Reference documentation for deal.II version 9.4.1
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Member Functions | Public Attributes | List of all members
FE_DGVector< PolynomialType, dim, spacedim >::InternalData Class Reference
Inheritance diagram for FE_DGVector< PolynomialType, dim, spacedim >::InternalData:
[legend]

Public Member Functions

virtual std::size_t memory_consumption () const
 

Public Attributes

std::vector< std::vector< Tensor< 1, dim > > > shape_values
 
std::vector< std::vector< Tensor< 2, dim > > > shape_gradients
 
UpdateFlags update_each
 

Detailed Description

template<class PolynomialType, int dim, int spacedim = dim>
class FE_DGVector< PolynomialType, dim, spacedim >::InternalData

Fields of cell-independent data.

For information about the general purpose of this class, see the documentation of the base class.

Definition at line 102 of file fe_dg_vector.h.

Member Function Documentation

◆ memory_consumption()

template<int dim, int spacedim = dim>
virtual std::size_t FiniteElement< dim, spacedim >::InternalDataBase::memory_consumption ( ) const
virtualinherited

Return an estimate (in bytes) for the memory consumption of this object.

Member Data Documentation

◆ shape_values

template<class PolynomialType , int dim, int spacedim = dim>
std::vector<std::vector<Tensor<1, dim> > > FE_DGVector< PolynomialType, dim, spacedim >::InternalData::shape_values

Array with shape function values in quadrature points. There is one row for each shape function, containing values for each quadrature point. Since the shape functions are vector-valued (with as many components as there are space dimensions), the value is a tensor.

In this array, we store the values of the shape function in the quadrature points on the unit cell. The transformation to the real space cell is then simply done by multiplication with the Jacobian of the mapping.

Definition at line 116 of file fe_dg_vector.h.

◆ shape_gradients

template<class PolynomialType , int dim, int spacedim = dim>
std::vector<std::vector<Tensor<2, dim> > > FE_DGVector< PolynomialType, dim, spacedim >::InternalData::shape_gradients

Array with shape function gradients in quadrature points. There is one row for each shape function, containing values for each quadrature point.

We store the gradients in the quadrature points on the unit cell. We then only have to apply the transformation (which is a matrix-vector multiplication) when visiting an actual cell.

Definition at line 127 of file fe_dg_vector.h.

◆ update_each

template<int dim, int spacedim = dim>
UpdateFlags FiniteElement< dim, spacedim >::InternalDataBase::update_each
inherited

A set of update flags specifying the kind of information that an implementation of the FiniteElement interface needs to compute on each cell or face, i.e., in FiniteElement::fill_fe_values() and friends.

This set of flags is stored here by implementations of FiniteElement::get_data(), FiniteElement::get_face_data(), or FiniteElement::get_subface_data(), and is that subset of the update flags passed to those functions that require re-computation on every cell. (The subset of the flags corresponding to information that can be computed once and for all already at the time of the call to FiniteElement::get_data() – or an implementation of that interface – need not be stored here because it has already been taken care of.)

Definition at line 719 of file fe.h.


The documentation for this class was generated from the following file: