Reference documentation for deal.II version 9.4.1
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Private Attributes | List of all members
TensorFunction< rank, dim, Number > Class Template Reference

#include <deal.II/base/tensor_function.h>

Inheritance diagram for TensorFunction< rank, dim, Number >:
[legend]

Public Types

using value_type = Tensor< rank, dim, Number >
 
using gradient_type = Tensor< rank+1, dim, Number >
 
using time_type = typename FunctionTime< typename numbers::NumberTraits< Number >::real_type >::time_type
 

Public Member Functions

 TensorFunction (const time_type initial_time=time_type(0.0))
 
virtual ~TensorFunction () override=default
 
virtual value_type value (const Point< dim > &p) const
 
virtual void value_list (const std::vector< Point< dim > > &points, std::vector< value_type > &values) const
 
virtual gradient_type gradient (const Point< dim > &p) const
 
virtual void gradient_list (const std::vector< Point< dim > > &points, std::vector< gradient_type > &gradients) const
 
Number get_time () const
 
virtual void set_time (const Number new_time)
 
virtual void advance_time (const Number delta_t)
 

Private Attributes

Number time
 

Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 
using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 
static std::mutex mutex
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
void check_no_subscribers () const noexcept
 

Detailed Description

template<int rank, int dim, typename Number = double>
class TensorFunction< rank, dim, Number >

This class is a model for a tensor valued function. The interface of the class is mostly the same as that for the Function class, with the exception that it does not support vector-valued functions with several components, but that the return type is always tensor-valued. The returned values of the evaluation of objects of this type are always whole tensors, while for the Function class, one can ask for a specific component only, or use the vector_value function, which however does not return the value, but rather writes it into the address provided by its second argument. The reason for the different behavior of the classes is that in the case of tensor valued functions, the size of the argument is known to the compiler a priori, such that the correct amount of memory can be allocated on the stack for the return value; on the other hand, for the vector valued functions, the size is not known to the compiler, so memory has to be allocated on the heap, resulting in relatively expensive copy operations. One can therefore consider this class a specialization of the Function class for which the size is known. An additional benefit is that tensors of arbitrary rank can be returned, not only vectors, as for them the size can be determined similarly simply.

Definition at line 56 of file tensor_function.h.

Member Typedef Documentation

◆ value_type

template<int rank, int dim, typename Number = double>
using TensorFunction< rank, dim, Number >::value_type = Tensor<rank, dim, Number>

Alias for the return types of the value function.

Definition at line 64 of file tensor_function.h.

◆ gradient_type

template<int rank, int dim, typename Number = double>
using TensorFunction< rank, dim, Number >::gradient_type = Tensor<rank + 1, dim, Number>

Alias for the return types of the gradient functions.

Definition at line 69 of file tensor_function.h.

◆ time_type

template<int rank, int dim, typename Number = double>
using TensorFunction< rank, dim, Number >::time_type = typename FunctionTime< typename numbers::NumberTraits<Number>::real_type>::time_type

The scalar-valued real type used for representing time.

Definition at line 74 of file tensor_function.h.

Constructor & Destructor Documentation

◆ TensorFunction()

template<int rank, int dim, typename Number = double>
TensorFunction< rank, dim, Number >::TensorFunction ( const time_type  initial_time = time_type(0.0))

Constructor. May take an initial value for the time variable, which defaults to zero.

◆ ~TensorFunction()

template<int rank, int dim, typename Number = double>
virtual TensorFunction< rank, dim, Number >::~TensorFunction ( )
overridevirtualdefault

Virtual destructor; absolutely necessary in this case, as classes are usually not used by their true type, but rather through pointers to this base class.

Member Function Documentation

◆ value()

template<int rank, int dim, typename Number = double>
virtual value_type TensorFunction< rank, dim, Number >::value ( const Point< dim > &  p) const
virtual

◆ value_list()

template<int rank, int dim, typename Number = double>
virtual void TensorFunction< rank, dim, Number >::value_list ( const std::vector< Point< dim > > &  points,
std::vector< value_type > &  values 
) const
virtual

Set values to the point values of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

Reimplemented in TensorFunctionParser< rank, dim, Number >.

◆ gradient()

template<int rank, int dim, typename Number = double>
virtual gradient_type TensorFunction< rank, dim, Number >::gradient ( const Point< dim > &  p) const
virtual

Return the gradient of the function at the given point.

Reimplemented in ConstantTensorFunction< rank, dim, Number >, and ConstantTensorFunction< rank, dim, double >.

◆ gradient_list()

template<int rank, int dim, typename Number = double>
virtual void TensorFunction< rank, dim, Number >::gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< gradient_type > &  gradients 
) const
virtual

Set gradients to the gradients of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

◆ get_time()

template<typename Number = double>
Number FunctionTime< Number >::get_time ( ) const
inherited

Return the value of the time variable.

◆ set_time()

template<typename Number = double>
virtual void FunctionTime< Number >::set_time ( const Number  new_time)
virtualinherited

Set the time to new_time, overwriting the old value.

◆ advance_time()

template<typename Number = double>
virtual void FunctionTime< Number >::advance_time ( const Number  delta_t)
virtualinherited

Advance the time by the given time step delta_t.

Member Data Documentation

◆ time

template<typename Number = double>
Number FunctionTime< Number >::time
privateinherited

Store the present time.

Definition at line 113 of file function_time.h.


The documentation for this class was generated from the following file: