Reference documentation for deal.II version 9.4.1
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Member Functions | Public Attributes | Static Public Attributes | Protected Attributes | List of all members
FEFaceValuesBase< dim, spacedim > Class Template Reference

#include <deal.II/fe/fe_values.h>

Inheritance diagram for FEFaceValuesBase< dim, spacedim >:
[legend]

Public Member Functions

 FEFaceValuesBase (const unsigned int dofs_per_cell, const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const FiniteElement< dim, spacedim > &fe, const Quadrature< dim - 1 > &quadrature)
 
 FEFaceValuesBase (const unsigned int dofs_per_cell, const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const FiniteElement< dim, spacedim > &fe, const hp::QCollection< dim - 1 > &quadrature)
 
const Tensor< 1, spacedim > & boundary_form (const unsigned int i) const
 
const std::vector< Tensor< 1, spacedim > > & get_boundary_forms () const
 
unsigned int get_face_number () const
 
unsigned int get_face_index () const
 
const Quadrature< dim - 1 > & get_quadrature () const
 
std::size_t memory_consumption () const
 
Access to shape function values

These fields are filled by the finite element.

const double & shape_value (const unsigned int function_no, const unsigned int point_no) const
 
double shape_value_component (const unsigned int function_no, const unsigned int point_no, const unsigned int component) const
 
const Tensor< 1, spacedim > & shape_grad (const unsigned int function_no, const unsigned int quadrature_point) const
 
Tensor< 1, spacedim > shape_grad_component (const unsigned int function_no, const unsigned int point_no, const unsigned int component) const
 
const Tensor< 2, spacedim > & shape_hessian (const unsigned int function_no, const unsigned int point_no) const
 
Tensor< 2, spacedim > shape_hessian_component (const unsigned int function_no, const unsigned int point_no, const unsigned int component) const
 
const Tensor< 3, spacedim > & shape_3rd_derivative (const unsigned int function_no, const unsigned int point_no) const
 
Tensor< 3, spacedim > shape_3rd_derivative_component (const unsigned int function_no, const unsigned int point_no, const unsigned int component) const
 
Access to values of global finite element fields
template<class InputVector >
void get_function_values (const InputVector &fe_function, std::vector< typename InputVector::value_type > &values) const
 
template<class InputVector >
void get_function_values (const InputVector &fe_function, std::vector< Vector< typename InputVector::value_type > > &values) const
 
template<class InputVector >
void get_function_values (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, std::vector< typename InputVector::value_type > &values) const
 
template<class InputVector >
void get_function_values (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, std::vector< Vector< typename InputVector::value_type > > &values) const
 
template<class InputVector >
void get_function_values (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, ArrayView< std::vector< typename InputVector::value_type > > values, const bool quadrature_points_fastest) const
 
Access to derivatives of global finite element fields
template<class InputVector >
void get_function_gradients (const InputVector &fe_function, std::vector< Tensor< 1, spacedim, typename InputVector::value_type > > &gradients) const
 
template<class InputVector >
void get_function_gradients (const InputVector &fe_function, std::vector< std::vector< Tensor< 1, spacedim, typename InputVector::value_type > > > &gradients) const
 
template<class InputVector >
void get_function_gradients (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, std::vector< Tensor< 1, spacedim, typename InputVector::value_type > > &gradients) const
 
template<class InputVector >
void get_function_gradients (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, ArrayView< std::vector< Tensor< 1, spacedim, typename InputVector::value_type > > > gradients, const bool quadrature_points_fastest=false) const
 
Access to second derivatives

Hessian matrices and Laplacians of global finite element fields

template<class InputVector >
void get_function_hessians (const InputVector &fe_function, std::vector< Tensor< 2, spacedim, typename InputVector::value_type > > &hessians) const
 
template<class InputVector >
void get_function_hessians (const InputVector &fe_function, std::vector< std::vector< Tensor< 2, spacedim, typename InputVector::value_type > > > &hessians, const bool quadrature_points_fastest=false) const
 
template<class InputVector >
void get_function_hessians (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, std::vector< Tensor< 2, spacedim, typename InputVector::value_type > > &hessians) const
 
template<class InputVector >
void get_function_hessians (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, ArrayView< std::vector< Tensor< 2, spacedim, typename InputVector::value_type > > > hessians, const bool quadrature_points_fastest=false) const
 
template<class InputVector >
void get_function_laplacians (const InputVector &fe_function, std::vector< typename InputVector::value_type > &laplacians) const
 
template<class InputVector >
void get_function_laplacians (const InputVector &fe_function, std::vector< Vector< typename InputVector::value_type > > &laplacians) const
 
template<class InputVector >
void get_function_laplacians (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, std::vector< typename InputVector::value_type > &laplacians) const
 
template<class InputVector >
void get_function_laplacians (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, std::vector< Vector< typename InputVector::value_type > > &laplacians) const
 
template<class InputVector >
void get_function_laplacians (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, std::vector< std::vector< typename InputVector::value_type > > &laplacians, const bool quadrature_points_fastest=false) const
 
Access to third derivatives of global finite element fields
template<class InputVector >
void get_function_third_derivatives (const InputVector &fe_function, std::vector< Tensor< 3, spacedim, typename InputVector::value_type > > &third_derivatives) const
 
template<class InputVector >
void get_function_third_derivatives (const InputVector &fe_function, std::vector< std::vector< Tensor< 3, spacedim, typename InputVector::value_type > > > &third_derivatives, const bool quadrature_points_fastest=false) const
 
template<class InputVector >
void get_function_third_derivatives (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, std::vector< Tensor< 3, spacedim, typename InputVector::value_type > > &third_derivatives) const
 
template<class InputVector >
void get_function_third_derivatives (const InputVector &fe_function, const ArrayView< const types::global_dof_index > &indices, ArrayView< std::vector< Tensor< 3, spacedim, typename InputVector::value_type > > > third_derivatives, const bool quadrature_points_fastest=false) const
 
Cell degrees of freedom
std_cxx20::ranges::iota_view< unsigned int, unsigned intdof_indices () const
 
std_cxx20::ranges::iota_view< unsigned int, unsigned intdof_indices_starting_at (const unsigned int start_dof_index) const
 
std_cxx20::ranges::iota_view< unsigned int, unsigned intdof_indices_ending_at (const unsigned int end_dof_index) const
 
Geometry of the cell
std_cxx20::ranges::iota_view< unsigned int, unsigned intquadrature_point_indices () const
 
const Point< spacedim > & quadrature_point (const unsigned int q) const
 
const std::vector< Point< spacedim > > & get_quadrature_points () const
 
double JxW (const unsigned int quadrature_point) const
 
const std::vector< double > & get_JxW_values () const
 
const DerivativeForm< 1, dim, spacedim > & jacobian (const unsigned int quadrature_point) const
 
const std::vector< DerivativeForm< 1, dim, spacedim > > & get_jacobians () const
 
const DerivativeForm< 2, dim, spacedim > & jacobian_grad (const unsigned int quadrature_point) const
 
const std::vector< DerivativeForm< 2, dim, spacedim > > & get_jacobian_grads () const
 
const Tensor< 3, spacedim > & jacobian_pushed_forward_grad (const unsigned int quadrature_point) const
 
const std::vector< Tensor< 3, spacedim > > & get_jacobian_pushed_forward_grads () const
 
const DerivativeForm< 3, dim, spacedim > & jacobian_2nd_derivative (const unsigned int quadrature_point) const
 
const std::vector< DerivativeForm< 3, dim, spacedim > > & get_jacobian_2nd_derivatives () const
 
const Tensor< 4, spacedim > & jacobian_pushed_forward_2nd_derivative (const unsigned int quadrature_point) const
 
const std::vector< Tensor< 4, spacedim > > & get_jacobian_pushed_forward_2nd_derivatives () const
 
