Reference documentation for deal.II version 9.2.0
|
#include <deal.II/base/polynomials_nedelec.h>
Public Member Functions | |
PolynomialsNedelec (const unsigned int k) | |
void | evaluate (const Point< dim > &unit_point, std::vector< Tensor< 1, dim >> &values, std::vector< Tensor< 2, dim >> &grads, std::vector< Tensor< 3, dim >> &grad_grads, std::vector< Tensor< 4, dim >> &third_derivatives, std::vector< Tensor< 5, dim >> &fourth_derivatives) const override |
std::string | name () const override |
virtual std::unique_ptr< TensorPolynomialsBase< dim > > | clone () const override |
Public Member Functions inherited from TensorPolynomialsBase< dim > | |
TensorPolynomialsBase (const unsigned int deg, const unsigned int n_polynomials) | |
TensorPolynomialsBase (TensorPolynomialsBase< dim > &&)=default | |
TensorPolynomialsBase (const TensorPolynomialsBase< dim > &)=default | |
virtual | ~TensorPolynomialsBase ()=default |
unsigned int | n () const |
unsigned int | degree () const |
Static Public Member Functions | |
static unsigned int | n_polynomials (const unsigned int degree) |
Static Private Member Functions | |
static std::vector< std::vector< Polynomials::Polynomial< double > > > | create_polynomials (const unsigned int k) |
Private Attributes | |
const AnisotropicPolynomials< dim > | polynomial_space |
This class implements the first family Hcurl-conforming, vector-valued polynomials, proposed by J.-C. Nédélec in 1980 (Numer. Math. 35).
The Nédélec polynomials are constructed such that the curl is in the tensor product polynomial space Qk. Therefore, the polynomial order of each component must be one order higher in the corresponding two directions, yielding the polynomial spaces (Qk,k+1, Qk+1,k) and (Qk,k+1,k+1, Qk+1,k,k+1, Qk+1,k+1,k) in 2D and 3D, resp.
Definition at line 53 of file polynomials_nedelec.h.
PolynomialsNedelec< dim >::PolynomialsNedelec | ( | const unsigned int | k | ) |
Constructor. Creates all basis functions for Nédélec polynomials of given degree.
Definition at line 29 of file polynomials_nedelec.cc.
|
overridevirtual |
Compute the value and the first and second derivatives of each Nédélec polynomial at unit_point
.
The size of the vectors must either be zero or equal n()
. In the first case, the function will not compute these values.
If you need values or derivatives of all tensor product polynomials then use this function, rather than using any of the compute_value
, compute_grad
or compute_grad_grad
functions, see below, in a loop over all tensor product polynomials.
Implements TensorPolynomialsBase< dim >.
Definition at line 54 of file polynomials_nedelec.cc.
|
inlineoverridevirtual |
Return the name of the space, which is Nedelec
.
Implements TensorPolynomialsBase< dim >.
Definition at line 123 of file polynomials_nedelec.h.
|
static |
Return the number of polynomials in the space N(degree)
without requiring to build an object of PolynomialsNedelec. This is required by the FiniteElement classes.
Definition at line 1489 of file polynomials_nedelec.cc.
|
overridevirtual |
A sort of virtual copy constructor, this function returns a copy of the polynomial space object. Derived classes need to override the function here in this base class and return an object of the same type as the derived class.
Some places in the library, for example the constructors of FE_PolyTensor, need to make copies of polynomial spaces without knowing their exact type. They do so through this function.
Implements TensorPolynomialsBase< dim >.
Definition at line 1513 of file polynomials_nedelec.cc.
|
staticprivate |
A static member function that creates the polynomial space we use to initialize the polynomial_space member variable.
Definition at line 36 of file polynomials_nedelec.cc.
|
private |
An object representing the polynomial space for a single component. We can re-use it by rotating the coordinates of the evaluation point.
Definition at line 110 of file polynomials_nedelec.h.