_communicator);
locally_relevant_solution_p = 0;
completely_distributed_solution_p.reinit (locally_owned_dofs_P,mpi_communicator);

INIT CONSTRAINTS

init_constraints();
}
template <int dim>
void MultiPhase<dim>::initial_condition()
{
time=0;

Initial conditions init condition for phi

completely_distributed_solution_phi = 0;
VectorTools::interpolate(dof_handler_LS,
InitialPhi<dim>(PROBLEM, sharpness),
completely_distributed_solution_phi);
constraints.distribute (completely_distributed_solution_phi);
locally_relevant_solution_phi = completely_distributed_solution_phi;
void interpolate(const Mapping< dim, spacedim > &mapping, const DoFHandler< dim, spacedim > &dof, const Function< spacedim, typename VectorType::value_type > &function, VectorType &vec, const ComponentMask &component_mask=ComponentMask())

init condition for u=0

completely_distributed_solution_u = 0;
completely_distributed_solution_u);
constraints.distribute (completely_distributed_solution_u);
locally_relevant_solution_u = completely_distributed_solution_u;

init condition for v

completely_distributed_solution_v = 0;
completely_distributed_solution_v);
constraints.distribute (completely_distributed_solution_v);
locally_relevant_solution_v = completely_distributed_solution_v;

init condition for p

completely_distributed_solution_p = 0;
VectorTools::interpolate(dof_handler_P,
completely_distributed_solution_p);
constraints.distribute (completely_distributed_solution_p);
locally_relevant_solution_p = completely_distributed_solution_p;
}
template <int dim>
void MultiPhase<dim>::init_constraints()
{
constraints.clear ();
constraints.reinit (locally_relevant_dofs_LS);
DoFTools::make_hanging_node_constraints (dof_handler_LS, constraints);
constraints.close ();
}
template <int dim>
void MultiPhase<dim>::get_boundary_values_U()
{
std::map<types::global_dof_index, double> map_boundary_values_u;
std::map<types::global_dof_index, double> map_boundary_values_v;
std::map<types::global_dof_index, double> map_boundary_values_w;
void reinit(const IndexSet &local_constraints=IndexSet())

NO-SLIP CONDITION

if (PROBLEM==BREAKING_DAM || PROBLEM==FALLING_DROP)
{

LEFT

void interpolate_boundary_values(const Mapping< dim, spacedim > &mapping, const DoFHandler< dim, spacedim > &dof, const std::map< types::boundary_id, const Function< spacedim, number > * > &function_map, std::map< types::global_dof_index, number > &boundary_values, const ComponentMask &component_mask=ComponentMask())

RIGHT

BOTTOM

TOP

}
else if (PROBLEM==SMALL_WAVE_PERTURBATION)
{

no slip in bottom and top and slip in left and right LEFT

RIGHT

BOTTOM

TOP

}
else if (PROBLEM==FILLING_TANK)
{

LEFT: entry in x, zero in y

VectorTools::interpolate_boundary_values (dof_handler_U,0,BoundaryU<dim>(PROBLEM),map_boundary_values_u);

RIGHT: no-slip condition

BOTTOM: non-slip

TOP: exit in y, zero in x

VectorTools::interpolate_boundary_values (dof_handler_U,3,BoundaryV<dim>(PROBLEM),map_boundary_values_v);
}
else
{
pcout << "Error in type of PROBLEM at Boundary Conditions" << std::endl;
abort();
}
boundary_values_id_u.resize(map_boundary_values_u.size());
boundary_values_id_v.resize(map_boundary_values_v.size());
boundary_values_u.resize(map_boundary_values_u.size());
boundary_values_v.resize(map_boundary_values_v.size());
std::map<types::global_dof_index,double>::const_iterator boundary_value_u =map_boundary_values_u.begin();
std::map<types::global_dof_index,double>::const_iterator boundary_value_v =map_boundary_values_v.begin();
for (int i=0; boundary_value_u !=map_boundary_values_u.end(); ++boundary_value_u, ++i)
{
boundary_values_id_u[i]=boundary_value_u->first;
boundary_values_u[i]=boundary_value_u->second;
}
for (int i=0; boundary_value_v !=map_boundary_values_v.end(); ++boundary_value_v, ++i)
{
boundary_values_id_v[i]=boundary_value_v->first;
boundary_values_v[i]=boundary_value_v->second;
}
}
template <int dim>
void MultiPhase<dim>::set_boundary_inlet()
{
const QGauss<dim-1> face_quadrature_formula(1); // center of the face
FEFaceValues<dim> fe_face_values (fe_U,face_quadrature_formula,
const unsigned int n_face_q_points = face_quadrature_formula.size();
std::vector<double> u_value (n_face_q_points);
std::vector<double> v_value (n_face_q_points);
cell_U = dof_handler_U.begin_active(),
endc_U = dof_handler_U.end();
for (; cell_U!=endc_U; ++cell_U)
if (cell_U->is_locally_owned())
for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
if (cell_U->face(face)->at_boundary())
{
fe_face_values.reinit(cell_U,face);
fe_face_values.get_function_values(locally_relevant_solution_u,u_value);
fe_face_values.get_function_values(locally_relevant_solution_v,v_value);
u[0]=u_value[0];
u[1]=v_value[0];
if (fe_face_values.normal_vector(0)*u < -1e-14)
cell_U->face(face)->set_boundary_id(10); // SET ID 10 to inlet BOUNDARY (10 is an arbitrary number)
}
}
template <int dim>
void MultiPhase<dim>::get_boundary_values_phi(std::vector<types::global_dof_index> &boundary_values_id_phi,
std::vector<double> &boundary_values_phi)
{
std::map<types::global_dof_index, double> map_boundary_values_phi;
unsigned int boundary_id=0;
set_boundary_inlet();
boundary_id=10; // inlet
VectorTools::interpolate_boundary_values (dof_handler_LS,boundary_id,BoundaryPhi<dim>(1.0),map_boundary_values_phi);
boundary_values_id_phi.resize(map_boundary_values_phi.size());
boundary_values_phi.resize(map_boundary_values_phi.size());
std::map<types::global_dof_index,double>::const_iterator boundary_value_phi = map_boundary_values_phi.begin();
for (int i=0; boundary_value_phi !=map_boundary_values_phi.end(); ++boundary_value_phi, ++i)
{
boundary_values_id_phi[i]=boundary_value_phi->first;
boundary_values_phi[i]=boundary_value_phi->second;
}
}
template<int dim>
void MultiPhase<dim>::output_results()
{
@ update_normal_vectors
Normal vectors.
unsigned int boundary_id
Definition: types.h:129

output_vectors();

output_rho();
output_number++;
}
template <int dim>
void MultiPhase<dim>::output_vectors()
{
DataOut<dim> data_out;
data_out.attach_dof_handler (dof_handler_LS);
data_out.add_data_vector (locally_relevant_solution_phi, "phi");
data_out.build_patches ();
const std::string filename = ("sol_vectors-" +
Utilities::int_to_string (output_number, 3) +
"." +
(triangulation.locally_owned_subdomain(), 4));
std::ofstream output ((filename + ".vtu").c_str());
data_out.write_vtu (output);
if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
{
std::vector<std::string> filenames;
for (unsigned int i=0;
i<Utilities::MPI::n_mpi_processes(mpi_communicator);
++i)
filenames.push_back ("sol_vectors-" +
Utilities::int_to_string (output_number, 3) +
"." +
".vtu");
std::ofstream master_output ((filename + ".pvtu").c_str());
data_out.write_pvtu_record (master_output, filenames);
}
}
template <int dim>
void MultiPhase<dim>::output_rho()
{
Postprocessor<dim> postprocessor(eps,rho_air,rho_fluid);
DataOut<dim> data_out;
data_out.attach_dof_handler (dof_handler_LS);
data_out.add_data_vector (locally_relevant_solution_phi, postprocessor);
data_out.build_patches ();
const std::string filename = ("sol_rho-" +
Utilities::int_to_string (output_number, 3) +
"." +
(triangulation.locally_owned_subdomain(), 4));
std::ofstream output ((filename + ".vtu").c_str());
data_out.write_vtu (output);
if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
{
std::vector<std::string> filenames;
for (unsigned int i=0;
i<Utilities::MPI::n_mpi_processes(mpi_communicator);
++i)
filenames.push_back ("sol_rho-" +
Utilities::int_to_string (output_number, 3) +
"." +
".vtu");
std::ofstream master_output ((filename + ".pvtu").c_str());
data_out.write_pvtu_record (master_output, filenames);
}
}
template <int dim>
void MultiPhase<dim>::run()
{
void attach_dof_handler(const DoFHandler< dim, spacedim > &)
void add_data_vector(const VectorType &data, const std::vector< std::string > &names, const DataVectorType type=type_automatic, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation={})
virtual void build_patches(const unsigned int n_subdivisions=0)
Definition: data_out.cc:1064
void write_pvtu_record(std::ostream &out, const std::vector< std::string > &piece_names) const
void write_vtu(std::ostream &out) const
unsigned int this_mpi_process(const MPI_Comm &mpi_communicator)
Definition: mpi.cc:151
unsigned int n_mpi_processes(const MPI_Comm &mpi_communicator)
Definition: mpi.cc:140
std::string int_to_string(const unsigned int value, const unsigned int digits=numbers::invalid_unsigned_int)
Definition: utilities.cc:473

//////////////////// GENERAL PARAMETERS ////////////////////

umax=1;
cfl=0.1;
verbose = true;
get_output = true;
output_number = 0;
n_refinement=8;
output_time = 0.1;
final_time = 10.0;

////////////////////////////////////////// PARAMETERS FOR THE NAVIER STOKES PROBLEM //////////////////////////////////////////

rho_fluid = 1000.;
nu_fluid = 1.0;
rho_air = 1.0;
nu_air = 1.8e-2;
PROBLEM=BREAKING_DAM;

PROBLEM=FILLING_TANK; PROBLEM=SMALL_WAVE_PERTURBATION; PROBLEM=FALLING_DROP;

ForceTerms<dim> force_function(std::vector<double> {0.0,-1.0});

////////////////////////////////// PARAMETERS FOR TRANSPORT PROBLEM //////////////////////////////////

cK = 1.0;
cE = 1.0;
sharpness_integer=10; //this will be multipled by min_h

TRANSPORT_TIME_INTEGRATION=FORWARD_EULER;

TRANSPORT_TIME_INTEGRATION=SSP33;

ALGORITHM = "MPP_u1"; ALGORITHM = "NMPP_uH";

ALGORITHM = "MPP_uH";

ADJUST PARAMETERS ACCORDING TO PROBLEM

if (PROBLEM==FALLING_DROP)
n_refinement=7;

////////// GEOMETRY //////////

if (PROBLEM==FILLING_TANK)
Point<dim>(0.0,0.0), Point<dim>(0.4,0.4), true);
else if (PROBLEM==BREAKING_DAM || PROBLEM==SMALL_WAVE_PERTURBATION)
{
std::vector< unsigned int > repetitions;
repetitions.push_back(2);
repetitions.push_back(1);
(triangulation, repetitions, Point<dim>(0.0,0.0), Point<dim>(1.0,0.5), true);
}
else if (PROBLEM==FALLING_DROP)
{
std::vector< unsigned int > repetitions;
repetitions.push_back(1);
repetitions.push_back(4);
(triangulation, repetitions, Point<dim>(0.0,0.0), Point<dim>(0.3,0.9), true);
}
triangulation.refine_global (n_refinement);
Definition: point.h:111
void hyper_rectangle(Triangulation< dim, spacedim > &tria, const Point< dim > &p1, const Point< dim > &p2, const bool colorize=false)
void subdivided_hyper_rectangle(Triangulation< dim, spacedim > &tria, const std::vector< unsigned int > &repetitions, const Point< dim > &p1, const Point< dim > &p2, const bool colorize=false)

SETUP

setup();

PARAMETERS FOR TIME STEPPING

time_step = cfl*min_h/umax;
eps=1.*min_h; //For reconstruction of density in Navier Stokes
sharpness=sharpness_integer*min_h; //adjust value of sharpness (for init cond of phi)
double minimal_cell_diameter(const Triangulation< dim, spacedim > &triangulation, const Mapping< dim, spacedim > &mapping=(ReferenceCells::get_hypercube< dim >() .template get_default_linear_mapping< dim, spacedim >()))
Definition: grid_tools.cc:4390
::VectorizedArray< Number, width > sqrt(const ::VectorizedArray< Number, width > &)

INITIAL CONDITIONS

initial_condition();
output_results();

NAVIER STOKES SOLVER

NavierStokesSolver<dim> navier_stokes (degree_LS,degree_U,
time_step,eps,
rho_air,nu_air,
rho_fluid,nu_fluid,
force_function,
verbose,
triangulation,mpi_communicator);

BOUNDARY CONDITIONS FOR NAVIER STOKES

get_boundary_values_U();
navier_stokes.set_boundary_conditions(boundary_values_id_u, boundary_values_id_v,
boundary_values_u, boundary_values_v);

set INITIAL CONDITION within NAVIER STOKES

navier_stokes.initial_condition(locally_relevant_solution_phi,
locally_relevant_solution_u,
locally_relevant_solution_v,
locally_relevant_solution_p);

TRANSPORT SOLVER

LevelSetSolver<dim> transport_solver (degree_LS,degree_U,
time_step,cK,cE,
verbose,
ALGORITHM,
TRANSPORT_TIME_INTEGRATION,
mpi_communicator);

BOUNDARY CONDITIONS FOR PHI

get_boundary_values_phi(boundary_values_id_phi,boundary_values_phi);
transport_solver.set_boundary_conditions(boundary_values_id_phi,boundary_values_phi);

set INITIAL CONDITION within TRANSPORT PROBLEM

transport_solver.initial_condition(locally_relevant_solution_phi,
locally_relevant_solution_u,
locally_relevant_solution_v);
int dofs_U = 2*dof_handler_U.n_dofs();
int dofs_P = 2*dof_handler_P.n_dofs();
int dofs_LS = dof_handler_LS.n_dofs();
int dofs_TOTAL = dofs_U+dofs_P+dofs_LS;

NO BOUNDARY CONDITIONS for LEVEL SET

pcout << "Cfl: " << cfl << "; umax: " << umax << "; min h: " << min_h
<< "; time step: " << time_step << std::endl;
pcout << " Number of active cells: "
<< triangulation.n_global_active_cells() << std::endl
<< " Number of degrees of freedom: " << std::endl
<< " U: " << dofs_U << std::endl
<< " P: " << dofs_P << std::endl
<< " LS: " << dofs_LS << std::endl
<< " TOTAL: " << dofs_TOTAL
<< std::endl;

TIME STEPPING

for (timestep_number=1, time=time_step; time<=final_time;
time+=time_step,++timestep_number)
{
pcout << "Time step " << timestep_number
<< " at t=" << time
<< std::endl;

GET NAVIER STOKES VELOCITY

navier_stokes.set_phi(locally_relevant_solution_phi);
navier_stokes.nth_time_step();
navier_stokes.get_velocity(locally_relevant_solution_u,locally_relevant_solution_v);
transport_solver.set_velocity(locally_relevant_solution_u,locally_relevant_solution_v);

GET LEVEL SET SOLUTION

transport_solver.nth_time_step();
transport_solver.get_unp1(locally_relevant_solution_phi);
if (get_output && time-(output_number)*output_time>0)
output_results();
}
navier_stokes.get_velocity(locally_relevant_solution_u, locally_relevant_solution_v);
transport_solver.get_unp1(locally_relevant_solution_phi);
if (get_output)
output_results();
}
int main(int argc, char *argv[])
{
try
{
using namespace dealii;
Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
PetscInitialize(&argc, &argv, PETSC_NULL, PETSC_NULL);
{
unsigned int degree_LS = 1;
unsigned int degree_U = 2;
MultiPhase<2> multi_phase(degree_LS, degree_U);
multi_phase.run();
}
PetscFinalize();
}
catch (std::exception &exc)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
catch (...)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
return 0;
}
unsigned int depth_console(const unsigned int n)
Definition: logstream.cc:350
LogStream deallog
Definition: logstream.cc:37

Annotated version of NavierStokesSolver.cc

///////////////////////////////////////////////////////////// /////////////////// NAVIER STOKES SOLVER //////////////////// /////////////////////////////////////////////////////////////

template<int dim>
class NavierStokesSolver
{
public:

constructor for using LEVEL SET

NavierStokesSolver(const unsigned int degree_LS,
const unsigned int degree_U,
const double time_step,
const double eps,
const double rho_air,
const double nu_air,
const double rho_fluid,
const double nu_fluid,
Function<dim> &force_function,
const bool verbose,
MPI_Comm &mpi_communicator);

constructor for NOT LEVEL SET

NavierStokesSolver(const unsigned int degree_LS,
const unsigned int degree_U,
const double time_step,
Function<dim> &force_function,
Function<dim> &rho_function,
Function<dim> &nu_function,
const bool verbose,
MPI_Comm &mpi_communicator);

rho and nu functions

void set_rho_and_nu_functions(const Function<dim> &rho_function,
const Function<dim> &nu_function);

initial conditions

void initial_condition(PETScWrappers::MPI::Vector locally_relevant_solution_rho,
PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_v,
PETScWrappers::MPI::Vector locally_relevant_solution_p);
void initial_condition(PETScWrappers::MPI::Vector locally_relevant_solution_rho,
PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_v,
PETScWrappers::MPI::Vector locally_relevant_solution_w,
PETScWrappers::MPI::Vector locally_relevant_solution_p);

boundary conditions

void set_boundary_conditions(std::vector<types::global_dof_index> boundary_values_id_u,
std::vector<types::global_dof_index> boundary_values_id_v, std::vector<double> boundary_values_u,
std::vector<double> boundary_values_v);
void set_boundary_conditions(std::vector<types::global_dof_index> boundary_values_id_u,
std::vector<types::global_dof_index> boundary_values_id_v,
std::vector<types::global_dof_index> boundary_values_id_w, std::vector<double> boundary_values_u,
std::vector<double> boundary_values_v, std::vector<double> boundary_values_w);
void set_velocity(PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_v);
void set_velocity(PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_v,
PETScWrappers::MPI::Vector locally_relevant_solution_w);
void set_phi(PETScWrappers::MPI::Vector locally_relevant_solution_phi);
void get_pressure(PETScWrappers::MPI::Vector &locally_relevant_solution_p);
void get_velocity(PETScWrappers::MPI::Vector &locally_relevant_solution_u,
PETScWrappers::MPI::Vector &locally_relevant_solution_v);
void get_velocity(PETScWrappers::MPI::Vector &locally_relevant_solution_u,
PETScWrappers::MPI::Vector &locally_relevant_solution_v,
PETScWrappers::MPI::Vector &locally_relevant_solution_w);

DO STEPS

void nth_time_step();

SETUP

void setup();
~NavierStokesSolver();
private:

SETUP AND INITIAL CONDITION

void setup_DOF();
void setup_VECTORS();
void init_constraints();

ASSEMBLE SYSTEMS

void assemble_system_U();
void assemble_system_dpsi_q();

SOLVERS

void solve_U(const AffineConstraints<double> &constraints, PETScWrappers::MPI::SparseMatrix &Matrix,
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner,
PETScWrappers::MPI::Vector &completely_distributed_solution,
void solve_P(const AffineConstraints<double> &constraints, PETScWrappers::MPI::SparseMatrix &Matrix,
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner,
PETScWrappers::MPI::Vector &completely_distributed_solution,

GET DIFFERENT FIELDS

void get_rho_and_nu(double phi);
void get_velocity();
void get_pressure();

OTHERS

void save_old_solution();
MPI_Comm &mpi_communicator;
int degree_LS;
DoFHandler<dim> dof_handler_LS;
FE_Q<dim> fe_LS;
IndexSet locally_owned_dofs_LS;
IndexSet locally_relevant_dofs_LS;
int degree_U;
DoFHandler<dim> dof_handler_U;
FE_Q<dim> fe_U;
IndexSet locally_owned_dofs_U;
IndexSet locally_relevant_dofs_U;
DoFHandler<dim> dof_handler_P;
FE_Q<dim> fe_P;
IndexSet locally_owned_dofs_P;
IndexSet locally_relevant_dofs_P;
Function<dim> &force_function;
Function<dim> &rho_function;
Function<dim> &nu_function;
double rho_air;
double nu_air;
double rho_fluid;
double nu_fluid;
double time_step;
double eps;
bool verbose;
unsigned int LEVEL_SET;
unsigned int RHO_TIMES_RHS;
double rho_min;
double rho_value;
double nu_value;
double h;
double umax;
int degree_MAX;
AffineConstraints<double> constraints_psi;
std::vector<types::global_dof_index> boundary_values_id_u;
std::vector<types::global_dof_index> boundary_values_id_v;
std::vector<types::global_dof_index> boundary_values_id_w;
std::vector<double> boundary_values_u;
std::vector<double> boundary_values_v;
std::vector<double> boundary_values_w;
bool rebuild_Matrix_U;
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner_Matrix_u;
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner_Matrix_v;
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner_Matrix_w;
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner_S;
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner_M;
bool rebuild_S_M;
bool rebuild_Matrix_U_preconditioners;
bool rebuild_S_M_preconditioners;
PETScWrappers::MPI::Vector locally_relevant_solution_phi;
PETScWrappers::MPI::Vector locally_relevant_solution_u;
PETScWrappers::MPI::Vector locally_relevant_solution_v;
PETScWrappers::MPI::Vector locally_relevant_solution_w;
PETScWrappers::MPI::Vector locally_relevant_solution_u_old;
PETScWrappers::MPI::Vector locally_relevant_solution_v_old;
PETScWrappers::MPI::Vector locally_relevant_solution_w_old;
PETScWrappers::MPI::Vector locally_relevant_solution_psi;
PETScWrappers::MPI::Vector locally_relevant_solution_psi_old;
PETScWrappers::MPI::Vector locally_relevant_solution_p;
PETScWrappers::MPI::Vector completely_distributed_solution_u;
PETScWrappers::MPI::Vector completely_distributed_solution_v;
PETScWrappers::MPI::Vector completely_distributed_solution_w;
PETScWrappers::MPI::Vector completely_distributed_solution_psi;
PETScWrappers::MPI::Vector completely_distributed_solution_q;
PETScWrappers::MPI::Vector completely_distributed_solution_p;
};

CONSTRUCTOR FOR LEVEL SET

template<int dim>
NavierStokesSolver<dim>::NavierStokesSolver(const unsigned int degree_LS,
const unsigned int degree_U,
const double time_step,
const double eps,
const double rho_air,
const double nu_air,
const double rho_fluid,
const double nu_fluid,
Function<dim> &force_function,
const bool verbose,
MPI_Comm &mpi_communicator)
:
mpi_communicator(mpi_communicator),
degree_LS(degree_LS),
dof_handler_LS(triangulation),
fe_LS(degree_LS),
degree_U(degree_U),
dof_handler_U(triangulation),
fe_U(degree_U),
dof_handler_P(triangulation),
fe_P(degree_U-1),
force_function(force_function),

This is dummy since rho and nu functions won't be used

rho_function(force_function),
nu_function(force_function),
rho_air(rho_air),
nu_air(nu_air),
rho_fluid(rho_fluid),
nu_fluid(nu_fluid),
time_step(time_step),
eps(eps),
verbose(verbose),
LEVEL_SET(1),
RHO_TIMES_RHS(1),
pcout(std::cout,(Utilities::MPI::this_mpi_process(mpi_communicator)==0)),
rebuild_Matrix_U(true),
rebuild_S_M(true),
rebuild_Matrix_U_preconditioners(true),
rebuild_S_M_preconditioners(true)
{setup();}

CONSTRUCTOR NOT FOR LEVEL SET

template<int dim>
NavierStokesSolver<dim>::NavierStokesSolver(const unsigned int degree_LS,
const unsigned int degree_U,
const double time_step,
Function<dim> &force_function,
Function<dim> &rho_function,
Function<dim> &nu_function,
const bool verbose,
MPI_Comm &mpi_communicator) :
mpi_communicator(mpi_communicator),
degree_LS(degree_LS),
dof_handler_LS(triangulation),
fe_LS(degree_LS),
degree_U(degree_U),
dof_handler_U(triangulation),
fe_U(degree_U),
dof_handler_P(triangulation),
fe_P(degree_U-1),
force_function(force_function),
rho_function(rho_function),
nu_function(nu_function),
time_step(time_step),
verbose(verbose),
LEVEL_SET(0),
RHO_TIMES_RHS(0),
pcout(std::cout,(Utilities::MPI::this_mpi_process(mpi_communicator)==0)),
rebuild_Matrix_U(true),
rebuild_S_M(true),
rebuild_Matrix_U_preconditioners(true),
rebuild_S_M_preconditioners(true)
{setup();}
template<int dim>
NavierStokesSolver<dim>::~NavierStokesSolver()
{
dof_handler_LS.clear();
dof_handler_U.clear();
dof_handler_P.clear();
}

///////////////////////////////////////////////////////// ////////////////// SETTERS AND GETTERS ////////////////// /////////////////////////////////////////////////////////

template<int dim>
void NavierStokesSolver<dim>::set_rho_and_nu_functions(const Function<dim> &rho_function,
const Function<dim> &nu_function)
{
this->rho_function=rho_function;
this->nu_function=nu_function;
}
template<int dim>
void NavierStokesSolver<dim>::initial_condition(PETScWrappers::MPI::Vector locally_relevant_solution_phi,
PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_v,
PETScWrappers::MPI::Vector locally_relevant_solution_p)
{
this->locally_relevant_solution_phi=locally_relevant_solution_phi;
this->locally_relevant_solution_u=locally_relevant_solution_u;
this->locally_relevant_solution_v=locally_relevant_solution_v;
this->locally_relevant_solution_p=locally_relevant_solution_p;

set old vectors to the initial condition (just for first time step)

save_old_solution();
}
template<int dim>
void NavierStokesSolver<dim>::initial_condition(PETScWrappers::MPI::Vector locally_relevant_solution_phi,
PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_v,
PETScWrappers::MPI::Vector locally_relevant_solution_w,
PETScWrappers::MPI::Vector locally_relevant_solution_p)
{
this->locally_relevant_solution_phi=locally_relevant_solution_phi;
this->locally_relevant_solution_u=locally_relevant_solution_u;
this->locally_relevant_solution_v=locally_relevant_solution_v;
this->locally_relevant_solution_w=locally_relevant_solution_w;
this->locally_relevant_solution_p=locally_relevant_solution_p;

set old vectors to the initial condition (just for first time step)

save_old_solution();
}
template<int dim>
void NavierStokesSolver<dim>::set_boundary_conditions(std::vector<types::global_dof_index> boundary_values_id_u,
std::vector<types::global_dof_index> boundary_values_id_v,
std::vector<double> boundary_values_u,
std::vector<double> boundary_values_v)
{
this->boundary_values_id_u=boundary_values_id_u;
this->boundary_values_id_v=boundary_values_id_v;
this->boundary_values_u=boundary_values_u;
this->boundary_values_v=boundary_values_v;
}
template<int dim>
void NavierStokesSolver<dim>::set_boundary_conditions(std::vector<types::global_dof_index> boundary_values_id_u,
std::vector<types::global_dof_index> boundary_values_id_v,
std::vector<types::global_dof_index> boundary_values_id_w,
std::vector<double> boundary_values_u,
std::vector<double> boundary_values_v,
std::vector<double> boundary_values_w)
{
this->boundary_values_id_u=boundary_values_id_u;
this->boundary_values_id_v=boundary_values_id_v;
this->boundary_values_id_w=boundary_values_id_w;
this->boundary_values_u=boundary_values_u;
this->boundary_values_v=boundary_values_v;
this->boundary_values_w=boundary_values_w;
}
template<int dim>
void NavierStokesSolver<dim>::set_velocity(PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_v)
{
this->locally_relevant_solution_u=locally_relevant_solution_u;
this->locally_relevant_solution_v=locally_relevant_solution_v;
}
template<int dim>
void NavierStokesSolver<dim>::set_velocity(PETScWrappers::MPI::Vector locally_relevant_solution_u,
PETScWrappers::MPI::Vector locally_relevant_solution_v,
PETScWrappers::MPI::Vector locally_relevant_solution_w)
{
this->locally_relevant_solution_u=locally_relevant_solution_u;
this->locally_relevant_solution_v=locally_relevant_solution_v;
this->locally_relevant_solution_w=locally_relevant_solution_w;
}
template<int dim>
void NavierStokesSolver<dim>::set_phi(PETScWrappers::MPI::Vector locally_relevant_solution_phi)
{
this->locally_relevant_solution_phi=locally_relevant_solution_phi;
}
template<int dim>
void NavierStokesSolver<dim>::get_rho_and_nu(double phi)
{
double H=0;

get rho, nu

if (phi>eps)
H=1;
else if (phi<-eps)
H=-1;
else
H=phi/eps;
rho_value=rho_fluid*(1+H)/2.+rho_air*(1-H)/2.;
nu_value=nu_fluid*(1+H)/2.+nu_air*(1-H)/2.;

rho_value=rho_fluid*(1+phi)/2.+rho_air*(1-phi)/2.; nu_value=nu_fluid*(1+phi)/2.+nu_air*(1-phi)/2.;

}
template<int dim>
void NavierStokesSolver<dim>::get_pressure(PETScWrappers::MPI::Vector &locally_relevant_solution_p)
{
locally_relevant_solution_p=this->locally_relevant_solution_p;
}
template<int dim>
void NavierStokesSolver<dim>::get_velocity(PETScWrappers::MPI::Vector &locally_relevant_solution_u,
PETScWrappers::MPI::Vector &locally_relevant_solution_v)
{
locally_relevant_solution_u=this->locally_relevant_solution_u;
locally_relevant_solution_v=this->locally_relevant_solution_v;
}
template<int dim>
void NavierStokesSolver<dim>::get_velocity(PETScWrappers::MPI::Vector &locally_relevant_solution_u,
PETScWrappers::MPI::Vector &locally_relevant_solution_v,
PETScWrappers::MPI::Vector &locally_relevant_solution_w)
{
locally_relevant_solution_u=this->locally_relevant_solution_u;
locally_relevant_solution_v=this->locally_relevant_solution_v;
locally_relevant_solution_w=this->locally_relevant_solution_w;
}

/////////////////////////////////////////////////// /////////// SETUP AND INITIAL CONDITION /////////// ///////////////////////////////////////////////////

template<int dim>
void NavierStokesSolver<dim>::setup()
{
pcout<<"***** SETUP IN NAVIER STOKES SOLVER *****"<<std::endl;
setup_DOF();
init_constraints();
setup_VECTORS();
}
template<int dim>
void NavierStokesSolver<dim>::setup_DOF()
{
rho_min = 1.;
degree_MAX=std::max(degree_LS,degree_U);

setup system LS

dof_handler_LS.distribute_dofs(fe_LS);
locally_owned_dofs_LS=dof_handler_LS.locally_owned_dofs();
DoFTools::extract_locally_relevant_dofs(dof_handler_LS,locally_relevant_dofs_LS);

setup system U

dof_handler_U.distribute_dofs(fe_U);
locally_owned_dofs_U=dof_handler_U.locally_owned_dofs();
DoFTools::extract_locally_relevant_dofs(dof_handler_U,locally_relevant_dofs_U);

setup system P

dof_handler_P.distribute_dofs(fe_P);
locally_owned_dofs_P=dof_handler_P.locally_owned_dofs();
DoFTools::extract_locally_relevant_dofs(dof_handler_P,locally_relevant_dofs_P);
}
template<int dim>
void NavierStokesSolver<dim>::setup_VECTORS()
{

init vectors for phi

locally_relevant_solution_phi.reinit(locally_owned_dofs_LS,locally_relevant_dofs_LS,
mpi_communicator);
locally_relevant_solution_phi=0;

init vectors for u

locally_relevant_solution_u.reinit(locally_owned_dofs_U,locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_u=0;
completely_distributed_solution_u.reinit(locally_owned_dofs_U,mpi_communicator);
system_rhs_u.reinit(locally_owned_dofs_U,mpi_communicator);

init vectors for u_old

locally_relevant_solution_u_old.reinit(locally_owned_dofs_U,locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_u_old=0;

init vectors for v

locally_relevant_solution_v.reinit(locally_owned_dofs_U,locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_v=0;
completely_distributed_solution_v.reinit(locally_owned_dofs_U,mpi_communicator);
system_rhs_v.reinit(locally_owned_dofs_U,mpi_communicator);

init vectors for v_old

locally_relevant_solution_v_old.reinit(locally_owned_dofs_U,locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_v_old=0;

init vectors for w

locally_relevant_solution_w.reinit(locally_owned_dofs_U,locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_w=0;
completely_distributed_solution_w.reinit(locally_owned_dofs_U,mpi_communicator);
system_rhs_w.reinit(locally_owned_dofs_U,mpi_communicator);

init vectors for w_old

locally_relevant_solution_w_old.reinit(locally_owned_dofs_U,locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_w_old=0;

init vectors for dpsi

locally_relevant_solution_psi.reinit(locally_owned_dofs_P,locally_relevant_dofs_P,
mpi_communicator);
locally_relevant_solution_psi=0;
system_rhs_psi.reinit(locally_owned_dofs_P,mpi_communicator);

init vectors for dpsi old

locally_relevant_solution_psi_old.reinit(locally_owned_dofs_P,locally_relevant_dofs_P,
mpi_communicator);
locally_relevant_solution_psi_old=0;

init vectors for q

completely_distributed_solution_q.reinit(locally_owned_dofs_P,mpi_communicator);
system_rhs_q.reinit(locally_owned_dofs_P,mpi_communicator);

init vectors for psi

completely_distributed_solution_psi.reinit(locally_owned_dofs_P,mpi_communicator);

init vectors for p

locally_relevant_solution_p.reinit(locally_owned_dofs_P,locally_relevant_dofs_P,
mpi_communicator);
locally_relevant_solution_p=0;
completely_distributed_solution_p.reinit(locally_owned_dofs_P,mpi_communicator);

//////////////////////// Initialize constraints ////////////////////////

init_constraints();

////////////////// Sparsity pattern ////////////////// sparsity pattern for A

DynamicSparsityPattern dsp_Matrix(locally_relevant_dofs_U);
DoFTools::make_sparsity_pattern(dof_handler_U,dsp_Matrix,constraints,false);
dof_handler_U.locally_owned_dofs(),
mpi_communicator,
locally_relevant_dofs_U);
system_Matrix_u.reinit(dof_handler_U.locally_owned_dofs(),
dof_handler_U.locally_owned_dofs(),
dsp_Matrix,
mpi_communicator);
system_Matrix_v.reinit(dof_handler_U.locally_owned_dofs(),
dof_handler_U.locally_owned_dofs(),
dsp_Matrix,
mpi_communicator);
system_Matrix_w.reinit(dof_handler_U.locally_owned_dofs(),
dof_handler_U.locally_owned_dofs(),
dsp_Matrix,
mpi_communicator);
rebuild_Matrix_U=true;

sparsity pattern for S

DynamicSparsityPattern dsp_S(locally_relevant_dofs_P);
DoFTools::make_sparsity_pattern(dof_handler_P,dsp_S,constraints_psi,false);
dof_handler_P.locally_owned_dofs(),
mpi_communicator,
locally_relevant_dofs_P);
system_S.reinit(dof_handler_P.locally_owned_dofs(),
dof_handler_P.locally_owned_dofs(),
dsp_S,
mpi_communicator);

sparsity pattern for M

DynamicSparsityPattern dsp_M(locally_relevant_dofs_P);
DoFTools::make_sparsity_pattern(dof_handler_P,dsp_M,constraints_psi,false);
dof_handler_P.locally_owned_dofs(),
mpi_communicator,
locally_relevant_dofs_P);
system_M.reinit(dof_handler_P.locally_owned_dofs(),
dof_handler_P.locally_owned_dofs(),
dsp_M,
mpi_communicator);
rebuild_S_M=true;
}
template<int dim>
void NavierStokesSolver<dim>::init_constraints()
{

grl constraints

constraints.clear();
constraints.reinit(locally_relevant_dofs_U);
DoFTools::make_hanging_node_constraints(dof_handler_U,constraints);
constraints.close();

constraints for dpsi

constraints_psi.clear();
constraints_psi.reinit(locally_relevant_dofs_P);
DoFTools::make_hanging_node_constraints(dof_handler_P,constraints_psi);

if (constraints_psi.can_store_line(0)) constraints_psi.add_line(0); //constraint u0 = 0

constraints_psi.close();
}

/////////////////////////////////////////////////// //////////////// ASSEMBLE SYSTEMS ///////////////// ///////////////////////////////////////////////////

template<int dim>
void NavierStokesSolver<dim>::assemble_system_U()
{
if (rebuild_Matrix_U==true)
{
system_Matrix_u=0;
system_Matrix_v=0;
system_Matrix_w=0;
}
system_rhs_u=0;
system_rhs_v=0;
system_rhs_w=0;
const QGauss<dim> quadrature_formula(degree_MAX+1);
FEValues<dim> fe_values_LS(fe_LS,quadrature_formula,
FEValues<dim> fe_values_U(fe_U,quadrature_formula,
FEValues<dim> fe_values_P(fe_P,quadrature_formula,
const unsigned int dofs_per_cell=fe_U.dofs_per_cell;
const unsigned int n_q_points=quadrature_formula.size();
FullMatrix<double> cell_A_u(dofs_per_cell,dofs_per_cell);
Vector<double> cell_rhs_u(dofs_per_cell);
Vector<double> cell_rhs_v(dofs_per_cell);
Vector<double> cell_rhs_w(dofs_per_cell);
std::vector<double> phiqnp1(n_q_points);
std::vector<double> uqn(n_q_points);
std::vector<double> uqnm1(n_q_points);
std::vector<double> vqn(n_q_points);
std::vector<double> vqnm1(n_q_points);
std::vector<double> wqn(n_q_points);
std::vector<double> wqnm1(n_q_points);

FOR Explicit nonlinearity std::vector<Tensor<1, dim> > grad_un(n_q_points); std::vector<Tensor<1, dim> > grad_vn(n_q_points); std::vector<Tensor<1, dim> > grad_wn(n_q_points); Tensor<1, dim> Un;

std::vector<Tensor<1, dim> > grad_pqn(n_q_points);
std::vector<Tensor<1, dim> > grad_psiqn(n_q_points);
std::vector<Tensor<1, dim> > grad_psiqnm1(n_q_points);
std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
std::vector<Tensor<1, dim> > shape_grad(dofs_per_cell);
std::vector<double> shape_value(dofs_per_cell);
double force_u;
double force_v;
double force_w;
double pressure_grad_u;
double pressure_grad_v;
double pressure_grad_w;
double u_star=0;
double v_star=0;
double w_star=0;
double rho_star;
double rho;
Vector<double> force_terms(dim);
cell_U=dof_handler_U.begin_active(), endc_U=dof_handler_U.end();
typename DoFHandler<dim>::active_cell_iterator cell_P=dof_handler_P.begin_active();
typename DoFHandler<dim>::active_cell_iterator cell_LS=dof_handler_LS.begin_active();
for (; cell_U!=endc_U; ++cell_U,++cell_P,++cell_LS)
if (cell_U->is_locally_owned())
{
cell_A_u=0;
cell_rhs_u=0;
cell_rhs_v=0;
cell_rhs_w=0;
fe_values_LS.reinit(cell_LS);
fe_values_U.reinit(cell_U);
fe_values_P.reinit(cell_P);

get function values for LS

fe_values_LS.get_function_values(locally_relevant_solution_phi,phiqnp1);

get function values for U

fe_values_U.get_function_values(locally_relevant_solution_u,uqn);
fe_values_U.get_function_values(locally_relevant_solution_u_old,uqnm1);
fe_values_U.get_function_values(locally_relevant_solution_v,vqn);
fe_values_U.get_function_values(locally_relevant_solution_v_old,vqnm1);
if (dim==3)
{
fe_values_U.get_function_values(locally_relevant_solution_w,wqn);
fe_values_U.get_function_values(locally_relevant_solution_w_old,wqnm1);
}

For explicit nonlinearity get gradient values for U fe_values_U.get_function_gradients(locally_relevant_solution_u,grad_un); fe_values_U.get_function_gradients(locally_relevant_solution_v,grad_vn); if (dim==3) fe_values_U.get_function_gradients(locally_relevant_solution_w,grad_wn);

get values and gradients for p and dpsi

fe_values_P.get_function_gradients(locally_relevant_solution_p,grad_pqn);
fe_values_P.get_function_gradients(locally_relevant_solution_psi,grad_psiqn);
fe_values_P.get_function_gradients(locally_relevant_solution_psi_old,grad_psiqnm1);
for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
{
const double JxW=fe_values_U.JxW(q_point);
for (unsigned int i=0; i<dofs_per_cell; ++i)
{
shape_grad[i]=fe_values_U.shape_grad(i,q_point);
shape_value[i]=fe_values_U.shape_value(i,q_point);
}
pressure_grad_u=(grad_pqn[q_point][0]+4./3*grad_psiqn[q_point][0]-1./3*grad_psiqnm1[q_point][0]);
pressure_grad_v=(grad_pqn[q_point][1]+4./3*grad_psiqn[q_point][1]-1./3*grad_psiqnm1[q_point][1]);
if (dim==3)
pressure_grad_w=(grad_pqn[q_point][2]+4./3*grad_psiqn[q_point][2]-1./3*grad_psiqnm1[q_point][2]);
if (LEVEL_SET==1) // use level set to define rho and nu
get_rho_and_nu(phiqnp1[q_point]);
else // rho and nu are defined through functions
{
rho_value=rho_function.value(fe_values_U.quadrature_point(q_point));
nu_value=nu_function.value(fe_values_U.quadrature_point(q_point));
}

Non-linearity: for semi-implicit

u_star=2*uqn[q_point]-uqnm1[q_point];
v_star=2*vqn[q_point]-vqnm1[q_point];
if (dim==3)
w_star=2*wqn[q_point]-wqnm1[q_point];

for explicit nonlinearity Un[0] = uqn[q_point]; Un[1] = vqn[q_point]; if (dim==3) Un[2] = wqn[q_point];

double nonlinearity_u = Un*grad_un[q_point]; double nonlinearity_v = Un*grad_vn[q_point]; double nonlinearity_w = 0; if (dim==3) nonlinearity_w = Un*grad_wn[q_point];

rho_star=rho_value; // This is because we consider rho*u_t instead of (rho*u)_t
rho=rho_value;

FORCE TERMS

force_function.vector_value(fe_values_U.quadrature_point(q_point),force_terms);
force_u=force_terms[0];
force_v=force_terms[1];
if (dim==3)
force_w=force_terms[2];
if (RHO_TIMES_RHS==1)
{
force_u*=rho;
force_v*=rho;
if (dim==3)
force_w*=rho;
}
for (unsigned int i=0; i<dofs_per_cell; ++i)
{
cell_rhs_u(i)+=((4./3*rho*uqn[q_point]-1./3*rho*uqnm1[q_point]
+2./3*time_step*(force_u-pressure_grad_u)
virtual void vector_value(const Point< dim > &p, Vector< RangeNumberType > &values) const

-2./3*time_step*rho*nonlinearity_u

)*shape_value[i])*JxW;
cell_rhs_v(i)+=((4./3*rho*vqn[q_point]-1./3*rho*vqnm1[q_point]
+2./3*time_step*(force_v-pressure_grad_v)

-2./3*time_step*rho*nonlinearity_v

)*shape_value[i])*JxW;
if (dim==3)
cell_rhs_w(i)+=((4./3*rho*wqn[q_point]-1./3*rho*wqnm1[q_point]
+2./3*time_step*(force_w-pressure_grad_w)

-2./3*time_step*rho*nonlinearity_w

)*shape_value[i])*JxW;
if (rebuild_Matrix_U==true)
for (unsigned int j=0; j<dofs_per_cell; ++j)
{
if (dim==2)
cell_A_u(i,j)+=(rho_star*shape_value[i]*shape_value[j]
+2./3*time_step*nu_value*(shape_grad[i]*shape_grad[j])
+2./3*time_step*rho*shape_value[i]
*(u_star*shape_grad[j][0]+v_star*shape_grad[j][1]) // semi-implicit NL
)*JxW;
else //dim==3
cell_A_u(i,j)+=(rho_star*shape_value[i]*shape_value[j]
+2./3*time_step*nu_value*(shape_grad[i]*shape_grad[j])
+2./3*time_step*rho*shape_value[i]
*(u_star*shape_grad[j][0]+v_star*shape_grad[j][1]+w_star*shape_grad[j][2]) // semi-implicit NL
)*JxW;
}
}
}
cell_U->get_dof_indices(local_dof_indices);

distribute

if (rebuild_Matrix_U==true)
constraints.distribute_local_to_global(cell_A_u,local_dof_indices,system_Matrix_u);
constraints.distribute_local_to_global(cell_rhs_u,local_dof_indices,system_rhs_u);
constraints.distribute_local_to_global(cell_rhs_v,local_dof_indices,system_rhs_v);
if (dim==3)
constraints.distribute_local_to_global(cell_rhs_w,local_dof_indices,system_rhs_w);
}
system_rhs_u.compress(VectorOperation::add);
system_rhs_v.compress(VectorOperation::add);
if (dim==3) system_rhs_w.compress(VectorOperation::add);
if (rebuild_Matrix_U==true)
{
system_Matrix_u.compress(VectorOperation::add);
system_Matrix_v.copy_from(system_Matrix_u);
if (dim==3)
system_Matrix_w.copy_from(system_Matrix_u);
}
void distribute_local_to_global(const InVector &local_vector, const std::vector< size_type > &local_dof_indices, OutVector &global_vector) const

BOUNDARY CONDITIONS

system_rhs_u.set(boundary_values_id_u,boundary_values_u);
system_rhs_u.compress(VectorOperation::insert);
system_rhs_v.set(boundary_values_id_v,boundary_values_v);
system_rhs_v.compress(VectorOperation::insert);
if (dim==3)
{
system_rhs_w.set(boundary_values_id_w,boundary_values_w);
system_rhs_w.compress(VectorOperation::insert);
}
if (rebuild_Matrix_U)
{
system_Matrix_u.clear_rows(boundary_values_id_u,1);
system_Matrix_v.clear_rows(boundary_values_id_v,1);
if (dim==3)
system_Matrix_w.clear_rows(boundary_values_id_w,1);
if (rebuild_Matrix_U_preconditioners)
{

PRECONDITIONERS

rebuild_Matrix_U_preconditioners=false;
preconditioner_Matrix_u.reset(new PETScWrappers::PreconditionBoomerAMG
preconditioner_Matrix_v.reset( new PETScWrappers::PreconditionBoomerAMG
if (dim==3)
preconditioner_Matrix_w.reset(new PETScWrappers::PreconditionBoomerAMG
}
}
rebuild_Matrix_U=true;
}
template<int dim>
void NavierStokesSolver<dim>::assemble_system_dpsi_q()
{
if (rebuild_S_M==true)
{
system_S=0;
system_M=0;
}
system_rhs_psi=0;
system_rhs_q=0;
const QGauss<dim> quadrature_formula(degree_MAX+1);
FEValues<dim> fe_values_U(fe_U,quadrature_formula,
FEValues<dim> fe_values_P(fe_P,quadrature_formula,
FEValues<dim> fe_values_LS(fe_LS,quadrature_formula,
const unsigned int dofs_per_cell=fe_P.dofs_per_cell;
const unsigned int n_q_points=quadrature_formula.size();
FullMatrix<double> cell_S(dofs_per_cell,dofs_per_cell);
FullMatrix<double> cell_M(dofs_per_cell,dofs_per_cell);
Vector<double> cell_rhs_psi(dofs_per_cell);
Vector<double> cell_rhs_q(dofs_per_cell);
std::vector<double> phiqnp1(n_q_points);
std::vector<Tensor<1, dim> > gunp1(n_q_points);
std::vector<Tensor<1, dim> > gvnp1(n_q_points);
std::vector<Tensor<1, dim> > gwnp1(n_q_points);
std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
std::vector<double> shape_value(dofs_per_cell);
std::vector<Tensor<1, dim> > shape_grad(dofs_per_cell);
cell_P=dof_handler_P.begin_active(), endc_P=dof_handler_P.end();
typename DoFHandler<dim>::active_cell_iterator cell_U=dof_handler_U.begin_active();
typename DoFHandler<dim>::active_cell_iterator cell_LS=dof_handler_LS.begin_active();
for (; cell_P!=endc_P; ++cell_P,++cell_U,++cell_LS)
if (cell_P->is_locally_owned())
{
cell_S=0;
cell_M=0;
cell_rhs_psi=0;
cell_rhs_q=0;
fe_values_P.reinit(cell_P);
fe_values_U.reinit(cell_U);
fe_values_LS.reinit(cell_LS);

get function values for LS

fe_values_LS.get_function_values(locally_relevant_solution_phi,phiqnp1);

get function grads for u and v

fe_values_U.get_function_gradients(locally_relevant_solution_u,gunp1);
fe_values_U.get_function_gradients(locally_relevant_solution_v,gvnp1);
if (dim==3)
fe_values_U.get_function_gradients(locally_relevant_solution_w,gwnp1);
for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
{
const double JxW=fe_values_P.JxW(q_point);
double divU = gunp1[q_point][0]+gvnp1[q_point][1];
if (dim==3) divU += gwnp1[q_point][2];
for (unsigned int i=0; i<dofs_per_cell; ++i)
{
shape_value[i]=fe_values_P.shape_value(i,q_point);
shape_grad[i]=fe_values_P.shape_grad(i,q_point);
}
if (LEVEL_SET==1) // use level set to define rho and nu
get_rho_and_nu (phiqnp1[q_point]);
else // rho and nu are defined through functions
nu_value=nu_function.value(fe_values_U.quadrature_point(q_point));
for (unsigned int i=0; i<dofs_per_cell; ++i)
{
cell_rhs_psi(i)+=-3./2./time_step*rho_min*divU*shape_value[i]*JxW;
cell_rhs_q(i)-=nu_value*divU*shape_value[i]*JxW;
if (rebuild_S_M==true)
{
for (unsigned int j=0; j<dofs_per_cell; ++j)
if (i==j)
{
cell_S(i,j)+=shape_grad[i]*shape_grad[j]*JxW+1E-10;
cell_M(i,j)+=shape_value[i]*shape_value[j]*JxW;
}
else
{
cell_S(i,j)+=shape_grad[i]*shape_grad[j]*JxW;
cell_M(i,j)+=shape_value[i]*shape_value[j]*JxW;
}
}
}
}
cell_P->get_dof_indices(local_dof_indices);

Distribute

if (rebuild_S_M==true)
{
constraints_psi.distribute_local_to_global(cell_S,local_dof_indices,system_S);
constraints_psi.distribute_local_to_global(cell_M,local_dof_indices,system_M);
}
constraints_psi.distribute_local_to_global(cell_rhs_q,local_dof_indices,system_rhs_q);
constraints_psi.distribute_local_to_global(cell_rhs_psi,local_dof_indices,system_rhs_psi);
}
if (rebuild_S_M==true)
{
system_M.compress(VectorOperation::add);
system_S.compress(VectorOperation::add);
if (rebuild_S_M_preconditioners)
{
rebuild_S_M_preconditioners=false;
preconditioner_S.reset(new PETScWrappers::PreconditionBoomerAMG
preconditioner_M.reset(new PETScWrappers::PreconditionBoomerAMG
}
}
system_rhs_psi.compress(VectorOperation::add);
system_rhs_q.compress(VectorOperation::add);
rebuild_S_M=false;
}

/////////////////////////////////////////////////// ///////////////////// SOLVERS ///////////////////// ///////////////////////////////////////////////////

template<int dim>
void NavierStokesSolver<dim>::solve_U(const AffineConstraints<double> &constraints,
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner,
PETScWrappers::MPI::Vector &completely_distributed_solution,
{
SolverControl solver_control(dof_handler_U.n_dofs(),1e-6);

PETScWrappers::SolverCG solver(solver_control, mpi_communicator); PETScWrappers::SolverGMRES solver(solver_control, mpi_communicator); PETScWrappers::SolverChebychev solver(solver_control, mpi_communicator);

PETScWrappers::SolverBicgstab solver(solver_control,mpi_communicator);
constraints.distribute(completely_distributed_solution);
solver.solve(Matrix,completely_distributed_solution,rhs,*preconditioner);
constraints.distribute(completely_distributed_solution);
if (solver_control.last_step() > MAX_NUM_ITER_TO_RECOMPUTE_PRECONDITIONER)
rebuild_Matrix_U_preconditioners=true;
if (verbose==true)
pcout<<" Solved U in "<<solver_control.last_step()<<" iterations."<<std::endl;
}
template<int dim>
void NavierStokesSolver<dim>::solve_P(const AffineConstraints<double> &constraints,
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner,
PETScWrappers::MPI::Vector &completely_distributed_solution,
{
SolverControl solver_control(dof_handler_P.n_dofs(),1e-6);
PETScWrappers::SolverCG solver(solver_control,mpi_communicator);

PETScWrappers::SolverGMRES solver(solver_control, mpi_communicator);

constraints.distribute(completely_distributed_solution);
solver.solve(Matrix,completely_distributed_solution,rhs,*preconditioner);
constraints.distribute(completely_distributed_solution);
if (solver_control.last_step() > MAX_NUM_ITER_TO_RECOMPUTE_PRECONDITIONER)
rebuild_S_M_preconditioners=true;
if (verbose==true)
pcout<<" Solved P in "<<solver_control.last_step()<<" iterations."<<std::endl;
}

/////////////////////////////////////////////////// ////////////// get different fields /////////////// ///////////////////////////////////////////////////

template<int dim>
void NavierStokesSolver<dim>::get_velocity()
{
assemble_system_U();
save_old_solution();
solve_U(constraints,system_Matrix_u,preconditioner_Matrix_u,completely_distributed_solution_u,system_rhs_u);
locally_relevant_solution_u=completely_distributed_solution_u;
solve_U(constraints,system_Matrix_v,preconditioner_Matrix_v,completely_distributed_solution_v,system_rhs_v);
locally_relevant_solution_v=completely_distributed_solution_v;
if (dim==3)
{
solve_U(constraints,system_Matrix_w,preconditioner_Matrix_w,completely_distributed_solution_w,system_rhs_w);
locally_relevant_solution_w=completely_distributed_solution_w;
}
}
template<int dim>
void NavierStokesSolver<dim>::get_pressure()
{

GET DPSI

assemble_system_dpsi_q();
solve_P(constraints_psi,system_S,preconditioner_S,completely_distributed_solution_psi,system_rhs_psi);
locally_relevant_solution_psi=completely_distributed_solution_psi;

SOLVE Q

solve_P(constraints,system_M,preconditioner_M,completely_distributed_solution_q,system_rhs_q);

UPDATE THE PRESSURE

completely_distributed_solution_p.add(1,completely_distributed_solution_psi);
completely_distributed_solution_p.add(1,completely_distributed_solution_q);
locally_relevant_solution_p = completely_distributed_solution_p;
}

/////////////////////////////////////////////////// ///////////////////// DO STEPS //////////////////// ///////////////////////////////////////////////////

template<int dim>
void NavierStokesSolver<dim>::nth_time_step()
{
get_velocity();
get_pressure();
}

/////////////////////////////////////////////////// ////////////////////// OTHERS ///////////////////// ///////////////////////////////////////////////////

template<int dim>
void NavierStokesSolver<dim>::save_old_solution()
{
locally_relevant_solution_u_old=locally_relevant_solution_u;
locally_relevant_solution_v_old=locally_relevant_solution_v;
locally_relevant_solution_w_old=locally_relevant_solution_w;
locally_relevant_solution_psi_old=locally_relevant_solution_psi;
}

Annotated version of TestLevelSet.cc

/////////////////////// FOR TRANSPORT PROBLEM /////////////////////// TIME_INTEGRATION

#define FORWARD_EULER 0
#define SSP33 1

PROBLEM

#define CIRCULAR_ROTATION 0
#define DIAGONAL_ADVECTION 1

OTHER FLAGS

#define VARIABLE_VELOCITY 0
#include "utilities_test_LS.cc"
#include "LevelSetSolver.cc"

/////////////////////////////////////////////////// /////////////////// MAIN CLASS //////////////////// ///////////////////////////////////////////////////

template <int dim>
class TestLevelSet
{
public:
TestLevelSet (const unsigned int degree_LS,
const unsigned int degree_U);
~TestLevelSet ();
void run ();
private:

BOUNDARY

void set_boundary_inlet();
void get_boundary_values_phi(std::vector<unsigned int> &boundary_values_id_phi,
std::vector<double> &boundary_values_phi);

VELOCITY

void get_interpolated_velocity();

SETUP AND INIT CONDITIONS

void setup();
void initial_condition();
void init_constraints();

POST PROCESSING

DoFHandler<dim> &dof_handler_LS,
void output_results();
void output_solution();

SOLUTION VECTORS

PETScWrappers::MPI::Vector locally_relevant_solution_phi;
PETScWrappers::MPI::Vector locally_relevant_solution_u;
PETScWrappers::MPI::Vector locally_relevant_solution_v;
PETScWrappers::MPI::Vector locally_relevant_solution_w;
PETScWrappers::MPI::Vector completely_distributed_solution_phi;
PETScWrappers::MPI::Vector completely_distributed_solution_u;
PETScWrappers::MPI::Vector completely_distributed_solution_v;
PETScWrappers::MPI::Vector completely_distributed_solution_w;

BOUNDARY VECTORS

std::vector<unsigned int> boundary_values_id_phi;
std::vector<double> boundary_values_phi;

GENERAL

MPI_Comm mpi_communicator;
int degree;
int degree_LS;
DoFHandler<dim> dof_handler_LS;
FE_Q<dim> fe_LS;
IndexSet locally_owned_dofs_LS;
IndexSet locally_relevant_dofs_LS;
int degree_U;
DoFHandler<dim> dof_handler_U;
FE_Q<dim> fe_U;
IndexSet locally_owned_dofs_U;
IndexSet locally_relevant_dofs_U;
DoFHandler<dim> dof_handler_U_disp_field;
FESystem<dim> fe_U_disp_field;
IndexSet locally_owned_dofs_U_disp_field;
IndexSet locally_relevant_dofs_U_disp_field;
AffineConstraints<double> constraints_disp_field;
double time;
double time_step;
double final_time;
unsigned int timestep_number;
double cfl;
double min_h;
double sharpness;
int sharpness_integer;
unsigned int n_refinement;
unsigned int output_number;
double output_time;
bool get_output;
bool verbose;

FOR TRANSPORT

double cK; //compression coeff
double cE; //entropy-visc coeff
unsigned int TRANSPORT_TIME_INTEGRATION;
std::string ALGORITHM;
unsigned int PROBLEM;

FOR RECONSTRUCTION OF MATERIAL FIELDS

double eps, rho_air, rho_fluid;

MASS MATRIX

PETScWrappers::MPI::SparseMatrix matrix_MC, matrix_MC_tnm1;
std::shared_ptr<PETScWrappers::PreconditionBoomerAMG> preconditioner_MC;
};
template <int dim>
TestLevelSet<dim>::TestLevelSet (const unsigned int degree_LS,
const unsigned int degree_U)
:
mpi_communicator (MPI_COMM_WORLD),
triangulation (mpi_communicator,
typename Triangulation<dim>::MeshSmoothing
(Triangulation<dim>::smoothing_on_refinement |
Triangulation<dim>::smoothing_on_coarsening)),
degree_LS(degree_LS),
dof_handler_LS (triangulation),
fe_LS (degree_LS),
degree_U(degree_U),
dof_handler_U (triangulation),
fe_U (degree_U),
dof_handler_U_disp_field(triangulation),
fe_U_disp_field(FE_Q<dim>(degree_U),dim),
pcout (std::cout,(Utilities::MPI::this_mpi_process(mpi_communicator)== 0))
{}
template <int dim>
TestLevelSet<dim>::~TestLevelSet ()
{
dof_handler_U_disp_field.clear();
dof_handler_LS.clear ();
dof_handler_U.clear ();
}

VELOCITY //////////

template <int dim>
void TestLevelSet<dim>::get_interpolated_velocity()
{

velocity in x

completely_distributed_solution_u = 0;
ExactU<dim>(PROBLEM,time),
completely_distributed_solution_u);
constraints.distribute (completely_distributed_solution_u);
locally_relevant_solution_u = completely_distributed_solution_u;

velocity in y

completely_distributed_solution_v = 0;
VectorTools::interpolate(dof_handler_U,
ExactV<dim>(PROBLEM,time),
completely_distributed_solution_v);
constraints.distribute (completely_distributed_solution_v);
locally_relevant_solution_v = completely_distributed_solution_v;
if (dim==3)
{
completely_distributed_solution_w = 0;
VectorTools::interpolate(dof_handler_U,
ExactW<dim>(PROBLEM,time),
completely_distributed_solution_w);
constraints.distribute (completely_distributed_solution_w);
locally_relevant_solution_w = completely_distributed_solution_w;
}
}

////////// BOUNDARY //////////

template <int dim>
void TestLevelSet<dim>::set_boundary_inlet()
{
const QGauss<dim-1> face_quadrature_formula(1); // center of the face
FEFaceValues<dim> fe_face_values (fe_U,face_quadrature_formula,
const unsigned int n_face_q_points = face_quadrature_formula.size();
std::vector<double> u_value (n_face_q_points);
std::vector<double> v_value (n_face_q_points);
std::vector<double> w_value (n_face_q_points);
cell_U = dof_handler_U.begin_active(),
endc_U = dof_handler_U.end();
for (; cell_U!=endc_U; ++cell_U)
if (cell_U->is_locally_owned())
for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
if (cell_U->face(face)->at_boundary())
{
fe_face_values.reinit(cell_U,face);
fe_face_values.get_function_values(locally_relevant_solution_u,u_value);
fe_face_values.get_function_values(locally_relevant_solution_v,v_value);
if (dim==3)
fe_face_values.get_function_values(locally_relevant_solution_w,w_value);
u[0]=u_value[0];
u[1]=v_value[0];
if (dim==3)
u[2]=w_value[0];
if (fe_face_values.normal_vector(0)*u < -1e-14)
cell_U->face(face)->set_boundary_id(10);
}
}
template <int dim>
void TestLevelSet<dim>::get_boundary_values_phi(std::vector<unsigned int> &boundary_values_id_phi,
std::vector<double> &boundary_values_phi)
{
std::map<unsigned int, double> map_boundary_values_phi;
unsigned int boundary_id=0;
set_boundary_inlet();
boundary_id=10; // inlet
boundary_id,BoundaryPhi<dim>(),
map_boundary_values_phi);
boundary_values_id_phi.resize(map_boundary_values_phi.size());
boundary_values_phi.resize(map_boundary_values_phi.size());
std::map<unsigned int,double>::const_iterator boundary_value_phi = map_boundary_values_phi.begin();
for (int i=0; boundary_value_phi !=map_boundary_values_phi.end(); ++boundary_value_phi, ++i)
{
boundary_values_id_phi[i]=boundary_value_phi->first;
boundary_values_phi[i]=boundary_value_phi->second;
}
}

/////////////////////////////// SETUP AND INITIAL CONDITIONS //////////////////////////////

template <int dim>
void TestLevelSet<dim>::setup()
{
degree = std::max(degree_LS,degree_U);

setup system LS

dof_handler_LS.distribute_dofs (fe_LS);
locally_owned_dofs_LS = dof_handler_LS.locally_owned_dofs ();
locally_relevant_dofs_LS);

setup system U

dof_handler_U.distribute_dofs (fe_U);
locally_owned_dofs_U = dof_handler_U.locally_owned_dofs ();
locally_relevant_dofs_U);

setup system U for disp field

dof_handler_U_disp_field.distribute_dofs (fe_U_disp_field);
locally_owned_dofs_U_disp_field = dof_handler_U_disp_field.locally_owned_dofs ();
DoFTools::extract_locally_relevant_dofs (dof_handler_U_disp_field,
locally_relevant_dofs_U_disp_field);

init vectors for phi

locally_relevant_solution_phi.reinit(locally_owned_dofs_LS,
locally_relevant_dofs_LS,
mpi_communicator);
locally_relevant_solution_phi = 0;
completely_distributed_solution_phi.reinit(mpi_communicator,
dof_handler_LS.n_dofs(),
dof_handler_LS.n_locally_owned_dofs());

init vectors for u

locally_relevant_solution_u.reinit(locally_owned_dofs_U,
locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_u = 0;
completely_distributed_solution_u.reinit(mpi_communicator,
dof_handler_U.n_dofs(),
dof_handler_U.n_locally_owned_dofs());

init vectors for v

locally_relevant_solution_v.reinit(locally_owned_dofs_U,
locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_v = 0;
completely_distributed_solution_v.reinit(mpi_communicator,
dof_handler_U.n_dofs(),
dof_handler_U.n_locally_owned_dofs());

init vectors for w

locally_relevant_solution_w.reinit(locally_owned_dofs_U,
locally_relevant_dofs_U,
mpi_communicator);
locally_relevant_solution_w = 0;
completely_distributed_solution_w.reinit(mpi_communicator,
dof_handler_U.n_dofs(),
dof_handler_U.n_locally_owned_dofs());
init_constraints();

MASS MATRIX

DynamicSparsityPattern dsp (locally_relevant_dofs_LS);
DoFTools::make_sparsity_pattern (dof_handler_LS,dsp,constraints,false);
dof_handler_LS.n_locally_owned_dofs_per_processor(),
mpi_communicator,
locally_relevant_dofs_LS);
matrix_MC.reinit (mpi_communicator,
dsp,
dof_handler_LS.n_locally_owned_dofs_per_processor(),
dof_handler_LS.n_locally_owned_dofs_per_processor(),
matrix_MC_tnm1.reinit (mpi_communicator,
dsp,
dof_handler_LS.n_locally_owned_dofs_per_processor(),
dof_handler_LS.n_locally_owned_dofs_per_processor(),
}
template <int dim>
void TestLevelSet<dim>::initial_condition()
{
time=0;

Initial conditions init condition for phi

completely_distributed_solution_phi = 0;
VectorTools::interpolate(dof_handler_LS,
InitialPhi<dim>(PROBLEM, sharpness),

Functions::ZeroFunction<dim>(),

completely_distributed_solution_phi);
constraints.distribute (completely_distributed_solution_phi);
locally_relevant_solution_phi = completely_distributed_solution_phi;

init condition for u=0

completely_distributed_solution_u = 0;
ExactU<dim>(PROBLEM,time),
completely_distributed_solution_u);
constraints.distribute (completely_distributed_solution_u);
locally_relevant_solution_u = completely_distributed_solution_u;

init condition for v

completely_distributed_solution_v = 0;
VectorTools::interpolate(dof_handler_U,
ExactV<dim>(PROBLEM,time),
completely_distributed_solution_v);
constraints.distribute (completely_distributed_solution_v);
locally_relevant_solution_v = completely_distributed_solution_v;
}
template <int dim>
void TestLevelSet<dim>::init_constraints()
{
constraints.clear ();
constraints.reinit (locally_relevant_dofs_LS);
DoFTools::make_hanging_node_constraints (dof_handler_LS, constraints);
constraints.close ();
constraints_disp_field.clear ();
constraints_disp_field.reinit (locally_relevant_dofs_LS);
DoFTools::make_hanging_node_constraints (dof_handler_LS, constraints_disp_field);
constraints_disp_field.close ();
}

///////////////// POST PROCESSING /////////////////

template <int dim>
void TestLevelSet<dim>::process_solution(parallel::distributed::Triangulation<dim> &triangulation,
DoFHandler<dim> &dof_handler_LS,
{
Vector<double> difference_per_cell (triangulation.n_active_cells());

error for phi

solution,
InitialPhi<dim>(PROBLEM,sharpness),
difference_per_cell,
QGauss<dim>(degree_LS+3),
double u_L1_error = difference_per_cell.l1_norm();
u_L1_error = std::sqrt(Utilities::MPI::sum(u_L1_error * u_L1_error, mpi_communicator));
solution,
InitialPhi<dim>(PROBLEM,sharpness),
difference_per_cell,
QGauss<dim>(degree_LS+3),
double u_L2_error = difference_per_cell.l2_norm();
u_L2_error = std::sqrt(Utilities::MPI::sum(u_L2_error * u_L2_error, mpi_communicator));
pcout << "L1 error: " << u_L1_error << std::endl;
pcout << "L2 error: " << u_L2_error << std::endl;
}
template<int dim>
void TestLevelSet<dim>::output_results()
{
output_solution();
output_number++;
}
template <int dim>
void TestLevelSet<dim>::output_solution()
{
DataOut<dim> data_out;
data_out.attach_dof_handler(dof_handler_LS);
data_out.add_data_vector (locally_relevant_solution_phi, "phi");
data_out.build_patches();
const std::string filename = ("solution-" +
Utilities::int_to_string (output_number, 3) +
"." +
(triangulation.locally_owned_subdomain(), 4));
std::ofstream output ((filename + ".vtu").c_str());
data_out.write_vtu (output);
if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
{
std::vector<std::string> filenames;
for (unsigned int i=0;
i<Utilities::MPI::n_mpi_processes(mpi_communicator);
++i)
filenames.push_back ("solution-" +
Utilities::int_to_string (output_number, 3) +
"." +
".vtu");
std::ofstream master_output ((filename + ".pvtu").c_str());
data_out.write_pvtu_record (master_output, filenames);
}
}
template <int dim>
void TestLevelSet<dim>::run()
{
void integrate_difference(const Mapping< dim, spacedim > &mapping, const DoFHandler< dim, spacedim > &dof, const InVector &fe_function, const Function< spacedim, typename InVector::value_type > &exact_solution, OutVector &difference, const Quadrature< dim > &q, const NormType &norm, const Function< spacedim, double > *weight=nullptr, const double exponent=2.)

//////////////////// GENERAL PARAMETERS ////////////////////

cfl=0.1;
verbose = false;
get_output = true;
output_number = 0;
n_refinement=6;
output_time = 0.1;
final_time = 1.0;
PROBLEM=CIRCULAR_ROTATION;
Definition: timer.h:119

PROBLEM=DIAGONAL_ADVECTION;

double umax = 0;
if (PROBLEM==CIRCULAR_ROTATION)
else
umax = std::sqrt(2);
static constexpr double PI
Definition: numbers.h:233

////////////////////////////////// PARAMETERS FOR TRANSPORT PROBLEM //////////////////////////////////

cK = 1.0; // compression constant
cE = 1.0; // entropy viscosity constant
sharpness_integer=1; //this will be multipled by min_h

TRANSPORT_TIME_INTEGRATION=FORWARD_EULER;

TRANSPORT_TIME_INTEGRATION=SSP33;

ALGORITHM = "MPP_u1";

ALGORITHM = "NMPP_uH";

ALGORITHM = "MPP_uH";

////////// GEOMETRY //////////

if (PROBLEM==CIRCULAR_ROTATION || PROBLEM==DIAGONAL_ADVECTION)
void hyper_cube(Triangulation< dim, spacedim > &tria, const double left=0., const double right=1., const bool colorize=false)

GridGenerator::hyper_rectangle(triangulation, Point<dim>(0.0,0.0), Point<dim>(1.0,1.0), true);

triangulation.refine_global (n_refinement);

/////// SETUP ///////

setup();

for Reconstruction of MATERIAL FIELDS

eps=1*min_h; //For reconstruction of density in Navier Stokes
sharpness=sharpness_integer*min_h; //adjust value of sharpness (for init cond of phi)
rho_fluid = 1000;
rho_air = 1;

GET TIME STEP

time_step = cfl*min_h/umax;

////////////////// TRANSPORT SOLVER //////////////////

LevelSetSolver<dim> level_set (degree_LS,degree_U,
time_step,cK,cE,
verbose,
ALGORITHM,
TRANSPORT_TIME_INTEGRATION,
mpi_communicator);

/////////////////// INITIAL CONDITION ///////////////////

initial_condition();
output_results();
if (dim==2)
level_set.initial_condition(locally_relevant_solution_phi,
locally_relevant_solution_u,locally_relevant_solution_v);
else //dim=3
level_set.initial_condition(locally_relevant_solution_phi,
locally_relevant_solution_u,locally_relevant_solution_v,locally_relevant_solution_w);

///////////////////////////// BOUNDARY CONDITIONS FOR PHI /////////////////////////////

get_boundary_values_phi(boundary_values_id_phi,boundary_values_phi);
level_set.set_boundary_conditions(boundary_values_id_phi,boundary_values_phi);

OUTPUT DATA REGARDING TIME STEPPING AND MESH

int dofs_LS = dof_handler_LS.n_dofs();
pcout << "Cfl: " << cfl << std::endl;
pcout << " Number of active cells: "
<< triangulation.n_global_active_cells() << std::endl
<< " Number of degrees of freedom: " << std::endl
<< " LS: " << dofs_LS << std::endl;
types::global_dof_index n_dofs() const

TIME STEPPING

timestep_number=0;
time=0;
while (time<final_time)
{
timestep_number++;
if (time+time_step > final_time)
{
pcout << "FINAL TIME STEP... " << std::endl;
time_step = final_time-time;
}
pcout << "Time step " << timestep_number
<< "\twith dt=" << time_step
<< "\tat tn=" << time << std::endl;

////////////// GET VELOCITY // (NS or interpolate from a function) at current time tn //////////////

if (VARIABLE_VELOCITY)
{
get_interpolated_velocity();

SET VELOCITY TO LEVEL SET SOLVER

level_set.set_velocity(locally_relevant_solution_u,locally_relevant_solution_v);
}

//////////////////////// GET LEVEL SET SOLUTION // (at tnp1) ////////////////////////

level_set.nth_time_step();

///////////// UPDATE TIME /////////////

time+=time_step; // time tnp1

//////// OUTPUT ////////

if (get_output && time-(output_number)*output_time>=0)
{
level_set.get_unp1(locally_relevant_solution_phi);
output_results();
}
}
pcout << "FINAL TIME T=" << time << std::endl;
}
int main(int argc, char *argv[])
{
try
{
using namespace dealii;
Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
PetscInitialize(&argc, &argv, PETSC_NULL, PETSC_NULL);
{
unsigned int degree = 1;
TestLevelSet<2> multiphase(degree, degree);
multiphase.run();
}
PetscFinalize();
}
catch (std::exception &exc)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
catch (...)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
return 0;
}

Annotated version of TestNavierStokes.cc

/////////////////////////////////////////////////// /////////////////// MAIN CLASS //////////////////// ///////////////////////////////////////////////////

template <int dim>
class TestNavierStokes
{
public:
TestNavierStokes (const unsigned int degree_LS,
const unsigned int degree_U);
~TestNavierStokes ();
void run ();
private:
void get_boundary_values_U(double t);
void fix_pressure();
void output_results();
void process_solution(const unsigned int cycle);
void setup();
void initial_condition();
void init_constraints();
PETScWrappers::MPI::Vector locally_relevant_solution_rho;
PETScWrappers::MPI::Vector locally_relevant_solution_u;
PETScWrappers::MPI::Vector locally_relevant_solution_v;
PETScWrappers::MPI::Vector locally_relevant_solution_w;
PETScWrappers::MPI::Vector locally_relevant_solution_p;
PETScWrappers::MPI::Vector completely_distributed_solution_rho;
PETScWrappers::MPI::Vector completely_distributed_solution_u;
PETScWrappers::MPI::Vector completely_distributed_solution_v;
PETScWrappers::MPI::Vector completely_distributed_solution_w;
PETScWrappers::MPI::Vector completely_distributed_solution_p;
std::vector<unsigned int> boundary_values_id_u;
std::vector<unsigned int> boundary_values_id_v;
std::vector<unsigned int> boundary_values_id_w;
std::vector<double> boundary_values_u;
std::vector<double> boundary_values_v;
std::vector<double> boundary_values_w;
double rho_fluid;
double nu_fluid;
double rho_air;
double nu_air;
MPI_Comm mpi_communicator;
int degree_LS;
DoFHandler<dim> dof_handler_LS;
FE_Q<dim> fe_LS;
IndexSet locally_owned_dofs_LS;
IndexSet locally_relevant_dofs_LS;
int degree_U;
DoFHandler<dim> dof_handler_U;
FE_Q<dim> fe_U;
IndexSet locally_owned_dofs_U;
IndexSet locally_relevant_dofs_U;
DoFHandler<dim> dof_handler_P;
FE_Q<dim> fe_P;
IndexSet locally_owned_dofs_P;
IndexSet locally_relevant_dofs_P;

TimerOutput timer;

double time;
double time_step;
double final_time;
unsigned int timestep_number;
double cfl;
double min_h;
unsigned int n_cycles;
unsigned int n_refinement;
unsigned int output_number;
double output_time;
bool get_output;
double h;
double umax;
bool verbose;
ConvergenceTable convergence_table;
double nu;
};
template <int dim>
TestNavierStokes<dim>::TestNavierStokes (const unsigned int degree_LS,
const unsigned int degree_U)
:
mpi_communicator (MPI_COMM_WORLD),
triangulation (mpi_communicator,
typename Triangulation<dim>::MeshSmoothing
(Triangulation<dim>::smoothing_on_refinement |
Triangulation<dim>::smoothing_on_coarsening)),
degree_LS(degree_LS),
dof_handler_LS (triangulation),
fe_LS (degree_LS),
degree_U(degree_U),
dof_handler_U (triangulation),
fe_U (degree_U),
dof_handler_P (triangulation),
fe_P (degree_U-1), //TODO: change this to be degree_Q-1

timer(std::cout, TimerOutput::summary, TimerOutput::wall_times),

pcout (std::cout,(Utilities::MPI::this_mpi_process(mpi_communicator)== 0))
{}
template <int dim>
TestNavierStokes<dim>::~TestNavierStokes ()
{
dof_handler_LS.clear ();
dof_handler_U.clear ();
dof_handler_P.clear ();
}
void clear()

///////////////////////////////////// /////////////// SETUP /////////////// /////////////////////////////////////

template <int dim>
void TestNavierStokes<dim>::setup()
{

setup system LS

dof_handler_LS.distribute_dofs (fe_LS);
locally_owned_dofs_LS = dof_handler_LS.locally_owned_dofs ();
locally_relevant_dofs_LS);
void distribute_dofs(const FiniteElement< dim, spacedim > &fe)
const IndexSet & locally_owned_dofs() const

setup system U

dof_handler_U.distribute_dofs (fe_U);
locally_owned_dofs_U = dof_handler_U.locally_owned_dofs ();
locally_relevant_dofs_U);

setup system P

dof_handler_P.distribute_dofs (fe_P);
locally_owned_dofs_P = dof_handler_P.locally_owned_dofs ();
locally_relevant_dofs_P);
init_constraints();

init vectors for rho

locally_relevant_solution_rho.reinit (locally_owned_dofs_LS,locally_relevant_dofs_LS,mpi_communicator);
locally_relevant_solution_rho = 0;
completely_distributed_solution_rho.reinit(locally_owned_dofs_LS,mpi_communicator);

init vectors for u

locally_relevant_solution_u.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);
locally_relevant_solution_u = 0;
completely_distributed_solution_u.reinit(locally_owned_dofs_U,mpi_communicator);

init vectors for v

locally_relevant_solution_v.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);
locally_relevant_solution_v = 0;
completely_distributed_solution_v.reinit(locally_owned_dofs_U,mpi_communicator);

init vectors for w

locally_relevant_solution_w.reinit (locally_owned_dofs_U,locally_relevant_dofs_U,mpi_communicator);
locally_relevant_solution_w = 0;
completely_distributed_solution_w.reinit(locally_owned_dofs_U,mpi_communicator);

init vectors for p

locally_relevant_solution_p.reinit(locally_owned_dofs_P,locally_relevant_dofs_P,mpi_communicator);
locally_relevant_solution_p = 0;
completely_distributed_solution_p.reinit(locally_owned_dofs_P,mpi_communicator);
}
template <int dim>
void TestNavierStokes<dim>::initial_condition()
{
time=0;

Initial conditions init condition for rho

completely_distributed_solution_rho = 0;
VectorTools::interpolate(dof_handler_LS,
RhoFunction<dim>(0),
completely_distributed_solution_rho);
constraints.distribute (completely_distributed_solution_rho);
locally_relevant_solution_rho = completely_distributed_solution_rho;

init condition for u

completely_distributed_solution_u = 0;
ExactSolution_and_BC_U<dim>(0,0),
completely_distributed_solution_u);
constraints.distribute (completely_distributed_solution_u);
locally_relevant_solution_u = completely_distributed_solution_u;

init condition for v

completely_distributed_solution_v = 0;
ExactSolution_and_BC_U<dim>(0,1),
completely_distributed_solution_v);
constraints.distribute (completely_distributed_solution_v);
locally_relevant_solution_v = completely_distributed_solution_v;

init condition for w

if (dim == 3)
{
completely_distributed_solution_w = 0;
VectorTools::interpolate(dof_handler_U,
ExactSolution_and_BC_U<dim>(0,2),
completely_distributed_solution_w);
constraints.distribute (completely_distributed_solution_w);
locally_relevant_solution_w = completely_distributed_solution_w;
}

init condition for p

completely_distributed_solution_p = 0;
VectorTools::interpolate(dof_handler_P,
ExactSolution_p<dim>(0),
completely_distributed_solution_p);
constraints.distribute (completely_distributed_solution_p);
locally_relevant_solution_p = completely_distributed_solution_p;
}
template <int dim>
void TestNavierStokes<dim>::init_constraints()
{
constraints.clear ();
constraints.reinit (locally_relevant_dofs_LS);
DoFTools::make_hanging_node_constraints (dof_handler_LS, constraints);
constraints.close ();
}
template<int dim>
void TestNavierStokes<dim>::fix_pressure()
{

fix the constant in the pressure

completely_distributed_solution_p = locally_relevant_solution_p;
double mean_value = VectorTools::compute_mean_value(dof_handler_P,
locally_relevant_solution_p,
0);
if (dim==2)
completely_distributed_solution_p.add(-mean_value+std::sin(1)*(std::cos(time)-cos(1+time)));
else
completely_distributed_solution_p.add(-mean_value+8*std::pow(std::sin(0.5),3)*std::sin(1.5+time));
locally_relevant_solution_p = completely_distributed_solution_p;
}
template <int dim>
void TestNavierStokes<dim>::output_results ()
{
DataOut<dim> data_out;
data_out.attach_dof_handler (dof_handler_U);
data_out.add_data_vector (locally_relevant_solution_u, "u");
data_out.add_data_vector (locally_relevant_solution_v, "v");
if (dim==3) data_out.add_data_vector (locally_relevant_solution_w, "w");
Vector<float> subdomain (triangulation.n_active_cells());
for (unsigned int i=0; i<subdomain.size(); ++i)
subdomain(i) = triangulation.locally_owned_subdomain();
data_out.add_data_vector (subdomain, "subdomain");
data_out.build_patches ();
const std::string filename = ("solution-" +
Utilities::int_to_string (output_number, 3) +
"." +
(triangulation.locally_owned_subdomain(), 4));
std::ofstream output ((filename + ".vtu").c_str());
data_out.write_vtu (output);
if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
{
std::vector<std::string> filenames;
for (unsigned int i=0;
i<Utilities::MPI::n_mpi_processes(mpi_communicator);
++i)
filenames.push_back ("solution-" +
Utilities::int_to_string (output_number, 3) +
"." +
".vtu");
std::ofstream master_output ((filename + ".pvtu").c_str());
data_out.write_pvtu_record (master_output, filenames);
}
output_number++;
}
template <int dim>
void TestNavierStokes<dim>::process_solution(const unsigned int cycle)
{
Vector<double> difference_per_cell (triangulation.n_active_cells());
VectorType::value_type compute_mean_value(const hp::MappingCollection< dim, spacedim > &mapping_collection, const DoFHandler< dim, spacedim > &dof, const hp::QCollection< dim > &q_collection, const VectorType &v, const unsigned int component)
::VectorizedArray< Number, width > cos(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sin(const ::VectorizedArray< Number, width > &)

error for u

locally_relevant_solution_u,
ExactSolution_and_BC_U<dim>(time,0),
difference_per_cell,
QGauss<dim>(degree_U+1),
double u_L2_error = difference_per_cell.l2_norm();
u_L2_error =
std::sqrt(Utilities::MPI::sum(u_L2_error * u_L2_error, mpi_communicator));
locally_relevant_solution_u,
ExactSolution_and_BC_U<dim>(time,0),
difference_per_cell,
QGauss<dim>(degree_U+1),
double u_H1_error = difference_per_cell.l2_norm();
u_H1_error =
std::sqrt(Utilities::MPI::sum(u_H1_error * u_H1_error, mpi_communicator));

error for v

locally_relevant_solution_v,
ExactSolution_and_BC_U<dim>(time,1),
difference_per_cell,
QGauss<dim>(degree_U+1),
double v_L2_error = difference_per_cell.l2_norm();
v_L2_error =
std::sqrt(Utilities::MPI::sum(v_L2_error * v_L2_error,
mpi_communicator));
locally_relevant_solution_v,
ExactSolution_and_BC_U<dim>(time,1),
difference_per_cell,
QGauss<dim>(degree_U+1),
double v_H1_error = difference_per_cell.l2_norm();
v_H1_error =
v_H1_error, mpi_communicator));

error for w

double w_L2_error = 0;
double w_H1_error = 0;
if (dim == 3)
{
locally_relevant_solution_w,
ExactSolution_and_BC_U<dim>(time,2),
difference_per_cell,
QGauss<dim>(degree_U+1),
w_L2_error = difference_per_cell.l2_norm();
w_L2_error =
std::sqrt(Utilities::MPI::sum(w_L2_error * w_L2_error,
mpi_communicator));
locally_relevant_solution_w,
ExactSolution_and_BC_U<dim>(time,2),
difference_per_cell,
QGauss<dim>(degree_U+1),
w_H1_error = difference_per_cell.l2_norm();
w_H1_error =
w_H1_error, mpi_communicator));
}

error for p

locally_relevant_solution_p,
ExactSolution_p<dim>(time),
difference_per_cell,
QGauss<dim>(degree_U+1),
double p_L2_error = difference_per_cell.l2_norm();
p_L2_error =
std::sqrt(Utilities::MPI::sum(p_L2_error * p_L2_error,
mpi_communicator));
locally_relevant_solution_p,
ExactSolution_p<dim>(time),
difference_per_cell,
QGauss<dim>(degree_U+1),
double p_H1_error = difference_per_cell.l2_norm();
p_H1_error =
std::sqrt(Utilities::MPI::sum(p_H1_error * p_H1_error,
mpi_communicator));
const unsigned int n_active_cells=triangulation.n_active_cells();
const unsigned int n_dofs_U=dof_handler_U.n_dofs();
const unsigned int n_dofs_P=dof_handler_P.n_dofs();
convergence_table.add_value("cycle", cycle);
convergence_table.add_value("cells", n_active_cells);
convergence_table.add_value("dofs_U", n_dofs_U);
convergence_table.add_value("dofs_P", n_dofs_P);
convergence_table.add_value("dt", time_step);
convergence_table.add_value("u L2", u_L2_error);
convergence_table.add_value("u H1", u_H1_error);
convergence_table.add_value("v L2", v_L2_error);
convergence_table.add_value("v H1", v_H1_error);
if (dim==3)
{
convergence_table.add_value("w L2", w_L2_error);
convergence_table.add_value("w H1", w_H1_error);
}
convergence_table.add_value("p L2", p_L2_error);
convergence_table.add_value("p H1", p_H1_error);
}
template <int dim>
void TestNavierStokes<dim>::get_boundary_values_U(double t)
{
std::map<unsigned int, double> map_boundary_values_u;
std::map<unsigned int, double> map_boundary_values_v;
VectorTools::interpolate_boundary_values (dof_handler_U,0,ExactSolution_and_BC_U<dim>(t,0),map_boundary_values_u);
VectorTools::interpolate_boundary_values (dof_handler_U,0,ExactSolution_and_BC_U<dim>(t,1),map_boundary_values_v);
boundary_values_id_u.resize(map_boundary_values_u.size());
boundary_values_id_v.resize(map_boundary_values_v.size());
boundary_values_u.resize(map_boundary_values_u.size());
boundary_values_v.resize(map_boundary_values_v.size());
std::map<unsigned int,double>::const_iterator boundary_value_u =map_boundary_values_u.begin();
std::map<unsigned int,double>::const_iterator boundary_value_v =map_boundary_values_v.begin();
if (dim==3)
{
std::map<unsigned int, double> map_boundary_values_w;
VectorTools::interpolate_boundary_values (dof_handler_U,0,ExactSolution_and_BC_U<dim>(t,2),map_boundary_values_w);
boundary_values_id_w.resize(map_boundary_values_w.size());
boundary_values_w.resize(map_boundary_values_w.size());
std::map<unsigned int,double>::const_iterator boundary_value_w =map_boundary_values_w.begin();
for (int i=0; boundary_value_w !=map_boundary_values_w.end(); ++boundary_value_w, ++i)
{
boundary_values_id_w[i]=boundary_value_w->first;
boundary_values_w[i]=boundary_value_w->second;
}
}
for (int i=0; boundary_value_u !=map_boundary_values_u.end(); ++boundary_value_u, ++i)
{
boundary_values_id_u[i]=boundary_value_u->first;
boundary_values_u[i]=boundary_value_u->second;
}
for (int i=0; boundary_value_v !=map_boundary_values_v.end(); ++boundary_value_v, ++i)
{
boundary_values_id_v[i]=boundary_value_v->first;
boundary_values_v[i]=boundary_value_v->second;
}
}
template <int dim>
void TestNavierStokes<dim>::run()
{
if (Utilities::MPI::this_mpi_process(mpi_communicator)== 0)
{
std::cout << "***** CONVERGENCE TEST FOR NS *****" << std::endl;
std::cout << "DEGREE LS: " << degree_LS << std::endl;
std::cout << "DEGREE U: " << degree_U << std::endl;
}

PARAMETERS FOR THE NAVIER STOKES PROBLEM

final_time = 1.0;
time_step=0.1;
n_cycles=6;
n_refinement=6;
ForceTerms<dim> force_function;
RhoFunction<dim> rho_function;
NuFunction<dim> nu_function;
output_time=0.1;
output_number=0;
bool get_output = false;
bool get_error = true;
verbose = true;
for (unsigned int cycle=0; cycle<n_cycles; ++cycle)
{
if (cycle == 0)
{
triangulation.refine_global (n_refinement);
setup();
initial_condition();
}
else
{
triangulation.refine_global(1);
setup();
initial_condition();
time_step*=0.5;
}
output_results();

if (cycle==0)

NavierStokesSolver<dim> navier_stokes (degree_LS,
degree_U,
time_step,
force_function,
rho_function,
nu_function,
verbose,
mpi_communicator);

set INITIAL CONDITION within TRANSPORT PROBLEM

if (dim==2)
navier_stokes.initial_condition(locally_relevant_solution_rho,
locally_relevant_solution_u,
locally_relevant_solution_v,
locally_relevant_solution_p);
else //dim=3
navier_stokes.initial_condition(locally_relevant_solution_rho,
locally_relevant_solution_u,
locally_relevant_solution_v,
locally_relevant_solution_w,
locally_relevant_solution_p);
pcout << "Cycle " << cycle << ':' << std::endl;
pcout << " Cycle " << cycle
<< " Number of active cells: "
<< triangulation.n_global_active_cells() << std::endl
<< " Number of degrees of freedom (velocity): "
<< dof_handler_U.n_dofs() << std::endl
<< std::endl;

TIME STEPPING

timestep_number=0;
time=0;
double time_step_backup=time_step;
while (time<final_time)
{
timestep_number++;

/////////////// GET TIME_STEP ///////////////

if (time+time_step > final_time-1E-10)
{
pcout << "FINAL TIME STEP..." << std::endl;
time_step_backup=time_step;
time_step=final_time-time;
}
pcout << "Time step " << timestep_number
<< "\twith dt=" << time_step
<< "\tat tn=" << time
<< std::endl;

///////////// FORCE TERMS /////////////

force_function.set_time(time+time_step);

///////////////////////////// DENSITY AND VISCOSITY FIELD /////////////////////////////

rho_function.set_time(time+time_step);
nu_function.set_time(time+time_step);

///////////////////// BOUNDARY CONDITIONS /////////////////////

get_boundary_values_U(time+time_step);
if (dim==2) navier_stokes.set_boundary_conditions(boundary_values_id_u, boundary_values_id_v,
boundary_values_u, boundary_values_v);
else navier_stokes.set_boundary_conditions(boundary_values_id_u,
boundary_values_id_v,
boundary_values_id_w,
boundary_values_u, boundary_values_v, boundary_values_w);

////////////// GET SOLUTION //////////////

navier_stokes.nth_time_step();
if (dim==2)
navier_stokes.get_velocity(locally_relevant_solution_u,locally_relevant_solution_v);
else
navier_stokes.get_velocity(locally_relevant_solution_u,
locally_relevant_solution_v,
locally_relevant_solution_w);
navier_stokes.get_pressure(locally_relevant_solution_p);

////////////// FIX PRESSURE //////////////

fix_pressure();

///////////// UPDATE TIME /////////////

time+=time_step;

//////// OUTPUT ////////

if (get_output && time-(output_number)*output_time>=1E-10)
output_results();
}
pcout << "FINAL TIME: " << time << std::endl;
time_step=time_step_backup;
if (get_error)
process_solution(cycle);
if (get_error)
{
convergence_table.set_precision("u L2", 2);
convergence_table.set_precision("u H1", 2);
convergence_table.set_scientific("u L2",true);
convergence_table.set_scientific("u H1",true);
convergence_table.set_precision("v L2", 2);
convergence_table.set_precision("v H1", 2);
convergence_table.set_scientific("v L2",true);
convergence_table.set_scientific("v H1",true);
if (dim==3)
{
convergence_table.set_precision("w L2", 2);
convergence_table.set_precision("w H1", 2);
convergence_table.set_scientific("w L2",true);
convergence_table.set_scientific("w H1",true);
}
convergence_table.set_precision("p L2", 2);
convergence_table.set_precision("p H1", 2);
convergence_table.set_scientific("p L2",true);
convergence_table.set_scientific("p H1",true);
convergence_table.set_tex_format("cells","r");
convergence_table.set_tex_format("dofs_U","r");
convergence_table.set_tex_format("dofs_P","r");
convergence_table.set_tex_format("dt","r");
if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)
{
std::cout << std::endl;
convergence_table.write_text(std::cout);
}
}
}
}
int main(int argc, char *argv[])
{
try
{
using namespace dealii;
Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
PetscInitialize(&argc, &argv, PETSC_NULL, PETSC_NULL);
{
unsigned int degree_LS = 1;
unsigned int degree_U = 2;
TestNavierStokes<2> test_navier_stokes(degree_LS, degree_U);
test_navier_stokes.run();
}
PetscFinalize();
}
catch (std::exception &exc)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
catch (...)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
return 0;
}

Annotated version of clean.sh

rm -rf CMakeFiles CMakeCache.txt Makefile cmake_install.cmake *~
rm -f MultiPhase TestLevelSet TestNavierStokes
rm -f sol*
rm -f *#*
rm -f *.visit

Annotated version of utilities.cc

///////////////////////////////////////////////// ////////////////// INITIAL PHI ////////////////// /////////////////////////////////////////////////

template <int dim>
class InitialPhi : public Function <dim>
{
public:
InitialPhi (unsigned int PROBLEM, double sharpness=0.005) : Function<dim>(),
sharpness(sharpness),
PROBLEM(PROBLEM) {}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
double sharpness;
unsigned int PROBLEM;
};
template <int dim>
double InitialPhi<dim>::value (const Point<dim> &p,
const unsigned int) const
{
double x = p[0];
double y = p[1];
double pi=numbers::PI;
if (PROBLEM==FILLING_TANK)
return 0.5*(-std::tanh((y-0.3)/sharpness)*std::tanh((y-0.35)/sharpness)+1)
*(-std::tanh((x-0.02)/sharpness)+1)-1;
else if (PROBLEM==BREAKING_DAM)
return 0.5*(-std::tanh((x-0.35)/sharpness)*std::tanh((x-0.65)/sharpness)+1)
*(1-std::tanh((y-0.35)/sharpness))-1;
else if (PROBLEM==FALLING_DROP)
{
double x0=0.15;
double y0=0.75;
double r0=0.1;
double r = std::sqrt(std::pow(x-x0,2)+std::pow(y-y0,2));
return 1-(std::tanh((r-r0)/sharpness)+std::tanh((y-0.3)/sharpness));
}
else if (PROBLEM==SMALL_WAVE_PERTURBATION)
{
double wave = 0.1*std::sin(pi*x)+0.25;
return -std::tanh((y-wave)/sharpness);
}
else
{
std::cout << "Error in type of PROBLEM" << std::endl;
abort();
}
}
virtual RangeNumberType value(const Point< dim > &p, const unsigned int component=0) const
void abort(const ExceptionBase &exc) noexcept
Definition: exceptions.cc:460

/////////////////////////////////////////////////// ////////////////// FORCE TERMS ///// ////////////// ///////////////////////////////////////////////////

template <int dim>
class ForceTerms : public Functions::ConstantFunction <dim>
{
public:
ForceTerms (const std::vector<double> values) : Functions::ConstantFunction<dim>(values) {}
};

///////////////////////////////////////////////// ////////////////// BOUNDARY PHI ///////////////// /////////////////////////////////////////////////

template <int dim>
class BoundaryPhi : public Functions::ConstantFunction <dim>
{
public:
BoundaryPhi (const double value, const unsigned int n_components=1) : Functions::ConstantFunction<dim>(value,n_components) {}
};

////////////////////////////////////////////////////// ////////////////// BOUNDARY VELOCITY ///////////////// //////////////////////////////////////////////////////

template <int dim>
class BoundaryU : public Function <dim>
{
public:
BoundaryU (unsigned int PROBLEM, double t=0) : Function<dim>(), PROBLEM(PROBLEM) {this->set_time(t);}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
unsigned PROBLEM;
};
template <int dim>
double BoundaryU<dim>::value (const Point<dim> &p, const unsigned int) const
{
virtual void set_time(const Number new_time)

////////////////// FILLING THE TANK ////////////////// boundary for filling the tank (inlet)

double x = p[0];
double y = p[1];
if (PROBLEM==FILLING_TANK)
{
if (x==0 && y>=0.3 && y<=0.35)
return 0.25;
else
return 0.0;
}
else
{
std::cout << "Error in PROBLEM definition" << std::endl;
abort();
}
}
template <int dim>
class BoundaryV : public Function <dim>
{
public:
BoundaryV (unsigned int PROBLEM, double t=0) : Function<dim>(), PROBLEM(PROBLEM) {this->set_time(t);}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
unsigned int PROBLEM;
};
template <int dim>
double BoundaryV<dim>::value (const Point<dim> &p, const unsigned int) const
{

boundary for filling the tank (outlet)

double x = p[0];
double y = p[1];
double return_value = 0;
if (PROBLEM==FILLING_TANK)
{
if (y==0.4 && x>=0.3 && x<=0.35)
return_value = 0.25;
}
return return_value;
}

/////////////////////////////////////////////////// ///////////////// POST-PROCESSING ///////////////// ///////////////////////////////////////////////////

template <int dim>
class Postprocessor : public DataPostprocessorScalar <dim>
{
public:
Postprocessor(double eps, double rho_air, double rho_fluid)
:
{
this->eps=eps;
this->rho_air=rho_air;
this->rho_fluid=rho_fluid;
}
virtual
void
std::vector<Vector<double> > &computed_quantities) const;
double eps;
double rho_air;
double rho_fluid;
};
template <int dim>
void
Postprocessor<dim>::
evaluate_scalar_field (const DataPostprocessorInputs::Scalar<dim> &input_data,
std::vector<Vector<double> > &computed_quantities) const
{
const unsigned int n_quadrature_points = input_data.solution_values.size();
for (unsigned int q=0; q<n_quadrature_points; ++q)
{
double H;
double rho_value;
double phi_value=input_data.solution_values[q];
if (phi_value > eps)
H=1;
else if (phi_value < -eps)
H=-1;
else
H=phi_value/eps;
rho_value = rho_fluid*(1+H)/2. + rho_air*(1-H)/2.;
computed_quantities[q] = rho_value;
}
}
virtual void evaluate_scalar_field(const DataPostprocessorInputs::Scalar< dim > &input_data, std::vector< Vector< double > > &computed_quantities) const
std::vector< double > solution_values

Annotated version of utilities_test_LS.cc

/////////////////////////////////////////////////// ////////////////// INITIAL PHI ////////////////// ///////////////////////////////////////////////////

template <int dim>
class InitialPhi : public Function <dim>
{
public:
InitialPhi (unsigned int PROBLEM, double sharpness=0.005) : Function<dim>(),
sharpness(sharpness),
PROBLEM(PROBLEM) {}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
double sharpness;
unsigned int PROBLEM;
};
template <int dim>
double InitialPhi<dim>::value (const Point<dim> &p,
const unsigned int) const
{
double x = p[0];
double y = p[1];
double return_value = -1.;
if (PROBLEM==CIRCULAR_ROTATION)
{
double x0=0.5;
double y0=0.75;
double r0=0.15;
double r = std::sqrt(std::pow(x-x0,2)+std::pow(y-y0,2));
return_value = -std::tanh((r-r0)/sharpness);
}
else // (PROBLEM==DIAGONAL_ADVECTION)
{
double x0=0.25;
double y0=0.25;
double r0=0.15;
double r=0;
if (dim==2)
r = std::sqrt(std::pow(x-x0,2)+std::pow(y-y0,2));
else
{
double z0=0.25;
double z=p[2];
r = std::sqrt(std::pow(x-x0,2)+std::pow(y-y0,2)+std::pow(z-z0,2));
}
return_value = -std::tanh((r-r0)/sharpness);
}
return return_value;
}

///////////////////////////////////////////////// ////////////////// BOUNDARY PHI ///////////////// /////////////////////////////////////////////////

template <int dim>
class BoundaryPhi : public Function <dim>
{
public:
BoundaryPhi (double t=0)
:
Function<dim>()
{this->set_time(t);}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
};
template <int dim>
double BoundaryPhi<dim>::value (const Point<dim> &, const unsigned int) const
{
return -1.0;
}
virtual RangeNumberType value(const Point< dim > &p, const unsigned int component=0) const override

/////////////////////////////////////////////////// ////////////////// EXACT VELOCITY ///////////////// ///////////////////////////////////////////////////

template <int dim>
class ExactU : public Function <dim>
{
public:
ExactU (unsigned int PROBLEM, double time=0) : Function<dim>(), PROBLEM(PROBLEM), time(time) {}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
void set_time(double time) {this->time=time;};
unsigned PROBLEM;
double time;
};
template <int dim>
double ExactU<dim>::value (const Point<dim> &p, const unsigned int) const
{
if (PROBLEM==CIRCULAR_ROTATION)
return -2*numbers::PI*(p[1]-0.5);
else // (PROBLEM==DIAGONAL_ADVECTION)
return 1.0;
}
template <int dim>
class ExactV : public Function <dim>
{
public:
ExactV (unsigned int PROBLEM, double time=0) : Function<dim>(), PROBLEM(PROBLEM), time(time) {}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
void set_time(double time) {this->time=time;};
unsigned int PROBLEM;
double time;
};
template <int dim>
double ExactV<dim>::value (const Point<dim> &p, const unsigned int) const
{
if (PROBLEM==CIRCULAR_ROTATION)
return 2*numbers::PI*(p[0]-0.5);
else // (PROBLEM==DIAGONAL_ADVECTION)
return 1.0;
}
template <int dim>
class ExactW : public Function <dim>
{
public:
ExactW (unsigned int PROBLEM, double time=0) : Function<dim>(), PROBLEM(PROBLEM), time(time) {}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
void set_time(double time) {this->time=time;};
unsigned int PROBLEM;
double time;
};
template <int dim>
double ExactW<dim>::value (const Point<dim> &, const unsigned int) const
{

PROBLEM = 3D_DIAGONAL_ADVECTION

return 1.0;
}

Annotated version of utilities_test_NS.cc

/////////////////////////////////////////////////// ////////// EXACT SOLUTION RHO TO TEST NS ////////// ///////////////////////////////////////////////////

template <int dim>
class RhoFunction : public Function <dim>
{
public:
RhoFunction (double t=0) : Function<dim>() {this->set_time(t);}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
};
template <int dim>
double RhoFunction<dim>::value (const Point<dim> &p,
const unsigned int) const
{
double t = this->get_time();
double return_value = 0;
if (dim==2)
return_value = std::pow(std::sin(p[0]+p[1]+t),2)+1;
else //dim=3
return_value = std::pow(std::sin(p[0]+p[1]+p[2]+t),2)+1;
return return_value;
}
template <int dim>
class NuFunction : public Function <dim>
{
public:
NuFunction (double t=0) : Function<dim>() {this->set_time(t);}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
};
template <int dim>
double NuFunction<dim>::value (const Point<dim> &, const unsigned int) const
{
return 1.;
}
std::string get_time()
Definition: utilities.cc:1016

////////////////////////////////////////////////////////////// ///////////////// EXACT SOLUTION U to TEST NS //////////////// //////////////////////////////////////////////////////////////

template <int dim>
class ExactSolution_and_BC_U : public Function <dim>
{
public:
ExactSolution_and_BC_U (double t=0, int field=0)
:
Function<dim>(),
field(field)
{
this->set_time(t);
}
virtual double value (const Point<dim> &p, const unsigned int component=1) const;
virtual Tensor<1,dim> gradient (const Point<dim> &p, const unsigned int component=1) const;
virtual void set_field(int field) {this->field=field;}
int field;
unsigned int type_simulation;
};
template <int dim>
double ExactSolution_and_BC_U<dim>::value (const Point<dim> &p,
const unsigned int) const
{
double t = this->get_time();
double return_value = 0;
double Pi = numbers::PI;
double x = p[0];
double y = p[1];
double z = 0;
if (dim == 2)
if (field == 0)
return_value = std::sin(x)*std::sin(y+t);
else
return_value = std::cos(x)*std::cos(y+t);
else //dim=3
{
z = p[2];
if (field == 0)
return_value = std::cos(t)*std::cos(Pi*y)*std::cos(Pi*z)*std::sin(Pi*x);
else if (field == 1)
return_value = std::cos(t)*std::cos(Pi*x)*std::cos(Pi*z)*std::sin(Pi*y);
else
return_value = -2*std::cos(t)*std::cos(Pi*x)*std::cos(Pi*y)*std::sin(Pi*z);
}
return return_value;
}
template <int dim>
Tensor<1,dim> ExactSolution_and_BC_U<dim>::gradient (const Point<dim> &p,
const unsigned int) const
{
virtual Tensor< 1, dim, RangeNumberType > gradient(const Point< dim > &p, const unsigned int component=0) const

THIS IS USED JUST FOR TESTING NS

Tensor<1,dim> return_value;
double t = this->get_time();
double Pi = numbers::PI;
double x = p[0];
double y = p[1];
double z = 0;
if (dim == 2)
if (field == 0)
{
return_value[0] = std::cos(x)*std::sin(y+t);
return_value[1] = std::sin(x)*std::cos(y+t);
}
else
{
return_value[0] = -std::sin(x)*std::cos(y+t);
return_value[1] = -std::cos(x)*std::sin(y+t);
}
else //dim=3
{
z=p[2];
if (field == 0)
{
return_value[0] = Pi*std::cos(t)*std::cos(Pi*x)*std::cos(Pi*y)*std::cos(Pi*z);
return_value[1] = -(Pi*std::cos(t)*std::cos(Pi*z)*std::sin(Pi*x)*std::sin(Pi*y));
return_value[2] = -(Pi*std::cos(t)*std::cos(Pi*y)*std::sin(Pi*x)*std::sin(Pi*z));
}
else if (field == 1)
{
return_value[0] = -(Pi*std::cos(t)*std::cos(Pi*z)*std::sin(Pi*x)*std::sin(Pi*y));
return_value[1] = Pi*std::cos(t)*std::cos(Pi*x)*std::cos(Pi*y)*std::cos(Pi*z);
return_value[2] = -(Pi*std::cos(t)*std::cos(Pi*x)*std::sin(Pi*y)*std::sin(Pi*z));
}
else
{
return_value[0] = 2*Pi*std::cos(t)*std::cos(Pi*y)*std::sin(Pi*x)*std::sin(Pi*z);
return_value[1] = 2*Pi*std::cos(t)*std::cos(Pi*x)*std::sin(Pi*y)*std::sin(Pi*z);
return_value[2] = -2*Pi*std::cos(t)*std::cos(Pi*x)*std::cos(Pi*y)*std::cos(Pi*z);
}
}
return return_value;
}

/////////////////////////////////////////////////// ///////// EXACT SOLUTION FOR p TO TEST NS ///////// ///////////////////////////////////////////////////

template <int dim>
class ExactSolution_p : public Function <dim>
{
public:
ExactSolution_p (double t=0) : Function<dim>() {this->set_time(t);}
virtual double value (const Point<dim> &p, const unsigned int component=0) const;
virtual Tensor<1,dim> gradient (const Point<dim> &p, const unsigned int component = 0) const;
};
template <int dim>
double ExactSolution_p<dim>::value (const Point<dim> &p, const unsigned int) const
{
double t = this->get_time();
double return_value = 0;
if (dim == 2)
return_value = std::cos(p[0])*std::sin(p[1]+t);
else //dim=3
return_value = std::sin(p[0]+p[1]+p[2]+t);
return return_value;
}
template <int dim>
Tensor<1,dim> ExactSolution_p<dim>::gradient (const Point<dim> &p, const unsigned int) const
{
Tensor<1,dim> return_value;
double t = this->get_time();
if (dim == 2)
{
return_value[0] = -std::sin(p[0])*std::sin(p[1]+t);
return_value[1] = std::cos(p[0])*std::cos(p[1]+t);
}
else //dim=3
{
return_value[0] = std::cos(t+p[0]+p[1]+p[2]);
return_value[1] = std::cos(t+p[0]+p[1]+p[2]);
return_value[2] = std::cos(t+p[0]+p[1]+p[2]);
}
return return_value;
}

////////////////////////////////////////////////////////////// ////////////////// FORCE TERMS to TEST NS //////////////////// //////////////////////////////////////////////////////////////

template <int dim>
class ForceTerms : public Function <dim>
{
public:
ForceTerms (double t=0)
:
Function<dim>()
{
this->set_time(t);
nu = 1.;
}
virtual void vector_value (const Point<dim> &p, Vector<double> &values) const;
double nu;
};
template <int dim>
void ForceTerms<dim>::vector_value (const Point<dim> &p, Vector<double> &values) const
{
double x = p[0];
double y = p[1];
double z = 0;
double t = this->get_time();
double Pi = numbers::PI;
if (dim == 2)
{
virtual void vector_value(const Point< dim > &p, Vector< RangeNumberType > &return_value) const override

force in x

values[0] = std::cos(t+y)*std::sin(x)*(1+std::pow(std::sin(t+x+y),2)) // time derivative
+2*nu*std::sin(x)*std::sin(t+y) // viscosity
+std::cos(x)*std::sin(x)*(1+std::pow(std::sin(t+x+y),2)) // non-linearity
-std::sin(x)*std::sin(y+t); // pressure

force in y

values[1] = -(std::cos(x)*std::sin(t+y)*(1+std::pow(std::sin(t+x+y),2))) // time derivative
+2*nu*std::cos(x)*std::cos(t+y) // viscosity
-(std::sin(2*(t+y))*(1+std::pow(std::sin(t+x+y),2)))/2. // non-linearity
+std::cos(x)*std::cos(y+t); // pressure
}
else //3D
{
z = p[2];

force in x

values[0]=
-(std::cos(Pi*y)*std::cos(Pi*z)*std::sin(t)*std::sin(Pi*x)*(1+std::pow(std::sin(t+x+y+z),2))) //time der.
+3*std::pow(Pi,2)*std::cos(t)*std::cos(Pi*y)*std::cos(Pi*z)*std::sin(Pi*x) //viscosity
-(Pi*std::pow(std::cos(t),2)*(-3+std::cos(2*(t+x+y+z)))*std::sin(2*Pi*x)*(std::cos(2*Pi*y)+std::pow(std::sin(Pi*z),2)))/4. //NL
+std::cos(t+x+y+z); // pressure
values[1]=
-(std::cos(Pi*x)*std::cos(Pi*z)*std::sin(t)*std::sin(Pi*y)*(1+std::pow(std::sin(t+x+y+z),2))) //time der
+3*std::pow(Pi,2)*std::cos(t)*std::cos(Pi*x)*std::cos(Pi*z)*std::sin(Pi*y) //viscosity
-(Pi*std::pow(std::cos(t),2)*(-3+std::cos(2*(t+x+y+z)))*std::sin(2*Pi*y)*(std::cos(2*Pi*x)+std::pow(std::sin(Pi*z),2)))/4. //NL
+std::cos(t+x+y+z); // pressure
values[2]=
2*std::cos(Pi*x)*std::cos(Pi*y)*std::sin(t)*std::sin(Pi*z)*(1+std::pow(std::sin(t+x+y+z),2)) //time der
-6*std::pow(Pi,2)*std::cos(t)*std::cos(Pi*x)*std::cos(Pi*y)*std::sin(Pi*z) //viscosity
-(Pi*std::pow(std::cos(t),2)*(2+std::cos(2*Pi*x)+std::cos(2*Pi*y))*(-3+std::cos(2*(t+x+y+z)))*std::sin(2*Pi*z))/4. //NL
+std::cos(t+x+y+z); // pressure
}
}