Reference documentation for deal.II version 9.4.1
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Private Attributes | List of all members
DiagonalMatrix< VectorType > Class Template Reference

#include <deal.II/lac/diagonal_matrix.h>

Inheritance diagram for DiagonalMatrix< VectorType >:
[legend]

Public Types

using value_type = typename VectorType::value_type
 
using size_type = typename VectorType::size_type
 

Public Member Functions

 DiagonalMatrix ()=default
 
 DiagonalMatrix (const VectorType &vec)
 
void reinit (const VectorType &vec)
 
void compress (VectorOperation::values operation)
 
VectorType & get_vector ()
 
void clear ()
 
const VectorType & get_vector () const
 
size_type m () const
 
size_type n () const
 
value_type operator() (const size_type i, const size_type j) const
 
value_typeoperator() (const size_type i, const size_type j)
 
template<typename number2 >
void add (const size_type row, const size_type n_cols, const size_type *col_indices, const number2 *values, const bool elide_zero_values=true, const bool col_indices_are_sorted=false)
 
void add (const size_type i, const size_type j, const value_type value)
 
void vmult (VectorType &dst, const VectorType &src) const
 
void Tvmult (VectorType &dst, const VectorType &src) const
 
void vmult_add (VectorType &dst, const VectorType &src) const
 
void Tvmult_add (VectorType &dst, const VectorType &src) const
 
value_type apply (const unsigned int index, const value_type src) const
 
void apply_to_subrange (const unsigned int begin_range, const unsigned int end_range, const value_type *src_pointer_to_current_range, value_type *dst_pointer_to_current_range) const
 
void initialize_dof_vector (VectorType &dst) const
 
std::size_t memory_consumption () const
 

Private Attributes

VectorType diagonal
 

Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 
void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 
static std::mutex mutex
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
void check_no_subscribers () const noexcept
 

Detailed Description

template<typename VectorType = Vector<double>>
class DiagonalMatrix< VectorType >

This class represents a n x n diagonal matrix based on a vector of size n. The matrix-vector products are realized by VectorType::scale, so the template vector class needs to provide a scale() method.

When using this class with ConstraintsMatrix::distribute_local_to_global(), the underlying vector needs to provide write access to all entries referenced by cells in an assembly process. This means that this class also needs access to ghost entries that are owned by other processors than the calling one. In practice this requires initialization of the vector as follows

diagonal_matrix.get_vector();
diagonal_vector.reinit(locally_owned_dofs,
locally_relevant_dofs,
mpi_communicator);
VectorType & get_vector()
void reinit(const size_type size, const bool omit_zeroing_entries=false)

Definition at line 48 of file diagonal_matrix.h.

Member Typedef Documentation

◆ value_type

template<typename VectorType = Vector<double>>
using DiagonalMatrix< VectorType >::value_type = typename VectorType::value_type

Definition at line 51 of file diagonal_matrix.h.

◆ size_type

template<typename VectorType = Vector<double>>
using DiagonalMatrix< VectorType >::size_type = typename VectorType::size_type

Definition at line 52 of file diagonal_matrix.h.

Constructor & Destructor Documentation

◆ DiagonalMatrix() [1/2]

template<typename VectorType = Vector<double>>
DiagonalMatrix< VectorType >::DiagonalMatrix ( )
default

Default constructor. The object needs still to be reinitialized to be usable.

◆ DiagonalMatrix() [2/2]

template<typename VectorType = Vector<double>>
DiagonalMatrix< VectorType >::DiagonalMatrix ( const VectorType &  vec)
explicit

Constructor initializing this object as a diagonal matrix of size n x n where n is the size of the vector, and with diagonal entries equal to the elements of vec.

Member Function Documentation

◆ reinit()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::reinit ( const VectorType &  vec)

Initialize with a given vector by copying the content of the vector vec.

◆ compress()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::compress ( VectorOperation::values  operation)

Compresses the data structures and allows the resulting matrix to be used in all other operations like matrix-vector products. This is a collective operation, i.e., it needs to be run on all processors when used in parallel.

◆ get_vector() [1/2]

template<typename VectorType = Vector<double>>
VectorType & DiagonalMatrix< VectorType >::get_vector ( )

Return a reference to the underlying vector for manipulation of the entries on the matrix diagonal.

◆ clear()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::clear ( )

Clear content of this object and reset to the state of default constructor.

◆ get_vector() [2/2]

template<typename VectorType = Vector<double>>
const VectorType & DiagonalMatrix< VectorType >::get_vector ( ) const

Return a read-only reference to the underlying vector.

◆ m()

template<typename VectorType = Vector<double>>
size_type DiagonalMatrix< VectorType >::m ( ) const

Number of rows of this matrix. This number corresponds to the size of the underlying vector.

◆ n()

template<typename VectorType = Vector<double>>
size_type DiagonalMatrix< VectorType >::n ( ) const

Number of columns of this matrix. This number corresponds to the size of the underlying vector.

◆ operator()() [1/2]

template<typename VectorType = Vector<double>>
value_type DiagonalMatrix< VectorType >::operator() ( const size_type  i,
const size_type  j 
) const

Read-only access to a value. This is restricted to the case where i==j due to the matrix storage.

If the vector representing the diagonal is distributed with MPI, not all of the indices i might actually be accessible. Refer to the method get_vector().locally_owned_elements() for the entries that actually are accessible.

◆ operator()() [2/2]

template<typename VectorType = Vector<double>>
value_type & DiagonalMatrix< VectorType >::operator() ( const size_type  i,
const size_type  j 
)

Read-write access to a value. This is restricted to the case where i==j due to the matrix storage.

If the vector representing the diagonal is distributed with MPI, not all of the indices i might actually be accessible. Refer to the method get_vector().locally_owned_elements() for the entries that actually are accessible.

◆ add() [1/2]

template<typename VectorType = Vector<double>>
template<typename number2 >
void DiagonalMatrix< VectorType >::add ( const size_type  row,
const size_type  n_cols,
const size_type col_indices,
const number2 *  values,
const bool  elide_zero_values = true,
const bool  col_indices_are_sorted = false 
)

Add an array of values given by values in the given global matrix row at columns specified by col_indices. Due to the storage of this matrix, entries are only added to the diagonal of the matrix. All other entries are ignored and no exception is thrown.

This function is for a consistent interface with the other matrix classes in deal.II and can be used in AffineConstraints::distribute_local_to_global to get exactly the same diagonal as when assembling into a sparse matrix.

◆ add() [2/2]

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::add ( const size_type  i,
const size_type  j,
const value_type  value 
)

Add value to the element (i,j).

Due to the storage of this matrix, entries are only added to the diagonal of the matrix. All other entries are ignored and no exception is thrown.

◆ vmult()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::vmult ( VectorType &  dst,
const VectorType &  src 
) const

Performs a matrix-vector multiplication with the given matrix.

◆ Tvmult()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::Tvmult ( VectorType &  dst,
const VectorType &  src 
) const

Performs a transpose matrix-vector multiplication with the given matrix. Since this represents a diagonal matrix, exactly the same as vmult().

◆ vmult_add()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::vmult_add ( VectorType &  dst,
const VectorType &  src 
) const

Adds the result of a matrix-vector multiplication into the destination vector dst. Needs to create a temporary vector, which makes performance slower than for vmult().

◆ Tvmult_add()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::Tvmult_add ( VectorType &  dst,
const VectorType &  src 
) const

Adds the result of a transpose matrix-vector multiplication into the destination vector dst. Needs to create a temporary vector, which makes performance slower than for Tvmult().

◆ apply()

template<typename VectorType = Vector<double>>
value_type DiagonalMatrix< VectorType >::apply ( const unsigned int  index,
const value_type  src 
) const

Apply the preconditioner to a single vector entry. Note that index of the unknown needs to be expressed by an MPI-local index as it would be accessed in the action on a vector.

◆ apply_to_subrange()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::apply_to_subrange ( const unsigned int  begin_range,
const unsigned int  end_range,
const value_type src_pointer_to_current_range,
value_type dst_pointer_to_current_range 
) const

Apply the preconditioner only to a subrange of elements in an array src, and store the result in another array dst, for compatibility with classes support vector operations on a slice of entries, such as SolverCG or PreconditionChebyshev. Note that the range indicates MPI-local indices as they would be accessed in the action on a vector. The pointers are supposed to point to the beginning of the given range.

◆ initialize_dof_vector()

template<typename VectorType = Vector<double>>
void DiagonalMatrix< VectorType >::initialize_dof_vector ( VectorType &  dst) const

Initialize vector dst to have the same size and partition as diagonal member of this class.

This is a part of the interface required by linear_operator().

◆ memory_consumption()

template<typename VectorType = Vector<double>>
std::size_t DiagonalMatrix< VectorType >::memory_consumption ( ) const

Return the memory consumption of this object.

Member Data Documentation

◆ diagonal

template<typename VectorType = Vector<double>>
VectorType DiagonalMatrix< VectorType >::diagonal
private

The stored vector.

Definition at line 242 of file diagonal_matrix.h.


The documentation for this class was generated from the following file: