Reference documentation for deal.II version 9.2.0
|
Local integrators related to elasticity problems. More...
Functions | |
template<int dim> | |
void | cell_matrix (FullMatrix< double > &M, const FEValuesBase< dim > &fe, const double factor=1.) |
template<int dim, typename number > | |
void | cell_residual (Vector< number > &result, const FEValuesBase< dim > &fe, const ArrayView< const std::vector< Tensor< 1, dim >>> &input, double factor=1.) |
template<int dim> | |
void | nitsche_matrix (FullMatrix< double > &M, const FEValuesBase< dim > &fe, double penalty, double factor=1.) |
template<int dim> | |
void | nitsche_tangential_matrix (FullMatrix< double > &M, const FEValuesBase< dim > &fe, double penalty, double factor=1.) |
template<int dim, typename number > | |
void | nitsche_residual (Vector< number > &result, const FEValuesBase< dim > &fe, const ArrayView< const std::vector< double >> &input, const ArrayView< const std::vector< Tensor< 1, dim >>> &Dinput, const ArrayView< const std::vector< double >> &data, double penalty, double factor=1.) |
template<int dim, typename number > | |
void | nitsche_tangential_residual (Vector< number > &result, const FEValuesBase< dim > &fe, const ArrayView< const std::vector< double >> &input, const ArrayView< const std::vector< Tensor< 1, dim >>> &Dinput, const ArrayView< const std::vector< double >> &data, double penalty, double factor=1.) |
template<int dim, typename number > | |
void | nitsche_residual_homogeneous (Vector< number > &result, const FEValuesBase< dim > &fe, const ArrayView< const std::vector< double >> &input, const ArrayView< const std::vector< Tensor< 1, dim >>> &Dinput, double penalty, double factor=1.) |
template<int dim> | |
void | ip_matrix (FullMatrix< double > &M11, FullMatrix< double > &M12, FullMatrix< double > &M21, FullMatrix< double > &M22, const FEValuesBase< dim > &fe1, const FEValuesBase< dim > &fe2, const double pen, const double int_factor=1., const double ext_factor=-1.) |
template<int dim, typename number > | |
void | ip_residual (Vector< number > &result1, Vector< number > &result2, const FEValuesBase< dim > &fe1, const FEValuesBase< dim > &fe2, const ArrayView< const std::vector< double >> &input1, const ArrayView< const std::vector< Tensor< 1, dim >>> &Dinput1, const ArrayView< const std::vector< double >> &input2, const ArrayView< const std::vector< Tensor< 1, dim >>> &Dinput2, double pen, double int_factor=1., double ext_factor=-1.) |
Local integrators related to elasticity problems.
|
inline |
The linear elasticity operator in weak form, namely double contraction of symmetric gradients.
\[ \int_Z \varepsilon(u): \varepsilon(v)\,dx \]
Definition at line 53 of file elasticity.h.
|
inline |
Vector-valued residual operator for linear elasticity in weak form
\[ - \int_Z \varepsilon(u): \varepsilon(v) \,dx \]
Definition at line 86 of file elasticity.h.
|
inline |
The matrix for the weak boundary condition of Nitsche type for linear elasticity:
\[ \int_F \Bigl(\gamma u \cdot v - n^T \epsilon(u) v - u \epsilon(v) n\Bigr)\;ds. \]
Definition at line 125 of file elasticity.h.
|
inline |
The matrix for the weak boundary condition of Nitsche type for the tangential displacement in linear elasticity:
\[ \int_F \Bigl(\gamma u_\tau \cdot v_\tau - n^T \epsilon(u_\tau) v_\tau - u_\tau^T \epsilon(v_\tau) n\Bigr)\;ds. \]
Definition at line 180 of file elasticity.h.
void LocalIntegrators::Elasticity::nitsche_residual | ( | Vector< number > & | result, |
const FEValuesBase< dim > & | fe, | ||
const ArrayView< const std::vector< double >> & | input, | ||
const ArrayView< const std::vector< Tensor< 1, dim >>> & | Dinput, | ||
const ArrayView< const std::vector< double >> & | data, | ||
double | penalty, | ||
double | factor = 1. |
||
) |
Weak boundary condition for the elasticity operator by Nitsche, namely on the face F the vector
\[ \int_F \Bigl(\gamma (u-g) \cdot v - n^T \epsilon(u) v - (u-g) \epsilon(v) n^T\Bigr)\;ds. \]
Here, u is the finite element function whose values and gradient are given in the arguments input
and Dinput
, respectively. g is the inhomogeneous boundary value in the argument data
. \(n\) is the outer normal vector and \(\gamma\) is the usual penalty parameter.
Definition at line 262 of file elasticity.h.
|
inline |
The weak boundary condition of Nitsche type for the tangential displacement in linear elasticity:
\[ \int_F \Bigl(\gamma (u_\tau-g_\tau) \cdot v_\tau - n^T \epsilon(u_\tau) v - (u_\tau-g_\tau) \epsilon(v_\tau) n\Bigr)\;ds. \]
Definition at line 314 of file elasticity.h.
void LocalIntegrators::Elasticity::nitsche_residual_homogeneous | ( | Vector< number > & | result, |
const FEValuesBase< dim > & | fe, | ||
const ArrayView< const std::vector< double >> & | input, | ||
const ArrayView< const std::vector< Tensor< 1, dim >>> & | Dinput, | ||
double | penalty, | ||
double | factor = 1. |
||
) |
Homogeneous weak boundary condition for the elasticity operator by Nitsche, namely on the face F the vector
\[ \int_F \Bigl(\gamma u \cdot v - n^T \epsilon(u) v - u \epsilon(v) n^T\Bigr)\;ds. \]
Here, u is the finite element function whose values and gradient are given in the arguments input
and Dinput
, respectively. \(n\) is the outer normal vector and \(\gamma\) is the usual penalty parameter.
Definition at line 395 of file elasticity.h.
|
inline |
The interior penalty flux for symmetric gradients.
Definition at line 440 of file elasticity.h.
void LocalIntegrators::Elasticity::ip_residual | ( | Vector< number > & | result1, |
Vector< number > & | result2, | ||
const FEValuesBase< dim > & | fe1, | ||
const FEValuesBase< dim > & | fe2, | ||
const ArrayView< const std::vector< double >> & | input1, | ||
const ArrayView< const std::vector< Tensor< 1, dim >>> & | Dinput1, | ||
const ArrayView< const std::vector< double >> & | input2, | ||
const ArrayView< const std::vector< Tensor< 1, dim >>> & | Dinput2, | ||
double | pen, | ||
double | int_factor = 1. , |
||
double | ext_factor = -1. |
||
) |
Elasticity residual term for the symmetric interior penalty method.
Definition at line 551 of file elasticity.h.