|
| QGaussRadauChebyshev (const unsigned int n, EndPoint ep=QGaussRadauChebyshev::left) |
| Generate a formula with n quadrature points. More...
|
|
| QGaussRadauChebyshev (QGaussRadauChebyshev< dim > &&) noexcept=default |
|
| QGaussRadauChebyshev (const unsigned int n, EndPoint ep) |
|
| Quadrature (const unsigned int n_quadrature_points=0) |
|
| Quadrature (const SubQuadrature &, const Quadrature< 1 > &) |
|
| Quadrature (const Quadrature< dim !=1 ? 1 :0 > &quadrature_1d) |
|
| Quadrature (const Quadrature< dim > &q) |
|
| Quadrature (Quadrature< dim > &&) noexcept=default |
|
| Quadrature (const std::vector< Point< dim >> &points, const std::vector< double > &weights) |
|
| Quadrature (const std::vector< Point< dim >> &points) |
|
| Quadrature (const Point< dim > &point) |
|
virtual | ~Quadrature () override=default |
|
Quadrature & | operator= (const Quadrature< dim > &) |
|
Quadrature & | operator= (Quadrature< dim > &&)=default |
|
bool | operator== (const Quadrature< dim > &p) const |
|
void | initialize (const std::vector< Point< dim >> &points, const std::vector< double > &weights) |
|
unsigned int | size () const |
|
const Point< dim > & | point (const unsigned int i) const |
|
const std::vector< Point< dim > > & | get_points () const |
|
double | weight (const unsigned int i) const |
|
const std::vector< double > & | get_weights () const |
|
std::size_t | memory_consumption () const |
|
template<class Archive > |
void | serialize (Archive &ar, const unsigned int version) |
|
bool | is_tensor_product () const |
|
const std::array< Quadrature< 1 >, dim > & | get_tensor_basis () const |
|
| Quadrature (const unsigned int n_q) |
|
| Subscriptor () |
|
| Subscriptor (const Subscriptor &) |
|
| Subscriptor (Subscriptor &&) noexcept |
|
virtual | ~Subscriptor () |
|
Subscriptor & | operator= (const Subscriptor &) |
|
Subscriptor & | operator= (Subscriptor &&) noexcept |
|
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
|
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
|
unsigned int | n_subscriptions () const |
|
template<typename StreamType > |
void | list_subscribers (StreamType &stream) const |
|
void | list_subscribers () const |
|
template<class Archive > |
void | serialize (Archive &ar, const unsigned int version) |
|
template<int dim>
class QGaussRadauChebyshev< dim >
Gauss-Radau-Chebyshev quadrature rules integrate the weighted product \(\int_{-1}^1 f(x) w(x) dx\) with weight given by: \(w(x) = 1/\sqrt{1-x^2}\) with the additional constraint that a quadrature point lies at one of the two extrema of the interval. The nodes and weights are known analytically, and are exact for monomials up to the order \(2n-2\), where \(n\) is the number of quadrature points. Here we rescale the quadrature formula so that it is defined on the interval \([0,1]\) instead of \([-1,1]\). So the quadrature formulas integrate exactly the integral \(\int_0^1 f(x) w(x) dx\) with the weight: \(w(x) = 1/\sqrt{x(1-x)}\). By default the quadrature is constructed with the left endpoint as quadrature node, but the quadrature node can be imposed at the right endpoint through the variable ep that can assume the values left or right.
- Author
- Giuseppe Pitton, Luca Heltai 2015
Definition at line 524 of file quadrature_lib.h.