Loading [MathJax]/extensions/TeX/newcommand.js
 Reference documentation for deal.II version 9.4.1
\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}} \newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=} \newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]} \newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Public Member Functions | Public Attributes | List of all members
NonMatching::internal::QuadratureGeneratorImplementation::QPartitioning< dim > Class Template Reference

#include <deal.II/non_matching/quadrature_generator.h>

Public Member Functions

ExtendableQuadrature< dim > & quadrature_by_definiteness (const Definiteness definiteness)
 

Public Attributes

ExtendableQuadrature< dim > negative
 
ExtendableQuadrature< dim > positive
 
ExtendableQuadrature< dim > indefinite
 
ImmersedSurfaceQuadrature< dim > surface
 

Detailed Description

template<int dim>
class NonMatching::internal::QuadratureGeneratorImplementation::QPartitioning< dim >

Class that stores quadrature rules to integrate over 4 different regions of a single BoundingBox, B. Given multiple level set functions,

\psi_i : \mathbb{R}^{dim} \rightarrow \mathbb{R}, i = 0, 1, ...,

the box, B \subset \mathbb{R}^{dim}, is partitioned into a "negative", "positive", and "indefinite" region, B = N \cup P \cup I, according to the signs of \psi_i over each region:

N = \{x \in B : \psi_i(x) < 0, \forall i \}, \\ P = \{x \in B : \psi_i(x) > 0, \forall i \}, \\ I = B \setminus (\overline{N} \cup \overline{P}).

Thus, all \psi_i are positive over P and negative over N. Over I the level set functions differ in sign. This class holds quadrature rules for each of these regions. In addition, when there is a single level set function, \psi, it holds a surface quadrature for the zero contour of \psi:

S = \{x \in B : \psi(x) = 0 \}.

Note that when there is a single level set function, I is empty and N and P are the regions that one typically integrates over in an immersed finite element method.

Definition at line 753 of file quadrature_generator.h.

Member Function Documentation

◆ quadrature_by_definiteness()

template<int dim>
ExtendableQuadrature< dim > & NonMatching::internal::QuadratureGeneratorImplementation::QPartitioning< dim >::quadrature_by_definiteness ( const Definiteness  definiteness)

Return a reference to the "bulk" quadrature with the same name as the member in Definiteness.

Definition at line 658 of file quadrature_generator.cc.

Member Data Documentation

◆ negative

Quadrature for the region \{x \in B : \psi_i(x) < 0 \forall i \} of the box, B.

Definition at line 767 of file quadrature_generator.h.

◆ positive

Quadrature for the region \{x \in B : \psi_i(x) > 0 \forall i \} of the box, B.

Definition at line 773 of file quadrature_generator.h.

◆ indefinite

Quadrature for a region where the level set functions have different sign.

Definition at line 779 of file quadrature_generator.h.

◆ surface

Quadrature for the region \{x \in B : \psi(x) = 0 \} of the box, B.

Definition at line 785 of file quadrature_generator.h.


The documentation for this class was generated from the following files: