#include <deal.II/lac/solver_idr.h>
|
virtual void | print_vectors (const unsigned int step, const VectorType &x, const VectorType &r, const VectorType &d) const |
|
template<class VectorType = Vector<double>>
class SolverIDR< VectorType >
This class implements the IDR(s) method used for solving nonsymmetric, indefinite linear systems, developed in IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations by Martin B. van Gijzen and Peter Sonneveld . The implementation here is the preconditioned version from Algorithm 913: An Elegant IDR(s) Variant that Efficiently Exploits Biorthogonality Properties by Martin B. van Gijzen and Peter Sonneveld. The local structure AdditionalData
takes the value for the parameter s which can be any integer greater than or equal to 1. For s=1
, this method has similar convergence to BiCGStab.
- Note
- Each iteration of IDR(s) requires
s+1
preconditioning steps and matrix-vector products. In this implementation the residual is updated and convergence is checked after each of these inner steps inside the outer iteration. If the user enables the history data, the residual at each of these steps is stored and therefore there will be multiple values per iteration.
Definition at line 117 of file solver_idr.h.
◆ vector_type
template<class VectorType = Vector<double>>
using SolverBase< VectorType >::vector_type = VectorType |
|
inherited |
An alias for the underlying vector type
Definition at line 346 of file solver.h.
◆ SolverIDR() [1/2]
template<class VectorType = Vector<double>>
◆ SolverIDR() [2/2]
template<class VectorType = Vector<double>>
◆ ~SolverIDR()
template<class VectorType = Vector<double>>
◆ solve()
template<class VectorType = Vector<double>>
template<typename MatrixType , typename PreconditionerType >
void SolverIDR< VectorType >::solve |
( |
const MatrixType & |
A, |
|
|
VectorType & |
x, |
|
|
const VectorType & |
b, |
|
|
const PreconditionerType & |
preconditioner |
|
) |
| |
Solve the linear system Ax=b
for x.
◆ print_vectors()
template<class VectorType = Vector<double>>
virtual void SolverIDR< VectorType >::print_vectors |
( |
const unsigned int |
step, |
|
|
const VectorType & |
x, |
|
|
const VectorType & |
r, |
|
|
const VectorType & |
d |
|
) |
| const |
|
protectedvirtual |
Interface for derived class. This function gets the current iteration vector, the residual and the update vector in each step. It can be used for graphical output of the convergence history.
◆ connect()
template<class VectorType = Vector<double>>
boost::signals2::connection SolverBase< VectorType >::connect |
( |
const std::function< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType ¤t_iterate)> & |
slot | ) |
|
|
inherited |
Connect a function object that will be called periodically within iterative solvers. This function is used to attach monitors to iterative solvers, either to determine when convergence has happened, or simply to observe the progress of an iteration. See the documentation of this class for more information.
- Parameters
-
slot | A function object specified here will, with each call, receive the number of the current iteration, the value that is used to check for convergence (typically the residual of the current iterate with respect to the linear system to be solved) and the currently best available guess for the current iterate. Note that some solvers do not update the approximate solution in every iteration but only after convergence or failure has been determined (GMRES is an example); in such cases, the vector passed as the last argument to the signal is simply the best approximate at the time the signal is called, but not the vector that will be returned if the signal's return value indicates that the iteration should be terminated. The function object must return a SolverControl::State value that indicates whether the iteration should continue, has failed, or has succeeded. The results of all connected functions will then be combined to determine what should happen with the iteration. |
- Returns
- A connection object that represents the connection from the signal to the function object. It can be used to disconnect the function object again from the signal. See the documentation of the BOOST Signals2 library for more information on connection management.
◆ additional_data
template<class VectorType = Vector<double>>
◆ static_vector_memory
template<class VectorType = Vector<double>>
|
mutableprotectedinherited |
A static vector memory object to be used whenever no such object has been given to the constructor.
Definition at line 414 of file solver.h.
◆ memory
template<class VectorType = Vector<double>>
A reference to an object that provides memory for auxiliary vectors.
Definition at line 419 of file solver.h.
◆ iteration_status
template<class VectorType = Vector<double>>
A signal that iterative solvers can execute at the end of every iteration (or in an otherwise periodic fashion) to find out whether we should continue iterating or not. The signal may call one or more slots that each will make this determination by themselves, and the result over all slots (function calls) will be determined by the StateCombiner object.
The arguments passed to the signal are (i) the number of the current iteration; (ii) the value that is used to determine convergence (oftentimes the residual, but in other cases other quantities may be used as long as they converge to zero as the iterate approaches the solution of the linear system); and (iii) a vector that corresponds to the current best guess for the solution at the point where the signal is called. Note that some solvers do not update the approximate solution in every iteration but only after convergence or failure has been determined (GMRES is an example); in such cases, the vector passed as the last argument to the signal is simply the best approximate at the time the signal is called, but not the vector that will be returned if the signal's return value indicates that the iteration should be terminated.
Definition at line 470 of file solver.h.
The documentation for this class was generated from the following file: