Reference documentation for deal.II version 9.2.0
|
Go to the source code of this file.
Classes | |
class | DerivativeForm< order, dim, spacedim, Number > |
Functions | |
template<int spacedim, int dim, typename Number > | |
Tensor< 1, spacedim, Number > | apply_transformation (const DerivativeForm< 1, dim, spacedim, Number > &grad_F, const Tensor< 1, dim, Number > &d_x) |
template<int spacedim, int dim, typename Number > | |
DerivativeForm< 1, spacedim, dim, Number > | apply_transformation (const DerivativeForm< 1, dim, spacedim, Number > &grad_F, const Tensor< 2, dim, Number > &D_X) |
template<int spacedim, int dim, typename Number > | |
Tensor< 2, spacedim, Number > | apply_transformation (const DerivativeForm< 1, dim, spacedim, Number > &DF1, const DerivativeForm< 1, dim, spacedim, Number > &DF2) |
template<int dim, int spacedim, typename Number > | |
DerivativeForm< 1, spacedim, dim, Number > | transpose (const DerivativeForm< 1, dim, spacedim, Number > &DF) |
|
inline |
One of the uses of DerivativeForm is to apply it as a linear transformation. This function returns \(\nabla \mathbf F(\mathbf x) \Delta \mathbf x\), which approximates the change in \(\mathbf F(\mathbf x)\) when \(\mathbf x\) is changed by the amount \(\Delta \mathbf x\)
\[ \nabla \mathbf F(\mathbf x) \; \Delta \mathbf x \approx \mathbf F(\mathbf x + \Delta \mathbf x) - \mathbf F(\mathbf x). \]
The transformation corresponds to
\[ [\text{result}]_{i_1,\dots,i_k} = i\sum_{j} \left[\nabla \mathbf F(\mathbf x)\right]_{i_1,\dots,i_k, j} \Delta x_j \]
in index notation and corresponds to \([\Delta \mathbf x] [\nabla \mathbf F(\mathbf x)]^T\) in matrix notation.
Definition at line 399 of file derivative_form.h.
|
inline |
Similar to the previous apply_transformation(). Each row of the result corresponds to one of the rows of D_X
transformed by grad_F
, equivalent to \(\text{D\_X} \, \text{grad\_F}^T\) in matrix notation.
Definition at line 421 of file derivative_form.h.
|
inline |
Similar to the previous apply_transformation(). In matrix notation, it computes \(DF2 \, DF1^{T}\). Moreover, the result of this operation \(\mathbf A\) can be interpreted as a metric tensor in \({\mathbb R}^\text{spacedim}\) which corresponds to the Euclidean metric tensor in \({\mathbb R}^\text{dim}\). For every pair of vectors \(\mathbf u, \mathbf v \in {\mathbb R}^\text{spacedim}\), we have:
\[ \mathbf u \cdot \mathbf A \mathbf v = \text{DF2}^{-1}(\mathbf u) \cdot \text{DF1}^{-1}(\mathbf v) \]
Definition at line 449 of file derivative_form.h.
|
inline |
Transpose of a rectangular DerivativeForm DF, mostly for compatibility reasons.
Definition at line 470 of file derivative_form.h.