const DerivativeForm< 4, dim, spacedim > & jacobian_3rd_derivative (const unsigned int quadrature_point) const
 
const std::vector< DerivativeForm< 4, dim, spacedim > > & get_jacobian_3rd_derivatives () const
 
const Tensor< 5, spacedim > & jacobian_pushed_forward_3rd_derivative (const unsigned int quadrature_point) const
 
const std::vector< Tensor< 5, spacedim > > & get_jacobian_pushed_forward_3rd_derivatives () const
 
const DerivativeForm< 1, spacedim, dim > & inverse_jacobian (const unsigned int quadrature_point) const
 
const std::vector< DerivativeForm< 1, spacedim, dim > > & get_inverse_jacobians () const
 
const Tensor< 1, spacedim > & normal_vector (const unsigned int i) const
 
const std::vector< Tensor< 1, spacedim > > & get_normal_vectors () const
 
Extractors Methods to extract individual components
const FEValuesViews::Scalar< dim, spacedim > & operator[] (const FEValuesExtractors::Scalar &scalar) const
 
const FEValuesViews::Vector< dim, spacedim > & operator[] (const FEValuesExtractors::Vector &vector) const
 
const FEValuesViews::SymmetricTensor< 2, dim, spacedim > & operator[] (const FEValuesExtractors::SymmetricTensor< 2 > &tensor) const
 
const FEValuesViews::Tensor< 2, dim, spacedim > & operator[] (const FEValuesExtractors::Tensor< 2 > &tensor) const
 

Public Attributes

const unsigned int n_quadrature_points
 
const unsigned int max_n_quadrature_points
 
const unsigned int dofs_per_cell
 

Static Public Attributes

static constexpr unsigned int integral_dimension = dim - 1
 
static constexpr unsigned int dimension = dim
 
static constexpr unsigned int space_dimension = spacedim
 

Protected Attributes

unsigned int present_face_no
 
unsigned int present_face_index
 
const hp::QCollection< dim - 1 > quadrature
 

Access to the raw data

CellIteratorContainer present_cell
 
boost::signals2::connection tria_listener_refinement
 
boost::signals2::connection tria_listener_mesh_transform
 
const SmartPointer< const Mapping< dim, spacedim >, FEValuesBase< dim, spacedim > > mapping
 
std::unique_ptr< typename Mapping< dim, spacedim >::InternalDataBase > mapping_data
 
::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > mapping_output
 
const SmartPointer< const FiniteElement< dim, spacedim >, FEValuesBase< dim, spacedim > > fe
 
std::unique_ptr< typename FiniteElement< dim, spacedim >::InternalDataBase > fe_data
 
::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > finite_element_output
 
UpdateFlags update_flags
 
CellSimilarity::Similarity cell_similarity
 
const Mapping< dim, spacedim > & get_mapping () const
 
const FiniteElement< dim, spacedim > & get_fe () const
 
UpdateFlags get_update_flags () const
 
const Triangulation< dim, spacedim >::cell_iterator get_cell () const
 
CellSimilarity::Similarity get_cell_similarity () const
 
::internal::FEValuesViews::Cache< dim, spacedim > fe_values_views_cache
 
static ::ExceptionBaseExcAccessToUninitializedField (std::string arg1)
 
static ::ExceptionBaseExcNotReinited ()
 
static ::ExceptionBaseExcFEDontMatch ()
 
static ::ExceptionBaseExcShapeFunctionNotPrimitive (int arg1)
 
static ::ExceptionBaseExcFENotPrimitive ()
 
void invalidate_present_cell ()
 
void maybe_invalidate_previous_present_cell (const typename Triangulation< dim, spacedim >::cell_iterator &cell)
 
UpdateFlags compute_update_flags (const UpdateFlags update_flags) const
 
void check_cell_similarity (const typename Triangulation< dim, spacedim >::cell_iterator &cell)
 

Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 
static std::mutex mutex
 
void check_no_subscribers () const noexcept
 

Detailed Description

template<int dim, int spacedim = dim>
class FEFaceValuesBase< dim, spacedim >

Extend the interface of FEValuesBase to values that only make sense when evaluating something on the surface of a cell. All the data that is available in the interior of cells is also available here.

See FEValuesBase

Definition at line 4183 of file fe_values.h.

Constructor & Destructor Documentation

◆ FEFaceValuesBase() [1/2]

template<int dim, int spacedim = dim>
FEFaceValuesBase< dim, spacedim >::FEFaceValuesBase ( const unsigned int  dofs_per_cell,
const UpdateFlags  update_flags,
const Mapping< dim, spacedim > &  mapping,
const FiniteElement< dim, spacedim > &  fe,
const Quadrature< dim - 1 > &  quadrature 
)

Constructor. Call the constructor of the base class and set up the arrays of this class with the right sizes. Actually filling these arrays is a duty of the derived class's constructors.

n_faces_or_subfaces is the number of faces or subfaces that this object is to store. The actual number depends on the derived class, for FEFaceValues it is 2*dim, while for the FESubfaceValues class it is 2*dim*(1<<(dim-1)), i.e. the number of faces times the number of subfaces per face.

◆ FEFaceValuesBase() [2/2]

template<int dim, int spacedim = dim>
FEFaceValuesBase< dim, spacedim >::FEFaceValuesBase ( const unsigned int  dofs_per_cell,
const UpdateFlags  update_flags,
const Mapping< dim, spacedim > &  mapping,
const FiniteElement< dim, spacedim > &  fe,
const hp::QCollection< dim - 1 > &  quadrature 
)

Like the function above, but taking a collection of quadrature rules. This allows to assign each face a different quadrature rule. In the case that the collection only contains a single face quadrature, this quadrature rule is use on all faces.

Member Function Documentation

◆ boundary_form()

template<int dim, int spacedim = dim>
const Tensor< 1, spacedim > & FEFaceValuesBase< dim, spacedim >::boundary_form ( const unsigned int  i) const

Boundary form of the transformation of the cell at the ith quadrature point. See GlossBoundaryForm.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_boundary_forms flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_boundary_forms()

template<int dim, int spacedim = dim>
const std::vector< Tensor< 1, spacedim > > & FEFaceValuesBase< dim, spacedim >::get_boundary_forms ( ) const

Return the list of outward normal vectors times the Jacobian of the surface mapping.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_boundary_forms flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_face_number()

template<int dim, int spacedim = dim>
unsigned int FEFaceValuesBase< dim, spacedim >::get_face_number ( ) const

Return the number of the face selected the last time the reinit() function was called.

◆ get_face_index()

template<int dim, int spacedim = dim>
unsigned int FEFaceValuesBase< dim, spacedim >::get_face_index ( ) const

Return the index of the face selected the last time the reinit() function was called.

◆ get_quadrature()

template<int dim, int spacedim = dim>
const Quadrature< dim - 1 > & FEFaceValuesBase< dim, spacedim >::get_quadrature ( ) const

Return a reference to the copy of the quadrature formula stored by this object.

◆ memory_consumption()

template<int dim, int spacedim = dim>
std::size_t FEFaceValuesBase< dim, spacedim >::memory_consumption ( ) const

Determine an estimate for the memory consumption (in bytes) of this object.

◆ shape_value()

template<int dim, int spacedim>
const double & FEValuesBase< dim, spacedim >::shape_value ( const unsigned int  function_no,
const unsigned int  point_no 
) const
inherited

Value of a shape function at a quadrature point on the cell, face or subface selected the last time the reinit function of the derived class was called.

If the shape function is vector-valued, then this returns the only non- zero component. If the shape function has more than one non-zero component (i.e. it is not primitive), then throw an exception of type ExcShapeFunctionNotPrimitive. In that case, use the shape_value_component() function.

Parameters
function_noNumber of the shape function to be evaluated. Note that this number runs from zero to dofs_per_cell, even in the case of an FEFaceValues or FESubfaceValues object.
point_noNumber of the quadrature point at which function is to be evaluated
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_values flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ shape_value_component()

template<int dim, int spacedim>
double FEValuesBase< dim, spacedim >::shape_value_component ( const unsigned int  function_no,
const unsigned int  point_no,
const unsigned int  component 
) const
inherited

Compute one vector component of the value of a shape function at a quadrature point. If the finite element is scalar, then only component zero is allowed and the return value equals that of the shape_value() function. If the finite element is vector valued but all shape functions are primitive (i.e. they are non-zero in only one component), then the value returned by shape_value() equals that of this function for exactly one component. This function is therefore only of greater interest if the shape function is not primitive, but then it is necessary since the other function cannot be used.

Parameters
function_noNumber of the shape function to be evaluated.
point_noNumber of the quadrature point at which function is to be evaluated.
componentvector component to be evaluated.
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_values flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ shape_grad()

template<int dim, int spacedim>
const Tensor< 1, spacedim > & FEValuesBase< dim, spacedim >::shape_grad ( const unsigned int  function_no,
const unsigned int  quadrature_point 
) const
inherited

Compute the gradient of the function_noth shape function at the quadrature_pointth quadrature point with respect to real cell coordinates. If you want to get the derivative in one of the coordinate directions, use the appropriate function of the Tensor class to extract one component of the Tensor returned by this function. Since only a reference to the gradient's value is returned, there should be no major performance drawback.

If the shape function is vector-valued, then this returns the only non- zero component. If the shape function has more than one non-zero component (i.e. it is not primitive), then it will throw an exception of type ExcShapeFunctionNotPrimitive. In that case, use the shape_grad_component() function.

The same holds for the arguments of this function as for the shape_value() function.

Parameters
function_noNumber of the shape function to be evaluated.
quadrature_pointNumber of the quadrature point at which function is to be evaluated.
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_gradients flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ shape_grad_component()

template<int dim, int spacedim>
Tensor< 1, spacedim > FEValuesBase< dim, spacedim >::shape_grad_component ( const unsigned int  function_no,
const unsigned int  point_no,
const unsigned int  component 
) const
inherited

Return one vector component of the gradient of a shape function at a quadrature point. If the finite element is scalar, then only component zero is allowed and the return value equals that of the shape_grad() function. If the finite element is vector valued but all shape functions are primitive (i.e. they are non-zero in only one component), then the value returned by shape_grad() equals that of this function for exactly one component. This function is therefore only of greater interest if the shape function is not primitive, but then it is necessary since the other function cannot be used.

The same holds for the arguments of this function as for the shape_value_component() function.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_gradients flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ shape_hessian()

template<int dim, int spacedim>
const Tensor< 2, spacedim > & FEValuesBase< dim, spacedim >::shape_hessian ( const unsigned int  function_no,
const unsigned int  point_no 
) const
inherited

Second derivatives of the function_noth shape function at the point_noth quadrature point with respect to real cell coordinates. If you want to get the derivatives in one of the coordinate directions, use the appropriate function of the Tensor class to extract one component. Since only a reference to the hessian values is returned, there should be no major performance drawback.

If the shape function is vector-valued, then this returns the only non- zero component. If the shape function has more than one non-zero component (i.e. it is not primitive), then throw an exception of type ExcShapeFunctionNotPrimitive. In that case, use the shape_hessian_component() function.

The same holds for the arguments of this function as for the shape_value() function.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ shape_hessian_component()

template<int dim, int spacedim>
Tensor< 2, spacedim > FEValuesBase< dim, spacedim >::shape_hessian_component ( const unsigned int  function_no,
const unsigned int  point_no,
const unsigned int  component 
) const
inherited

Return one vector component of the hessian of a shape function at a quadrature point. If the finite element is scalar, then only component zero is allowed and the return value equals that of the shape_hessian() function. If the finite element is vector valued but all shape functions are primitive (i.e. they are non-zero in only one component), then the value returned by shape_hessian() equals that of this function for exactly one component. This function is therefore only of greater interest if the shape function is not primitive, but then it is necessary since the other function cannot be used.

The same holds for the arguments of this function as for the shape_value_component() function.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ shape_3rd_derivative()

template<int dim, int spacedim>
const Tensor< 3, spacedim > & FEValuesBase< dim, spacedim >::shape_3rd_derivative ( const unsigned int  function_no,
const unsigned int  point_no 
) const
inherited

Third derivatives of the function_noth shape function at the point_noth quadrature point with respect to real cell coordinates. If you want to get the 3rd derivatives in one of the coordinate directions, use the appropriate function of the Tensor class to extract one component. Since only a reference to the 3rd derivative values is returned, there should be no major performance drawback.

If the shape function is vector-valued, then this returns the only non- zero component. If the shape function has more than one non-zero component (i.e. it is not primitive), then throw an exception of type ExcShapeFunctionNotPrimitive. In that case, use the shape_3rdderivative_component() function.

The same holds for the arguments of this function as for the shape_value() function.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ shape_3rd_derivative_component()

template<int dim, int spacedim>
Tensor< 3, spacedim > FEValuesBase< dim, spacedim >::shape_3rd_derivative_component ( const unsigned int  function_no,
const unsigned int  point_no,
const unsigned int  component 
) const
inherited

Return one vector component of the third derivative of a shape function at a quadrature point. If the finite element is scalar, then only component zero is allowed and the return value equals that of the shape_3rdderivative() function. If the finite element is vector valued but all shape functions are primitive (i.e. they are non-zero in only one component), then the value returned by shape_3rdderivative() equals that of this function for exactly one component. This function is therefore only of greater interest if the shape function is not primitive, but then it is necessary since the other function cannot be used.

The same holds for the arguments of this function as for the shape_value_component() function.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_function_values() [1/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
std::vector< typename InputVector::value_type > &  values 
) const
inherited

Return the values of a finite element function restricted to the current cell, face or subface selected the last time the reinit function of the derived class was called, at the quadrature points.

If the present cell is not active then values are interpolated to the current cell and point values are computed from that.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. To get values of multi- component elements, there is another get_function_values() below, returning a vector of vectors of results.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]valuesThe values of the function specified by fe_function at the quadrature points of the current cell. The object is assume to already have the correct size. The data type stored by this output vector must be what you get when you multiply the values of shape function times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function argument). This happens to be equal to the type of the elements of the solution vector.
Postcondition
values[q] will contain the value of the field described by fe_function at the \(q\)th quadrature point.
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DoFHandler object with which this FEValues object was last initialized.
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_values flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3356 of file fe_values.cc.

◆ get_function_values() [2/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
std::vector< Vector< typename InputVector::value_type > > &  values 
) const
inherited

This function does the same as the other get_function_values(), but applied to multi-component (vector-valued) elements. The meaning of the arguments is as explained there.

Postcondition
values[q] is a vector of values of the field described by fe_function at the \(q\)th quadrature point. The size of the vector accessed by values[q] equals the number of components of the finite element, i.e. values[q](c) returns the value of the \(c\)th vector component at the \(q\)th quadrature point.
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_values flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3404 of file fe_values.cc.

◆ get_function_values() [3/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
std::vector< typename InputVector::value_type > &  values 
) const
inherited

Generate function values from an arbitrary vector. This function does in essence the same as the first function of this name above, except that it does not make the assumption that the input vector corresponds to a DoFHandler that describes the unknowns of a finite element field (and for which we would then assume that fe_function.size() == dof_handler.n_dofs()). Rather, the nodal values corresponding to the current cell are elements of an otherwise arbitrary vector, and these elements are indexed by the second argument to this function. What the rest of the fe_function input argument corresponds to is of no consequence to this function.

Given this, the function above corresponds to passing fe_function as first argument to the current function, and using the local_dof_indices array that results from the following call as second argument to the current function:

cell->get_dof_indices (local_dof_indices);

(See DoFCellAccessor::get_dof_indices() for more information.)

Likewise, the function above is equivalent to calling

cell->get_dof_values (fe_function, local_dof_values);

and then calling the current function with local_dof_values as first argument, and an array with indices {0,...,fe.dofs_per_cell-1} as second argument.

The point of the current function is that one sometimes wants to evaluate finite element functions at quadrature points with nodal values that are not stored in a global vector – for example, one could modify these local values first, such as by applying a limiter or by ensuring that all nodal values are positive, before evaluating the finite element field that corresponds to these local values on the current cell. Another application is where one wants to postprocess the solution on a cell into a different finite element space on every cell, without actually creating a corresponding DoFHandler – in that case, all one would compute is a local representation of that postprocessed function, characterized by its nodal values; this function then allows the evaluation of that representation at quadrature points.

Parameters
[in]fe_functionA vector of nodal values. This vector can have an arbitrary size, as long as all elements index by indices can actually be accessed.
[in]indicesA vector of indices into fe_function. This vector must have length equal to the number of degrees of freedom on the current cell, and must identify elements in fe_function in the order in which degrees of freedom are indexed on the reference cell.
[out]valuesA vector of values of the given finite element field, at the quadrature points on the current object.
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_values flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3380 of file fe_values.cc.

◆ get_function_values() [4/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
std::vector< Vector< typename InputVector::value_type > > &  values 
) const
inherited

Generate vector function values from an arbitrary vector.

This function corresponds to the previous one, just for the vector-valued case.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_values flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3431 of file fe_values.cc.

◆ get_function_values() [5/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_values ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
ArrayView< std::vector< typename InputVector::value_type > >  values,
const bool  quadrature_points_fastest 
) const
inherited

Generate vector function values from an arbitrary vector. This function is similar to the previous one, but the indices vector may also be a multiple of the number of dofs per cell. Then, the vectors in value should allow for the same multiple of the components of the finite element.

Depending on the value of the last argument, the outer vector of values has either the length of the quadrature rule (quadrature_points_fastest == false) or the length of components to be filled quadrature_points_fastest == true. If p is the current quadrature point number and i is the vector component of the solution desired, the access to values is values[p][i] if quadrature_points_fastest == false, and values[i][p] otherwise.

Since this function allows for fairly general combinations of argument sizes, be aware that the checks on the arguments may not detect errors.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_values flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3462 of file fe_values.cc.

◆ get_function_gradients() [1/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_gradients ( const InputVector &  fe_function,
std::vector< Tensor< 1, spacedim, typename InputVector::value_type > > &  gradients 
) const
inherited

Compute the gradients of a finite element at the quadrature points of a cell. This function is the equivalent of the corresponding get_function_values() function (see there for more information) but evaluates the finite element field's gradient instead of its value.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. There is a corresponding function of the same name for vector-valued finite elements.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]gradientsThe gradients of the function specified by fe_function at the quadrature points of the current cell. The gradients are computed in real space (as opposed to on the unit cell). The object is assume to already have the correct size. The data type stored by this output vector must be what you get when you multiply the gradients of shape function times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function argument).
Postcondition
gradients[q] will contain the gradient of the field described by fe_function at the \(q\)th quadrature point. gradients[q][d] represents the derivative in coordinate direction \(d\) at quadrature point \(q\).
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DoFHandler object with which this FEValues object was last initialized.
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_gradients flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3495 of file fe_values.cc.

◆ get_function_gradients() [2/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_gradients ( const InputVector &  fe_function,
std::vector< std::vector< Tensor< 1, spacedim, typename InputVector::value_type > > > &  gradients 
) const
inherited

This function does the same as the other get_function_gradients(), but applied to multi-component (vector-valued) elements. The meaning of the arguments is as explained there.

Postcondition
gradients[q] is a vector of gradients of the field described by fe_function at the \(q\)th quadrature point. The size of the vector accessed by gradients[q] equals the number of components of the finite element, i.e. gradients[q][c] returns the gradient of the \(c\)th vector component at the \(q\)th quadrature point. Consequently, gradients[q][c][d] is the derivative in coordinate direction \(d\) of the \(c\)th vector component of the vector field at quadrature point \(q\) of the current cell.
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_gradients flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3545 of file fe_values.cc.

◆ get_function_gradients() [3/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_gradients ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
std::vector< Tensor< 1, spacedim, typename InputVector::value_type > > &  gradients 
) const
inherited

This function relates to the first of the get_function_gradients() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_gradients flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3520 of file fe_values.cc.

◆ get_function_gradients() [4/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_gradients ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
ArrayView< std::vector< Tensor< 1, spacedim, typename InputVector::value_type > > >  gradients,
const bool  quadrature_points_fastest = false 
) const
inherited

This function relates to the first of the get_function_gradients() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_gradients flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3573 of file fe_values.cc.

◆ get_function_hessians() [1/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_hessians ( const InputVector &  fe_function,
std::vector< Tensor< 2, spacedim, typename InputVector::value_type > > &  hessians 
) const
inherited

Compute the tensor of second derivatives of a finite element at the quadrature points of a cell. This function is the equivalent of the corresponding get_function_values() function (see there for more information) but evaluates the finite element field's second derivatives instead of its value.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. There is a corresponding function of the same name for vector-valued finite elements.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]hessiansThe Hessians of the function specified by fe_function at the quadrature points of the current cell. The Hessians are computed in real space (as opposed to on the unit cell). The object is assume to already have the correct size. The data type stored by this output vector must be what you get when you multiply the Hessians of shape function times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function argument).
Postcondition
hessians[q] will contain the Hessian of the field described by fe_function at the \(q\)th quadrature point. hessians[q][i][j] represents the \((i,j)\)th component of the matrix of second derivatives at quadrature point \(q\).
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DoFHandler object with which this FEValues object was last initialized.
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3606 of file fe_values.cc.

◆ get_function_hessians() [2/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_hessians ( const InputVector &  fe_function,
std::vector< std::vector< Tensor< 2, spacedim, typename InputVector::value_type > > > &  hessians,
const bool  quadrature_points_fastest = false 
) const
inherited

This function does the same as the other get_function_hessians(), but applied to multi-component (vector-valued) elements. The meaning of the arguments is as explained there.

Postcondition
hessians[q] is a vector of Hessians of the field described by fe_function at the \(q\)th quadrature point. The size of the vector accessed by hessians[q] equals the number of components of the finite element, i.e. hessians[q][c] returns the Hessian of the \(c\)th vector component at the \(q\)th quadrature point. Consequently, hessians[q][c][i][j] is the \((i,j)\)th component of the matrix of second derivatives of the \(c\)th vector component of the vector field at quadrature point \(q\) of the current cell.
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3656 of file fe_values.cc.

◆ get_function_hessians() [3/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_hessians ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
std::vector< Tensor< 2, spacedim, typename InputVector::value_type > > &  hessians 
) const
inherited

This function relates to the first of the get_function_hessians() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3631 of file fe_values.cc.

◆ get_function_hessians() [4/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_hessians ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
ArrayView< std::vector< Tensor< 2, spacedim, typename InputVector::value_type > > >  hessians,
const bool  quadrature_points_fastest = false 
) const
inherited

This function relates to the first of the get_function_hessians() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3686 of file fe_values.cc.

◆ get_function_laplacians() [1/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
std::vector< typename InputVector::value_type > &  laplacians 
) const
inherited

Compute the (scalar) Laplacian (i.e. the trace of the tensor of second derivatives) of a finite element at the quadrature points of a cell. This function is the equivalent of the corresponding get_function_values() function (see there for more information) but evaluates the finite element field's second derivatives instead of its value.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. There is a corresponding function of the same name for vector-valued finite elements.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]laplaciansThe Laplacians of the function specified by fe_function at the quadrature points of the current cell. The Laplacians are computed in real space (as opposed to on the unit cell). The object is assume to already have the correct size. The data type stored by this output vector must be what you get when you multiply the Laplacians of shape function times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function argument). This happens to be equal to the type of the elements of the input vector.
Postcondition
laplacians[q] will contain the Laplacian of the field described by fe_function at the \(q\)th quadrature point.
For each component of the output vector, there holds laplacians[q]=trace(hessians[q]), where hessians would be the output of the get_function_hessians() function.
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DoFHandler object with which this FEValues object was last initialized.
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3717 of file fe_values.cc.

◆ get_function_laplacians() [2/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
std::vector< Vector< typename InputVector::value_type > > &  laplacians 
) const
inherited

This function does the same as the other get_function_laplacians(), but applied to multi-component (vector-valued) elements. The meaning of the arguments is as explained there.

Postcondition
laplacians[q] is a vector of Laplacians of the field described by fe_function at the \(q\)th quadrature point. The size of the vector accessed by laplacians[q] equals the number of components of the finite element, i.e. laplacians[q][c] returns the Laplacian of the \(c\)th vector component at the \(q\)th quadrature point.
For each component of the output vector, there holds laplacians[q][c]=trace(hessians[q][c]), where hessians would be the output of the get_function_hessians() function.
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3765 of file fe_values.cc.

◆ get_function_laplacians() [3/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
std::vector< typename InputVector::value_type > &  laplacians 
) const
inherited

This function relates to the first of the get_function_laplacians() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3741 of file fe_values.cc.

◆ get_function_laplacians() [4/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
std::vector< Vector< typename InputVector::value_type > > &  laplacians 
) const
inherited

This function relates to the first of the get_function_laplacians() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3791 of file fe_values.cc.

◆ get_function_laplacians() [5/5]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_laplacians ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
std::vector< std::vector< typename InputVector::value_type > > &  laplacians,
const bool  quadrature_points_fastest = false 
) const
inherited

This function relates to the first of the get_function_laplacians() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_hessians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3822 of file fe_values.cc.

◆ get_function_third_derivatives() [1/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_third_derivatives ( const InputVector &  fe_function,
std::vector< Tensor< 3, spacedim, typename InputVector::value_type > > &  third_derivatives 
) const
inherited

Compute the tensor of third derivatives of a finite element at the quadrature points of a cell. This function is the equivalent of the corresponding get_function_values() function (see there for more information) but evaluates the finite element field's third derivatives instead of its value.

This function may only be used if the finite element in use is a scalar one, i.e. has only one vector component. There is a corresponding function of the same name for vector-valued finite elements.

Parameters
[in]fe_functionA vector of values that describes (globally) the finite element function that this function should evaluate at the quadrature points of the current cell.
[out]third_derivativesThe third derivatives of the function specified by fe_function at the quadrature points of the current cell. The third derivatives are computed in real space (as opposed to on the unit cell). The object is assumed to already have the correct size. The data type stored by this output vector must be what you get when you multiply the third derivatives of shape function times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function argument).
Postcondition
third_derivatives[q] will contain the third derivatives of the field described by fe_function at the \(q\)th quadrature point. third_derivatives[q][i][j][k] represents the \((i,j,k)\)th component of the 3rd order tensor of third derivatives at quadrature point \(q\).
Note
The actual data type of the input vector may be either a Vector<T>, BlockVector<T>, or one of the PETSc or Trilinos vector wrapper classes. It represents a global vector of DoF values associated with the DoFHandler object with which this FEValues object was last initialized.
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3852 of file fe_values.cc.

◆ get_function_third_derivatives() [2/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_third_derivatives ( const InputVector &  fe_function,
std::vector< std::vector< Tensor< 3, spacedim, typename InputVector::value_type > > > &  third_derivatives,
const bool  quadrature_points_fastest = false 
) const
inherited

This function does the same as the other get_function_third_derivatives(), but applied to multi-component (vector- valued) elements. The meaning of the arguments is as explained there.

Postcondition
third_derivatives[q] is a vector of third derivatives of the field described by fe_function at the \(q\)th quadrature point. The size of the vector accessed by third_derivatives[q] equals the number of components of the finite element, i.e. third_derivatives[q][c] returns the third derivative of the \(c\)th vector component at the \(q\)th quadrature point. Consequently, third_derivatives[q][c][i][j][k] is the \((i,j,k)\)th component of the tensor of third derivatives of the \(c\)th vector component of the vector field at quadrature point \(q\) of the current cell.
Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3904 of file fe_values.cc.

◆ get_function_third_derivatives() [3/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_third_derivatives ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
std::vector< Tensor< 3, spacedim, typename InputVector::value_type > > &  third_derivatives 
) const
inherited

This function relates to the first of the get_function_third_derivatives() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3878 of file fe_values.cc.

◆ get_function_third_derivatives() [4/4]

template<int dim, int spacedim>
template<class InputVector >
void FEValuesBase< dim, spacedim >::get_function_third_derivatives ( const InputVector &  fe_function,
const ArrayView< const types::global_dof_index > &  indices,
ArrayView< std::vector< Tensor< 3, spacedim, typename InputVector::value_type > > >  third_derivatives,
const bool  quadrature_points_fastest = false 
) const
inherited

This function relates to the first of the get_function_third_derivatives() function above in the same way as the get_function_values() with similar arguments relates to the first of the get_function_values() functions. See there for more information.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3934 of file fe_values.cc.

◆ dof_indices()

template<int dim, int spacedim>
std_cxx20::ranges::iota_view< unsigned int, unsigned int > FEValuesBase< dim, spacedim >::dof_indices ( ) const
inherited

Return an object that can be thought of as an array containing all indices from zero (inclusive) to dofs_per_cell (exclusive). This allows one to write code using range-based for loops of the following kind:

FEValues<dim> fe_values (...);
FullMatrix<double> cell_matrix (...);
for (auto &cell : dof_handler.active_cell_iterators())
{
cell_matrix = 0;
fe_values.reinit(cell);
for (const auto q : fe_values.quadrature_point_indices())
for (const auto i : fe_values.dof_indices())
for (const auto j : fe_values.dof_indices())
cell_matrix(i,j) += ...; // Do something for DoF indices (i,j)
// at quadrature point q
}

Here, we are looping over all degrees of freedom on all cells, with i and j taking on all valid indices for cell degrees of freedom, as defined by the finite element passed to fe_values.

◆ dof_indices_starting_at()

template<int dim, int spacedim>
std_cxx20::ranges::iota_view< unsigned int, unsigned int > FEValuesBase< dim, spacedim >::dof_indices_starting_at ( const unsigned int  start_dof_index) const
inherited

Return an object that can be thought of as an array containing all indices from start_dof_index (inclusive) to dofs_per_cell (exclusive). This allows one to write code using range-based for loops of the following kind:

FEValues<dim> fe_values (...);
FullMatrix<double> cell_matrix (...);
for (auto &cell : dof_handler.active_cell_iterators())
{
cell_matrix = 0;
fe_values.reinit(cell);
for (const auto q : fe_values.quadrature_point_indices())
for (const auto i : fe_values.dof_indices())
for (const auto j : fe_values.dof_indices_starting_at(i))
cell_matrix(i,j) += ...; // Do something for DoF indices (i,j)
// at quadrature point q
}

Here, we are looping over all local degrees of freedom on all cells, with i taking on all valid indices for cell degrees of freedom, as defined by the finite element passed to fe_values, and j taking on a specified subset of i's range, starting at i itself and ending at the number of cell degrees of freedom. In this way, we can construct the upper half and the diagonal of a stiffness matrix contribution (assuming it is symmetric, and that only one half of it needs to be computed), for example.

Note
If the start_dof_index is equal to the number of DoFs in the cell, then the returned index range is empty.

◆ dof_indices_ending_at()

template<int dim, int spacedim>
std_cxx20::ranges::iota_view< unsigned int, unsigned int > FEValuesBase< dim, spacedim >::dof_indices_ending_at ( const unsigned int  end_dof_index) const
inherited

Return an object that can be thought of as an array containing all indices from zero (inclusive) to end_dof_index (inclusive). This allows one to write code using range-based for loops of the following kind:

FEValues<dim> fe_values (...);
FullMatrix<double> cell_matrix (...);
for (auto &cell : dof_handler.active_cell_iterators())
{
cell_matrix = 0;
fe_values.reinit(cell);
for (const auto q : fe_values.quadrature_point_indices())
for (const auto i : fe_values.dof_indices())
for (const auto j : fe_values.dof_indices_ending_at(i))
cell_matrix(i,j) += ...; // Do something for DoF indices (i,j)
// at quadrature point q
}

Here, we are looping over all local degrees of freedom on all cells, with i taking on all valid indices for cell degrees of freedom, as defined by the finite element passed to fe_values, and j taking on a specified subset of i's range, starting at zero and ending at i itself. In this way, we can construct the lower half and the diagonal of a stiffness matrix contribution (assuming it is symmetric, and that only one half of it needs to be computed), for example.

Note
If the end_dof_index is equal to zero, then the returned index range is empty.

◆ quadrature_point_indices()

template<int dim, int spacedim>
std_cxx20::ranges::iota_view< unsigned int, unsigned int > FEValuesBase< dim, spacedim >::quadrature_point_indices ( ) const
inherited

Return an object that can be thought of as an array containing all indices from zero to n_quadrature_points. This allows to write code using range-based for loops of the following kind:

FEValues<dim> fe_values (...);
for (auto &cell : dof_handler.active_cell_iterators())
{
fe_values.reinit(cell);
for (const auto q_point : fe_values.quadrature_point_indices())
... do something at the quadrature point ...
}
const hp::QCollection< dim - 1 > quadrature
Definition: fe_values.h:4284

Here, we are looping over all quadrature points on all cells, with q_point taking on all valid indices for quadrature points, as defined by the quadrature rule passed to fe_values.

See also
deal.II and Modern C++ standards

◆ quadrature_point()

template<int dim, int spacedim>
const Point< spacedim > & FEValuesBase< dim, spacedim >::quadrature_point ( const unsigned int  q) const
inherited

Position of the qth quadrature point in real space.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_quadrature_points flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_quadrature_points()

template<int dim, int spacedim>
const std::vector< Point< spacedim > > & FEValuesBase< dim, spacedim >::get_quadrature_points ( ) const
inherited

Return a reference to the vector of quadrature points in real space.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_quadrature_points flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ JxW()

template<int dim, int spacedim>
double FEValuesBase< dim, spacedim >::JxW ( const unsigned int  quadrature_point) const
inherited

Mapped quadrature weight. If this object refers to a volume evaluation (i.e. the derived class is of type FEValues), then this is the Jacobi determinant times the weight of the *ith unit quadrature point.

For surface evaluations (i.e. classes FEFaceValues or FESubfaceValues), it is the mapped surface element times the weight of the quadrature point.

You can think of the quantity returned by this function as the volume or surface element \(dx, ds\) in the integral that we implement here by quadrature.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_JxW_values flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_JxW_values()

template<int dim, int spacedim>
const std::vector< double > & FEValuesBase< dim, spacedim >::get_JxW_values ( ) const
inherited

Return a reference to the array holding the values returned by JxW().

◆ jacobian()

template<int dim, int spacedim>
const DerivativeForm< 1, dim, spacedim > & FEValuesBase< dim, spacedim >::jacobian ( const unsigned int  quadrature_point) const
inherited

Return the Jacobian of the transformation at the specified quadrature point, i.e. \(J_{ij}=dx_i/d\hat x_j\)

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_jacobians()

template<int dim, int spacedim>
const std::vector< DerivativeForm< 1, dim, spacedim > > & FEValuesBase< dim, spacedim >::get_jacobians ( ) const
inherited

Return a reference to the array holding the values returned by jacobian().

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ jacobian_grad()

template<int dim, int spacedim>
const DerivativeForm< 2, dim, spacedim > & FEValuesBase< dim, spacedim >::jacobian_grad ( const unsigned int  quadrature_point) const
inherited

Return the second derivative of the transformation from unit to real cell, i.e. the first derivative of the Jacobian, at the specified quadrature point, i.e. \(G_{ijk}=dJ_{jk}/d\hat x_i\).

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_grads flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_jacobian_grads()

template<int dim, int spacedim>
const std::vector< DerivativeForm< 2, dim, spacedim > > & FEValuesBase< dim, spacedim >::get_jacobian_grads ( ) const
inherited

Return a reference to the array holding the values returned by jacobian_grads().

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_grads flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ jacobian_pushed_forward_grad()

template<int dim, int spacedim>
const Tensor< 3, spacedim > & FEValuesBase< dim, spacedim >::jacobian_pushed_forward_grad ( const unsigned int  quadrature_point) const
inherited

Return the second derivative of the transformation from unit to real cell, i.e. the first derivative of the Jacobian, at the specified quadrature point, pushed forward to the real cell coordinates, i.e. \(G_{ijk}=dJ_{iJ}/d\hat x_K (J_{jJ})^{-1} (J_{kK})^{-1}\).

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_pushed_forward_grads flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_jacobian_pushed_forward_grads()

template<int dim, int spacedim>
const std::vector< Tensor< 3, spacedim > > & FEValuesBase< dim, spacedim >::get_jacobian_pushed_forward_grads ( ) const
inherited

Return a reference to the array holding the values returned by jacobian_pushed_forward_grads().

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_pushed_forward_grads flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ jacobian_2nd_derivative()

template<int dim, int spacedim>
const DerivativeForm< 3, dim, spacedim > & FEValuesBase< dim, spacedim >::jacobian_2nd_derivative ( const unsigned int  quadrature_point) const
inherited

Return the third derivative of the transformation from unit to real cell, i.e. the second derivative of the Jacobian, at the specified quadrature point, i.e. \(G_{ijkl}=\frac{d^2J_{ij}}{d\hat x_k d\hat x_l}\).

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_2nd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_jacobian_2nd_derivatives()

template<int dim, int spacedim>
const std::vector< DerivativeForm< 3, dim, spacedim > > & FEValuesBase< dim, spacedim >::get_jacobian_2nd_derivatives ( ) const
inherited

Return a reference to the array holding the values returned by jacobian_2nd_derivatives().

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_2nd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ jacobian_pushed_forward_2nd_derivative()

template<int dim, int spacedim>
const Tensor< 4, spacedim > & FEValuesBase< dim, spacedim >::jacobian_pushed_forward_2nd_derivative ( const unsigned int  quadrature_point) const
inherited

Return the third derivative of the transformation from unit to real cell, i.e. the second derivative of the Jacobian, at the specified quadrature point, pushed forward to the real cell coordinates, i.e. \(G_{ijkl}=\frac{d^2J_{iJ}}{d\hat x_K d\hat x_L} (J_{jJ})^{-1} (J_{kK})^{-1}(J_{lL})^{-1}\).

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_pushed_forward_2nd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_jacobian_pushed_forward_2nd_derivatives()

template<int dim, int spacedim>
const std::vector< Tensor< 4, spacedim > > & FEValuesBase< dim, spacedim >::get_jacobian_pushed_forward_2nd_derivatives ( ) const
inherited

Return a reference to the array holding the values returned by jacobian_pushed_forward_2nd_derivatives().

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_pushed_forward_2nd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ jacobian_3rd_derivative()

template<int dim, int spacedim>
const DerivativeForm< 4, dim, spacedim > & FEValuesBase< dim, spacedim >::jacobian_3rd_derivative ( const unsigned int  quadrature_point) const
inherited

Return the fourth derivative of the transformation from unit to real cell, i.e. the third derivative of the Jacobian, at the specified quadrature point, i.e. \(G_{ijklm}=\frac{d^2J_{ij}}{d\hat x_k d\hat x_l d\hat x_m}\).

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_jacobian_3rd_derivatives()

template<int dim, int spacedim>
const std::vector< DerivativeForm< 4, dim, spacedim > > & FEValuesBase< dim, spacedim >::get_jacobian_3rd_derivatives ( ) const
inherited

Return a reference to the array holding the values returned by jacobian_3rd_derivatives().

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ jacobian_pushed_forward_3rd_derivative()

template<int dim, int spacedim>
const Tensor< 5, spacedim > & FEValuesBase< dim, spacedim >::jacobian_pushed_forward_3rd_derivative ( const unsigned int  quadrature_point) const
inherited

Return the fourth derivative of the transformation from unit to real cell, i.e. the third derivative of the Jacobian, at the specified quadrature point, pushed forward to the real cell coordinates, i.e. \(G_{ijklm}=\frac{d^3J_{iJ}}{d\hat x_K d\hat x_L d\hat x_M} (J_{jJ})^{-1} (J_{kK})^{-1} (J_{lL})^{-1} (J_{mM})^{-1}\).

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_pushed_forward_3rd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_jacobian_pushed_forward_3rd_derivatives()

template<int dim, int spacedim>
const std::vector< Tensor< 5, spacedim > > & FEValuesBase< dim, spacedim >::get_jacobian_pushed_forward_3rd_derivatives ( ) const
inherited

Return a reference to the array holding the values returned by jacobian_pushed_forward_3rd_derivatives().

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_jacobian_pushed_forward_2nd_derivatives flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ inverse_jacobian()

template<int dim, int spacedim>
const DerivativeForm< 1, spacedim, dim > & FEValuesBase< dim, spacedim >::inverse_jacobian ( const unsigned int  quadrature_point) const
inherited

Return the inverse Jacobian of the transformation at the specified quadrature point, i.e. \(J_{ij}=d\hat x_i/dx_j\)

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_inverse_jacobians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_inverse_jacobians()

template<int dim, int spacedim>
const std::vector< DerivativeForm< 1, spacedim, dim > > & FEValuesBase< dim, spacedim >::get_inverse_jacobians ( ) const
inherited

Return a reference to the array holding the values returned by inverse_jacobian().

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_inverse_jacobians flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ normal_vector()

template<int dim, int spacedim>
const Tensor< 1, spacedim > & FEValuesBase< dim, spacedim >::normal_vector ( const unsigned int  i) const
inherited

Return the normal vector at a quadrature point. If you call this function for a face (i.e., when using a FEFaceValues or FESubfaceValues object), then this function returns the outward normal vector to the cell at the ith quadrature point of the face.

In contrast, if you call this function for a cell of codimension one (i.e., when using a FEValues<dim,spacedim> object with spacedim>dim), then this function returns the normal vector to the cell – in other words, an approximation to the normal vector to the manifold in which the triangulation is embedded. There are of course two normal directions to a manifold in that case, and this function returns the "up" direction as induced by the numbering of the vertices.

The length of the vector is normalized to one.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_normal_vectors flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

◆ get_normal_vectors()

template<int dim, int spacedim>
const std::vector< Tensor< 1, spacedim > > & FEValuesBase< dim, spacedim >::get_normal_vectors
inherited

Return the normal vectors at all quadrature points represented by this object. See the normal_vector() function for what the normal vectors represent.

Note
For this function to work properly, the underlying FEValues, FEFaceValues, or FESubfaceValues object on which you call it must have computed the information you are requesting. To do so, the update_normal_vectors flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information.

Definition at line 3973 of file fe_values.cc.

◆ operator[]() [1/4]

template<int dim, int spacedim>
const FEValuesViews::Scalar< dim, spacedim > & FEValuesBase< dim, spacedim >::operator[] ( const FEValuesExtractors::Scalar scalar) const
inherited

Create a view of the current FEValues object that represents a particular scalar component of the possibly vector-valued finite element. The concept of views is explained in the documentation of the namespace FEValuesViews and in particular in the Handling vector valued problems module.

◆ operator[]() [2/4]

template<int dim, int spacedim>
const FEValuesViews::Vector< dim, spacedim > & FEValuesBase< dim, spacedim >::operator[] ( const FEValuesExtractors::Vector vector) const
inherited

Create a view of the current FEValues object that represents a set of dim scalar components (i.e. a vector) of the vector-valued finite element. The concept of views is explained in the documentation of the namespace FEValuesViews and in particular in the Handling vector valued problems module.

◆ operator[]() [3/4]

template<int dim, int spacedim>
const FEValuesViews::SymmetricTensor< 2, dim, spacedim > & FEValuesBase< dim, spacedim >::operator[] ( const FEValuesExtractors::SymmetricTensor< 2 > &  tensor) const
inherited

Create a view of the current FEValues object that represents a set of (dim*dim + dim)/2 scalar components (i.e. a symmetric 2nd order tensor) of the vector-valued finite element. The concept of views is explained in the documentation of the namespace FEValuesViews and in particular in the Handling vector valued problems module.

◆ operator[]() [4/4]

template<int dim, int spacedim>
const FEValuesViews::Tensor< 2, dim, spacedim > & FEValuesBase< dim, spacedim >::operator[] ( const FEValuesExtractors::Tensor< 2 > &  tensor) const
inherited

Create a view of the current FEValues object that represents a set of (dim*dim) scalar components (i.e. a 2nd order tensor) of the vector-valued finite element. The concept of views is explained in the documentation of the namespace FEValuesViews and in particular in the Handling vector valued problems module.

◆ get_mapping()

template<int dim, int spacedim>
const Mapping< dim, spacedim > & FEValuesBase< dim, spacedim >::get_mapping ( ) const
inherited

Constant reference to the selected mapping object.

◆ get_fe()

template<int dim, int spacedim>
const FiniteElement< dim, spacedim > & FEValuesBase< dim, spacedim >::get_fe ( ) const
inherited

Constant reference to the selected finite element object.

◆ get_update_flags()

template<int dim, int spacedim>
UpdateFlags FEValuesBase< dim, spacedim >::get_update_flags ( ) const
inherited

Return the update flags set for this object.

◆ get_cell()

template<int dim, int spacedim>
const Triangulation< dim, spacedim >::cell_iterator FEValuesBase< dim, spacedim >::get_cell
inherited

Return a triangulation iterator to the current cell.

Definition at line 3964 of file fe_values.cc.

◆ get_cell_similarity()

template<int dim, int spacedim>
CellSimilarity::Similarity FEValuesBase< dim, spacedim >::get_cell_similarity
inherited

Return the relation of the current cell to the previous cell. This allows re-use of some cell data (like local matrices for equations with constant coefficients) if the result is CellSimilarity::translation.

Definition at line 4142 of file fe_values.cc.

◆ invalidate_present_cell()

template<int dim, int spacedim>
void FEValuesBase< dim, spacedim >::invalidate_present_cell
protectedinherited

A function that is connected to the triangulation in order to reset the stored 'present_cell' iterator to an invalid one whenever the triangulation is changed and the iterator consequently becomes invalid.

Definition at line 4026 of file fe_values.cc.

◆ maybe_invalidate_previous_present_cell()

template<int dim, int spacedim>
void FEValuesBase< dim, spacedim >::maybe_invalidate_previous_present_cell ( const typename Triangulation< dim, spacedim >::cell_iterator &  cell)
protectedinherited

This function is called by the various reinit() functions in derived classes. Given the cell indicated by the argument, test whether we have to throw away the previously stored present_cell argument because it would require us to compare cells from different triangulations. In checking all this, also make sure that we have tria_listener connected to the triangulation to which we will set present_cell right after calling this function.

Definition at line 4044 of file fe_values.cc.

◆ compute_update_flags()

template<int dim, int spacedim>
UpdateFlags FEValuesBase< dim, spacedim >::compute_update_flags ( const UpdateFlags  update_flags) const
protectedinherited

Initialize some update flags. Called from the initialize functions of derived classes, which are in turn called from their constructors.

Basically, this function finds out using the finite element and mapping object already stored which flags need to be set to compute everything the user wants, as expressed through the flags passed as argument.

Definition at line 4007 of file fe_values.cc.

◆ check_cell_similarity()

template<int dim, int spacedim>
void FEValuesBase< dim, spacedim >::check_cell_similarity ( const typename Triangulation< dim, spacedim >::cell_iterator &  cell)
inlineprotectedinherited

A function that checks whether the new cell is similar to the one previously used. Then, a significant amount of the data can be reused, e.g. the derivatives of the basis functions in real space, shape_grad.

Definition at line 4087 of file fe_values.cc.

Member Data Documentation

◆ integral_dimension

template<int dim, int spacedim = dim>
constexpr unsigned int FEFaceValuesBase< dim, spacedim >::integral_dimension = dim - 1
staticconstexpr

Dimension of the object over which we integrate. For the present class, this is equal to dim-1.

Definition at line 4190 of file fe_values.h.

◆ present_face_no

template<int dim, int spacedim = dim>
unsigned int FEFaceValuesBase< dim, spacedim >::present_face_no
protected

Number of the face selected the last time the reinit() function was called.

Definition at line 4273 of file fe_values.h.

◆ present_face_index

template<int dim, int spacedim = dim>
unsigned int FEFaceValuesBase< dim, spacedim >::present_face_index
protected

Index of the face selected the last time the reinit() function was called.

Definition at line 4279 of file fe_values.h.

◆ quadrature

template<int dim, int spacedim = dim>
const hp::QCollection<dim - 1> FEFaceValuesBase< dim, spacedim >::quadrature
protected

Store a copy of the quadrature formula here.

Definition at line 4284 of file fe_values.h.

◆ dimension

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::dimension = dim
staticconstexprinherited

Dimension in which this object operates.

Definition at line 2418 of file fe_values.h.

◆ space_dimension

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::space_dimension = spacedim
staticconstexprinherited

Dimension of the space in which this object operates.

Definition at line 2423 of file fe_values.h.

◆ n_quadrature_points

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::n_quadrature_points
inherited

Number of quadrature points of the current object. Its value is initialized by the value of max_n_quadrature_points and is updated, e.g., if FEFaceValues::reinit() is called for a new cell/face.

Note
The default value equals to the value of max_n_quadrature_points.

Definition at line 2432 of file fe_values.h.

◆ max_n_quadrature_points

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::max_n_quadrature_points
inherited

Maximum number of quadrature points. This value might be different from n_quadrature_points, e.g., if a QCollection with different face quadrature rules has been passed to initialize FEFaceValues.

This is mostly useful to initialize arrays to allocate the maximum amount of memory that may be used when re-sizing later on to a the current number of quadrature points given by n_quadrature_points.

Definition at line 2443 of file fe_values.h.

◆ dofs_per_cell

template<int dim, int spacedim>
const unsigned int FEValuesBase< dim, spacedim >::dofs_per_cell
inherited

Number of shape functions per cell. If we use this base class to evaluate a finite element on faces of cells, this is still the number of degrees of freedom per cell, not per face.

Definition at line 2450 of file fe_values.h.

◆ present_cell

template<int dim, int spacedim>
CellIteratorContainer FEValuesBase< dim, spacedim >::present_cell
protectedinherited

Store the cell selected last time the reinit() function was called. This is necessary for the get_function_* functions as well as the functions of same name in the extractor classes.

Definition at line 3894 of file fe_values.h.

◆ tria_listener_refinement

template<int dim, int spacedim>
boost::signals2::connection FEValuesBase< dim, spacedim >::tria_listener_refinement
protectedinherited

A signal connection we use to ensure we get informed whenever the triangulation changes by refinement. We need to know about that because it invalidates all cell iterators and, as part of that, the 'present_cell' iterator we keep around between subsequent calls to reinit() in order to compute the cell similarity.

Definition at line 3903 of file fe_values.h.

◆ tria_listener_mesh_transform

template<int dim, int spacedim>
boost::signals2::connection FEValuesBase< dim, spacedim >::tria_listener_mesh_transform
protectedinherited

A signal connection we use to ensure we get informed whenever the triangulation changes by mesh transformations. We need to know about that because it invalidates all cell iterators and, as part of that, the 'present_cell' iterator we keep around between subsequent calls to reinit() in order to compute the cell similarity.

Definition at line 3912 of file fe_values.h.

◆ mapping

template<int dim, int spacedim>
const SmartPointer<const Mapping<dim, spacedim>, FEValuesBase<dim, spacedim> > FEValuesBase< dim, spacedim >::mapping
protectedinherited

A pointer to the mapping object associated with this FEValues object.

Definition at line 3939 of file fe_values.h.

◆ mapping_data

template<int dim, int spacedim>
std::unique_ptr<typename Mapping<dim, spacedim>::InternalDataBase> FEValuesBase< dim, spacedim >::mapping_data
protectedinherited

A pointer to the internal data object of mapping, obtained from Mapping::get_data(), Mapping::get_face_data(), or Mapping::get_subface_data().

Definition at line 3947 of file fe_values.h.

◆ mapping_output

template<int dim, int spacedim>
::internal::FEValuesImplementation::MappingRelatedData<dim, spacedim> FEValuesBase< dim, spacedim >::mapping_output
protectedinherited

An object into which the Mapping::fill_fe_values() and similar functions place their output.

Definition at line 3954 of file fe_values.h.

◆ fe

template<int dim, int spacedim>
const SmartPointer<const FiniteElement<dim, spacedim>, FEValuesBase<dim, spacedim> > FEValuesBase< dim, spacedim >::fe
protectedinherited

A pointer to the finite element object associated with this FEValues object.

Definition at line 3963 of file fe_values.h.

◆ fe_data

template<int dim, int spacedim>
std::unique_ptr<typename FiniteElement<dim, spacedim>::InternalDataBase> FEValuesBase< dim, spacedim >::fe_data
protectedinherited

A pointer to the internal data object of finite element, obtained from FiniteElement::get_data(), Mapping::get_face_data(), or FiniteElement::get_subface_data().

Definition at line 3971 of file fe_values.h.

◆ finite_element_output

template<int dim, int spacedim>
::internal::FEValuesImplementation::FiniteElementRelatedData<dim, spacedim> FEValuesBase< dim, spacedim >::finite_element_output
protectedinherited

An object into which the FiniteElement::fill_fe_values() and similar functions place their output.

Definition at line 3979 of file fe_values.h.

◆ update_flags

template<int dim, int spacedim>
UpdateFlags FEValuesBase< dim, spacedim >::update_flags
protectedinherited

Original update flags handed to the constructor of FEValues.

Definition at line 3985 of file fe_values.h.

◆ cell_similarity

template<int dim, int spacedim>
CellSimilarity::Similarity FEValuesBase< dim, spacedim >::cell_similarity
protectedinherited

An enum variable that can store different states of the current cell in comparison to the previously visited cell. If wanted, additional states can be checked here and used in one of the methods used during reinit.

Definition at line 4003 of file fe_values.h.

◆ fe_values_views_cache

template<int dim, int spacedim>
::internal::FEValuesViews::Cache<dim, spacedim> FEValuesBase< dim, spacedim >::fe_values_views_cache
privateinherited

A cache for all possible FEValuesViews objects.

Definition at line 4018 of file fe_values.h.


The documentation for this class was generated from the following file: