Reference documentation for deal.II version 9.3.3
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Classes | Public Types | Public Member Functions | List of all members

#include <deal.II/lac/trilinos_precondition.h>

Inheritance diagram for TrilinosWrappers::PreconditionILU:
[legend]

Classes

struct  AdditionalData
 

Public Types

using size_type = ::types::global_dof_index
 

Public Member Functions

void initialize (const SparseMatrix &matrix, const AdditionalData &additional_data=AdditionalData())
 
void clear ()
 
MPI_Comm get_mpi_communicator () const
 
void transpose ()
 
virtual void vmult (MPI::Vector &dst, const MPI::Vector &src) const
 
virtual void vmult (::Vector< double > &dst, const ::Vector< double > &src) const
 
virtual void vmult (::LinearAlgebra::distributed::Vector< double > &dst, const ::LinearAlgebra::distributed::Vector< double > &src) const
 
virtual void Tvmult (MPI::Vector &dst, const MPI::Vector &src) const
 
virtual void Tvmult (::Vector< double > &dst, const ::Vector< double > &src) const
 
virtual void Tvmult (::LinearAlgebra::distributed::Vector< double > &dst, const ::LinearAlgebra::distributed::Vector< double > &src) const
 
Access to underlying Trilinos data
Epetra_Operatortrilinos_operator () const
 

Partitioners

IndexSet locally_owned_domain_indices () const
 
IndexSet locally_owned_range_indices () const
 
Teuchos::RCP< Epetra_Operatorpreconditioner
 
Epetra_MpiComm communicator
 
std::shared_ptr< Epetra_Map > vector_distributor
 
static ::ExceptionBaseExcNonMatchingMaps (std::string arg1)
 

Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 
static std::mutex mutex
 
void check_no_subscribers () const noexcept
 

Detailed Description

A wrapper class for an incomplete LU factorization (ILU(k)) preconditioner for Trilinos matrices. This preconditioner works both in serial and in parallel, depending on the matrix it is based on. In general, an incomplete factorization does not take all fill-in elements that would appear in a full factorization (that is the basis for a direct solve). Trilinos allows to set the amount of fill-in elements, governed by the additional data argument ilu_fill, so one can gradually choose between a factorization on the sparse matrix structure only (ilu_fill=0) to a full factorization (ilu_fill in the range of 10 to 50, depending on the spatial dimension of the PDE problem and the degree of the finite element basis functions; generally, more required fill-in elements require this parameter to be set to a higher integer value).

The AdditionalData data structure allows to set preconditioner options. See the documentation of the AdditionalData structure for details.

Note that a parallel application of the ILU preconditioner is actually a block-Jacobi preconditioner with block size equal to the local matrix size. Spoken more technically, this parallel operation is an additive Schwarz method with an ILU approximate solve as inner solver, based on the (outer) parallel partitioning.

Definition at line 969 of file trilinos_precondition.h.


The documentation for this class was generated from the following files: