Reference documentation for deal.II version 9.2.0
|
#include <deal.II/base/config.h>
#include <deal.II/base/types.h>
#include <cuComplex.h>
#include <cmath>
#include <complex>
#include <cstddef>
#include <type_traits>
#include <deal.II/differentiation/ad/adolc_math.h>
#include <adolc/adouble.h>
#include <Sacado.hpp>
Go to the source code of this file.
Namespaces | |
internal | |
numbers | |
Differentiation | |
Differentiation::AD | |
Differentiation::AD::internal | |
Macros | |
#define | DEAL_II_CUDA_HOST_DEV __host__ __device__ |
Functions | |
template<typename Number , std::size_t width> | |
::VectorizedArray< Number, width > | std::sqrt (const ::VectorizedArray< Number, width > &) |
template<typename Number , std::size_t width> | |
::VectorizedArray< Number, width > | std::abs (const ::VectorizedArray< Number, width > &) |
template<typename Number , std::size_t width> | |
::VectorizedArray< Number, width > | std::max (const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &) |
template<typename Number , std::size_t width> | |
::VectorizedArray< Number, width > | std::min (const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &) |
template<typename Number , size_t width> | |
::VectorizedArray< Number, width > | std::pow (const ::VectorizedArray< Number, width > &, const Number p) |
template<typename Number , size_t width> | |
::VectorizedArray< Number, width > | std::sin (const ::VectorizedArray< Number, width > &) |
template<typename Number , size_t width> | |
::VectorizedArray< Number, width > | std::cos (const ::VectorizedArray< Number, width > &) |
template<typename Number , size_t width> | |
::VectorizedArray< Number, width > | std::tan (const ::VectorizedArray< Number, width > &) |
template<typename Number , size_t width> | |
::VectorizedArray< Number, width > | std::exp (const ::VectorizedArray< Number, width > &) |
template<typename Number , size_t width> | |
::VectorizedArray< Number, width > | std::log (const ::VectorizedArray< Number, width > &) |
bool | numbers::is_finite (const double x) |
bool | numbers::is_finite (const std::complex< double > &x) |
bool | numbers::is_finite (const std::complex< float > &x) |
bool | numbers::is_finite (const std::complex< long double > &x) |
template<typename Number1 , typename Number2 > | |
constexpr bool | numbers::values_are_equal (const Number1 &value_1, const Number2 &value_2) |
template<typename Number1 , typename Number2 > | |
bool | numbers::values_are_not_equal (const Number1 &value_1, const Number2 &value_2) |
template<typename Number > | |
constexpr bool | numbers::value_is_zero (const Number &value) |
template<typename Number1 , typename Number2 > | |
bool | numbers::value_is_less_than (const Number1 &value_1, const Number2 &value_2) |
template<typename Number1 , typename Number2 > | |
bool | numbers::value_is_less_than_or_equal_to (const Number1 &value_1, const Number2 &value_2) |
template<typename Number1 , typename Number2 > | |
bool | numbers::value_is_greater_than (const Number1 &value_1, const Number2 &value_2) |
template<typename Number1 , typename Number2 > | |
bool | numbers::value_is_greater_than_or_equal_to (const Number1 &value_1, const Number2 &value_2) |
bool | numbers::is_nan (const double x) |
bool | numbers::values_are_equal (const adouble &value_1, const adouble &value_2) |
template<typename Number > | |
bool | numbers::values_are_equal (const adouble &value_1, const Number &value_2) |
template<typename Number > | |
bool | numbers::values_are_equal (const Number &value_1, const adouble &value_2) |
bool | numbers::value_is_less_than (const adouble &value_1, const adouble &value_2) |
template<typename Number > | |
bool | numbers::value_is_less_than (const adouble &value_1, const Number &value_2) |
template<typename Number > | |
bool | numbers::value_is_less_than (const Number &value_1, const adouble &value_2) |
Variables | |
static constexpr double | numbers::E = 2.7182818284590452354 |
static constexpr double | numbers::LOG2E = 1.4426950408889634074 |
static constexpr double | numbers::LOG10E = 0.43429448190325182765 |
static constexpr double | numbers::LN2 = 0.69314718055994530942 |
static constexpr double | numbers::LN10 = 2.30258509299404568402 |
static constexpr double | numbers::PI = 3.14159265358979323846 |
static constexpr double | numbers::PI_2 = 1.57079632679489661923 |
static constexpr double | numbers::PI_4 = 0.78539816339744830962 |
static constexpr double | numbers::SQRT2 = 1.41421356237309504880 |
static constexpr double | numbers::SQRT1_2 = 0.70710678118654752440 |
::VectorizedArray<Number, width> std::sqrt | ( | const ::VectorizedArray< Number, width > & | x | ) |
Compute the square root of a vectorized data field. The result is returned as vectorized array in the form {sqrt(x[0]), sqrt(x[1]), ..., sqrt(x[size()-1])}
.
Definition at line 5412 of file vectorization.h.
::VectorizedArray<Number, width> std::abs | ( | const ::VectorizedArray< Number, width > & | x | ) |
Compute the absolute value (modulus) of a vectorized data field. The result is returned as vectorized array in the form {abs(x[0]), abs(x[1]), ..., abs(x[size()-1])}
.
Definition at line 5450 of file vectorization.h.
::VectorizedArray<Number, width> std::max | ( | const ::VectorizedArray< Number, width > & | x, |
const ::VectorizedArray< Number, width > & | y | ||
) |
Compute the componentwise maximum of two vectorized data fields. The result is returned as vectorized array in the form {max(x[0],y[0]), max(x[1],y[1]), ...}
.
Definition at line 5466 of file vectorization.h.
::VectorizedArray<Number, width> std::min | ( | const ::VectorizedArray< Number, width > & | x, |
const ::VectorizedArray< Number, width > & | y | ||
) |
Compute the componentwise minimum of two vectorized data fields. The result is returned as vectorized array in the form {min(x[0],y[0]), min(x[1],y[1]), ...}
.
Definition at line 5483 of file vectorization.h.
::VectorizedArray<Number, width> std::pow | ( | const ::VectorizedArray< Number, width > & | x, |
const Number | p | ||
) |
Raises the given number x
to the power p
for a vectorized data field. The result is returned as vectorized array in the form {pow(x[0],p), pow(x[1],p), ..., pow(x[size()-1],p)}
.
Definition at line 5428 of file vectorization.h.
::VectorizedArray<Number, width> std::sin | ( | const ::VectorizedArray< Number, width > & | x | ) |
Compute the sine of a vectorized data field. The result is returned as vectorized array in the form {sin(x[0]), sin(x[1]), ..., sin(x[VectorizedArray::size()-1])}
.
Definition at line 5297 of file vectorization.h.
::VectorizedArray<Number, width> std::cos | ( | const ::VectorizedArray< Number, width > & | x | ) |
Compute the cosine of a vectorized data field. The result is returned as vectorized array in the form {cos(x[0]), cos(x[1]), ..., cos(x[size()-1])}
.
Definition at line 5324 of file vectorization.h.
::VectorizedArray<Number, width> std::tan | ( | const ::VectorizedArray< Number, width > & | x | ) |
Compute the tangent of a vectorized data field. The result is returned as vectorized array in the form {tan(x[0]), tan(x[1]), ..., tan(x[size()-1])}
.
Definition at line 5346 of file vectorization.h.
::VectorizedArray<Number, width> std::exp | ( | const ::VectorizedArray< Number, width > & | x | ) |
Compute the exponential of a vectorized data field. The result is returned as vectorized array in the form {exp(x[0]), exp(x[1]), ..., exp(x[size()-1])}
.
Definition at line 5368 of file vectorization.h.
::VectorizedArray<Number, width> std::log | ( | const ::VectorizedArray< Number, width > & | x | ) |
Compute the natural logarithm of a vectorized data field. The result is returned as vectorized array in the form {log(x[0]), log(x[1]), ..., log(x[size()-1])}
.
Definition at line 5390 of file vectorization.h.