Reference documentation for deal.II version 9.2.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Member Functions | Private Member Functions | List of all members
TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d > Class Template Reference

#include <deal.II/lac/tensor_product_matrix.h>

Inheritance diagram for TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >:
[legend]

Public Member Functions

 TensorProductMatrixSymmetricSum ()=default
 
 TensorProductMatrixSymmetricSum (const std::array< Table< 2, Number >, dim > &mass_matrix, const std::array< Table< 2, Number >, dim > &derivative_matrix)
 
 TensorProductMatrixSymmetricSum (const std::array< FullMatrix< Number >, dim > &mass_matrix, const std::array< FullMatrix< Number >, dim > &derivative_matrix)
 
 TensorProductMatrixSymmetricSum (const Table< 2, Number > &mass_matrix, const Table< 2, Number > &derivative_matrix)
 
void reinit (const std::array< Table< 2, Number >, dim > &mass_matrix, const std::array< Table< 2, Number >, dim > &derivative_matrix)
 
void reinit (const std::array< FullMatrix< Number >, dim > &mass_matrix, const std::array< FullMatrix< Number >, dim > &derivative_matrix)
 
void reinit (const Table< 2, Number > &mass_matrix, const Table< 2, Number > &derivative_matrix)
 
- Public Member Functions inherited from TensorProductMatrixSymmetricSumBase< dim, Number, -1 >
unsigned int m () const
 
unsigned int n () const
 
void vmult (const ArrayView< Number > &dst, const ArrayView< const Number > &src) const
 
void apply_inverse (const ArrayView< Number > &dst, const ArrayView< const Number > &src) const
 

Private Member Functions

template<typename MatrixArray >
void reinit_impl (MatrixArray &&mass_matrix, MatrixArray &&derivative_matrix)
 

Additional Inherited Members

- Public Types inherited from TensorProductMatrixSymmetricSumBase< dim, Number, -1 >
using value_type = Number
 
- Static Public Attributes inherited from TensorProductMatrixSymmetricSumBase< dim, Number, -1 >
static constexpr int n_rows_1d_static
 
- Protected Member Functions inherited from TensorProductMatrixSymmetricSumBase< dim, Number, -1 >
 TensorProductMatrixSymmetricSumBase ()=default
 
- Protected Attributes inherited from TensorProductMatrixSymmetricSumBase< dim, Number, -1 >
std::array< Table< 2, Number >, dim > mass_matrix
 
std::array< Table< 2, Number >, dim > derivative_matrix
 
std::array< AlignedVector< Number >, dim > eigenvalues
 
std::array< Table< 2, Number >, dim > eigenvectors
 

Detailed Description

template<int dim, typename Number, int n_rows_1d = -1>
class TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >

This is a special matrix class defined as the tensor product (or Kronecker product) of 1D matrices of the type

\begin{align*} L &= A_1 \otimes M_0 + M_1 \otimes A_0 \end{align*}

in 2D and

\begin{align*} L &= A_2 \otimes M_1 \otimes M_0 + M_2 \otimes A_1 \otimes M_0 + M_2 \otimes M_1 \otimes A_0 \end{align*}

in 3D. The typical application setting is a discretization of the Laplacian \(L\) on a Cartesian (axis-aligned) geometry, where it can be exactly represented by the Kronecker or tensor product of a 1D mass matrix \(M\) and a 1D Laplace matrix \(A\) in each tensor direction (due to symmetry \(M\) and \(A\) are the same in each dimension). The dimension of the resulting class is the product of the one-dimensional matrices.

This class implements two basic operations, namely the usual multiplication by a vector and the inverse. For both operations, fast tensorial techniques can be applied that implement the operator evaluation in \(\text{size}(M)^{d+1}\) arithmetic operations, considerably less than \(\text{size}(M)^{2d}\) for the naive forward transformation and \(\text{size}(M)^{3d}\) for setting up the inverse of \(L\).

Interestingly, the exact inverse of the matrix \(L\) can be found through tensor products due to an article by R. E. Lynch, J. R. Rice, D. H. Thomas, Direct solution of partial difference equations by tensor product methods, Numerische Mathematik 6, 185-199 from 1964,

\begin{align*} L^{-1} &= S_1 \otimes S_0 (\Lambda_1 \otimes I + I \otimes \Lambda_0)^{-1} S_1^\mathrm T \otimes S_0^\mathrm T, \end{align*}

where \(S_d\) is the matrix of eigenvectors to the generalized eigenvalue problem in the given tensor direction \(d\):

\begin{align*} A_d s &= \lambda M_d s, d = 0, \quad \ldots,\mathrm{dim}, \end{align*}

and \(\Lambda_d\) is the diagonal matrix representing the generalized eigenvalues \(\lambda\). Note that the vectors \(s\) are such that they simultaneously diagonalize \(A_d\) and \(M_d\), i.e. \(S_d^{\mathrm T} A_d S_d = \Lambda_d\) and \(S_d^{\mathrm T} M_d S_d = I\). This method of matrix inversion is called fast diagonalization method.

This class requires LAPACK support.

Note that this class allows for two modes of usage. The first is a use case with run time constants for the matrix dimensions that is achieved by setting the optional template parameter n_rows_1d to -1. The second mode of usage that is faster allows to set the template parameter as a compile time constant, giving significantly faster code in particular for small sizes of the matrix.

Template Parameters
dimDimension of the problem. Currently, 1D, 2D, and 3D codes are implemented.
NumberArithmetic type of the underlying array elements. Note that the underlying LAPACK implementation supports only float and double numbers, so only these two types are currently supported by the generic class. Nevertheless, a template specialization for the vectorized types VectorizedArray<float> and VectorizedArray<double> exists. This is necessary to perform LAPACK calculations for each vectorization lane, i.e. for the supported float and double numbers.
n_rows_1dCompile-time number of rows of 1D matrices (only valid if the number of rows and columns coincide for each dimension). By default at -1, which means that the number of rows is determined at run-time by means of the matrices passed to the reinit() function.
Author
Martin Kronbichler and Julius Witte, 2017

Definition at line 242 of file tensor_product_matrix.h.

Constructor & Destructor Documentation

◆ TensorProductMatrixSymmetricSum() [1/4]

template<int dim, typename Number , int n_rows_1d = -1>
TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >::TensorProductMatrixSymmetricSum ( )
default

Default constructor.

◆ TensorProductMatrixSymmetricSum() [2/4]

template<int dim, typename Number , int n_rows_1d = -1>
TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >::TensorProductMatrixSymmetricSum ( const std::array< Table< 2, Number >, dim > &  mass_matrix,
const std::array< Table< 2, Number >, dim > &  derivative_matrix 
)

Constructor that is equivalent to the empty constructor and immediately calling reinit(const std::array<Table<2,Number>, dim>&,const std::array<Table<2,Number>, dim>&).

◆ TensorProductMatrixSymmetricSum() [3/4]

template<int dim, typename Number , int n_rows_1d = -1>
TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >::TensorProductMatrixSymmetricSum ( const std::array< FullMatrix< Number >, dim > &  mass_matrix,
const std::array< FullMatrix< Number >, dim > &  derivative_matrix 
)

Constructor that is equivalent to the empty constructor and immediately calling reinit(const std::array<FullMatrix<Number>,dim>&,const std::array<FullMatrix<Number>,dim>&).

◆ TensorProductMatrixSymmetricSum() [4/4]

template<int dim, typename Number , int n_rows_1d = -1>
TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >::TensorProductMatrixSymmetricSum ( const Table< 2, Number > &  mass_matrix,
const Table< 2, Number > &  derivative_matrix 
)

Constructor that is equivalent to the empty constructor and immediately calling reinit(const Table<2,Number>&,const Table<2,Number>&).

Member Function Documentation

◆ reinit() [1/3]

template<int dim, typename Number , int n_rows_1d = -1>
void TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >::reinit ( const std::array< Table< 2, Number >, dim > &  mass_matrix,
const std::array< Table< 2, Number >, dim > &  derivative_matrix 
)

Initializes the tensor product matrix by copying the arrays of 1D mass matrices mass_matrix and 1D derivative matrices derivative_matrix into its base class counterparts, respectively, and by assembling the regarding generalized eigenvalues and eigenvectors in TensorProductMatrixSymmetricSumBase::eigenvalues and TensorProductMatrixSymmetricSumBase::eigenvectors, respectively. Note that the current implementation requires each \(M_{d}\) to be symmetric and positive definite and every \(A_{d}\) to be symmetric and invertible but not necessarily positive definite.

◆ reinit() [2/3]

template<int dim, typename Number , int n_rows_1d = -1>
void TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >::reinit ( const std::array< FullMatrix< Number >, dim > &  mass_matrix,
const std::array< FullMatrix< Number >, dim > &  derivative_matrix 
)

This function is equivalent to the previous reinit() except that the 1D matrices in mass_matrix and derivative_matrix are passed in terms of a FullMatrix, respectively.

◆ reinit() [3/3]

template<int dim, typename Number , int n_rows_1d = -1>
void TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >::reinit ( const Table< 2, Number > &  mass_matrix,
const Table< 2, Number > &  derivative_matrix 
)

This function is equivalent to the first reinit() except that we consider the same 1D mass matrix mass_matrix and the same 1D derivative matrix derivative_matrix for each tensor direction.

◆ reinit_impl()

template<int dim, typename Number , int n_rows_1d = -1>
template<typename MatrixArray >
void TensorProductMatrixSymmetricSum< dim, Number, n_rows_1d >::reinit_impl ( MatrixArray &&  mass_matrix,
MatrixArray &&  derivative_matrix 
)
private

A generic implementation of all reinit() functions based on perfect forwarding, that allows to pass lvalue as well as rvalue arguments.

Template Parameters
MatrixArrayHas to be convertible to the underlying type of TensorProductMatrixSymmetricSumBase::mass_matrix and TensorProductMatrixSymmetricSumBase::derivative_matrix.

The documentation for this class was generated from the following file: