Reference documentation for deal.II version 9.2.0
|
#include <deal.II/lac/sparse_matrix.h>
Public Member Functions | |
number | value () const |
number & | value () |
const SparseMatrix< number > & | get_matrix () const |
Public Member Functions inherited from SparsityPatternIterators::Accessor | |
Accessor (const SparsityPatternBase *matrix, const std::size_t linear_index) | |
Accessor (const SparsityPatternBase *matrix) | |
Accessor () | |
size_type | row () const |
size_type | index () const |
size_type | global_index () const |
size_type | column () const |
bool | is_valid_entry () const |
bool | operator== (const Accessor &) const |
bool | operator< (const Accessor &) const |
Additional Inherited Members | |
Public Types inherited from SparsityPatternIterators::Accessor | |
using | size_type = SparsityPatternIterators::size_type |
Protected Member Functions inherited from SparsityPatternIterators::Accessor | |
void | advance () |
Static Protected Member Functions inherited from SparsityPatternIterators::Accessor | |
static ::ExceptionBase & | DummyAccessor () |
Protected Attributes inherited from SparsityPatternIterators::Accessor | |
const SparsityPatternBase * | container |
std::size_t | linear_index |
General template for sparse matrix accessors. The first template argument denotes the underlying numeric type, the second the constness of the matrix.
The general template is not implemented, only the specializations for the two possible values of the second template argument. Therefore, the interface listed here only serves as a template provided since doxygen does not link the specializations.
Definition at line 99 of file sparse_matrix.h.
number SparseMatrixIterators::Accessor< number, Constness >::value | ( | ) | const |
Value of this matrix entry.
number& SparseMatrixIterators::Accessor< number, Constness >::value | ( | ) |
Value of this matrix entry.
const SparseMatrix<number>& SparseMatrixIterators::Accessor< number, Constness >::get_matrix | ( | ) | const |
Return a reference to the matrix into which this accessor points. Note that in the present case, this is a constant reference.