Reference documentation for deal.II version 9.2.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Types | Public Member Functions | List of all members
TensorFunction< rank, dim, Number > Class Template Reference

#include <deal.II/base/tensor_function.h>

Inheritance diagram for TensorFunction< rank, dim, Number >:
[legend]

Public Types

using value_type = Tensor< rank, dim, Number >
 
using gradient_type = Tensor< rank+1, dim, Number >
 
using time_type = typename FunctionTime< typename numbers::NumberTraits< Number >::real_type >::time_type
 
- Public Types inherited from FunctionTime< numbers::NumberTraits< double >::real_type >
using time_type = numbers::NumberTraits< double >::real_type
 

Public Member Functions

 TensorFunction (const time_type initial_time=time_type(0.0))
 
virtual ~TensorFunction () override=default
 
virtual value_type value (const Point< dim > &p) const
 
virtual void value_list (const std::vector< Point< dim >> &points, std::vector< value_type > &values) const
 
virtual gradient_type gradient (const Point< dim > &p) const
 
virtual void gradient_list (const std::vector< Point< dim >> &points, std::vector< gradient_type > &gradients) const
 
- Public Member Functions inherited from FunctionTime< numbers::NumberTraits< double >::real_type >
 FunctionTime (const numbers::NumberTraits< double >::real_type initial_time=numbers::NumberTraits< double >::real_type(0.0))
 
virtual ~FunctionTime ()=default
 
numbers::NumberTraits< double >::real_type get_time () const
 
virtual void set_time (const numbers::NumberTraits< double >::real_type new_time)
 
virtual void advance_time (const numbers::NumberTraits< double >::real_type delta_t)
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&) noexcept
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&) noexcept
 
void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Additional Inherited Members

- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Detailed Description

template<int rank, int dim, typename Number = double>
class TensorFunction< rank, dim, Number >

This class is a model for a tensor valued function. The interface of the class is mostly the same as that for the Function class, with the exception that it does not support vector-valued functions with several components, but that the return type is always tensor-valued. The returned values of the evaluation of objects of this type are always whole tensors, while for the Function class, one can ask for a specific component only, or use the vector_value function, which however does not return the value, but rather writes it into the address provided by its second argument. The reason for the different behaviour of the classes is that in the case of tensor valued functions, the size of the argument is known to the compiler a priori, such that the correct amount of memory can be allocated on the stack for the return value; on the other hand, for the vector valued functions, the size is not known to the compiler, so memory has to be allocated on the heap, resulting in relatively expensive copy operations. One can therefore consider this class a specialization of the Function class for which the size is known. An additional benefit is that tensors of arbitrary rank can be returned, not only vectors, as for them the size can be determined similarly simply.

Author
Guido Kanschat, 1999

Definition at line 57 of file tensor_function.h.

Member Typedef Documentation

◆ value_type

template<int rank, int dim, typename Number = double>
using TensorFunction< rank, dim, Number >::value_type = Tensor<rank, dim, Number>

Alias for the return types of the value function.

Definition at line 65 of file tensor_function.h.

◆ gradient_type

template<int rank, int dim, typename Number = double>
using TensorFunction< rank, dim, Number >::gradient_type = Tensor<rank + 1, dim, Number>

Alias for the return types of the gradient functions.

Definition at line 70 of file tensor_function.h.

◆ time_type

template<int rank, int dim, typename Number = double>
using TensorFunction< rank, dim, Number >::time_type = typename FunctionTime< typename numbers::NumberTraits<Number>::real_type>::time_type

The scalar-valued real type used for representing time.

Definition at line 76 of file tensor_function.h.

Constructor & Destructor Documentation

◆ TensorFunction()

template<int rank, int dim, typename Number = double>
TensorFunction< rank, dim, Number >::TensorFunction ( const time_type  initial_time = time_type(0.0))

Constructor. May take an initial value for the time variable, which defaults to zero.

◆ ~TensorFunction()

template<int rank, int dim, typename Number = double>
virtual TensorFunction< rank, dim, Number >::~TensorFunction ( )
overridevirtualdefault

Virtual destructor; absolutely necessary in this case, as classes are usually not used by their true type, but rather through pointers to this base class.

Member Function Documentation

◆ value()

template<int rank, int dim, typename Number = double>
virtual value_type TensorFunction< rank, dim, Number >::value ( const Point< dim > &  p) const
virtual

◆ value_list()

template<int rank, int dim, typename Number = double>
virtual void TensorFunction< rank, dim, Number >::value_list ( const std::vector< Point< dim >> &  points,
std::vector< value_type > &  values 
) const
virtual

Set values to the point values of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

◆ gradient()

template<int rank, int dim, typename Number = double>
virtual gradient_type TensorFunction< rank, dim, Number >::gradient ( const Point< dim > &  p) const
virtual

Return the gradient of the function at the given point.

Reimplemented in ConstantTensorFunction< rank, dim, Number >, and ConstantTensorFunction< rank, dim, double >.

◆ gradient_list()

template<int rank, int dim, typename Number = double>
virtual void TensorFunction< rank, dim, Number >::gradient_list ( const std::vector< Point< dim >> &  points,
std::vector< gradient_type > &  gradients 
) const
virtual

Set gradients to the gradients of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.


The documentation for this class was generated from the following file: