Reference documentation for deal.II version 9.2.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Member Functions | Private Attributes | List of all members
Functions::Monomial< dim > Class Template Reference

#include <deal.II/base/function_lib.h>

Inheritance diagram for Functions::Monomial< dim >:
[legend]

Public Member Functions

 Monomial (const Tensor< 1, dim > &exponents, const unsigned int n_components=1)
 
virtual double value (const Point< dim > &p, const unsigned int component=0) const override
 
virtual void vector_value (const Point< dim > &p, Vector< double > &values) const override
 
virtual void value_list (const std::vector< Point< dim >> &points, std::vector< double > &values, const unsigned int component=0) const override
 
virtual Tensor< 1, dim > gradient (const Point< dim > &p, const unsigned int component=0) const override
 
- Public Member Functions inherited from Function< dim >
 Function (const unsigned int n_components=1, const time_type initial_time=0.0)
 
 Function (const Function &f)=default
 
virtual ~Function () override=0
 
Functionoperator= (const Function &f)
 
virtual void vector_value_list (const std::vector< Point< dim >> &points, std::vector< Vector< double >> &values) const
 
virtual void vector_values (const std::vector< Point< dim >> &points, std::vector< std::vector< double >> &values) const
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, double >> &gradients) const
 
virtual void gradient_list (const std::vector< Point< dim >> &points, std::vector< Tensor< 1, dim, double >> &gradients, const unsigned int component=0) const
 
virtual void vector_gradients (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim, double >>> &gradients) const
 
virtual void vector_gradient_list (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim, double >>> &gradients) const
 
virtual double laplacian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_laplacian (const Point< dim > &p, Vector< double > &values) const
 
virtual void laplacian_list (const std::vector< Point< dim >> &points, std::vector< double > &values, const unsigned int component=0) const
 
virtual void vector_laplacian_list (const std::vector< Point< dim >> &points, std::vector< Vector< double >> &values) const
 
virtual SymmetricTensor< 2, dim, doublehessian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, double >> &values) const
 
virtual void hessian_list (const std::vector< Point< dim >> &points, std::vector< SymmetricTensor< 2, dim, double >> &values, const unsigned int component=0) const
 
virtual void vector_hessian_list (const std::vector< Point< dim >> &points, std::vector< std::vector< SymmetricTensor< 2, dim, double >>> &values) const
 
std::size_t memory_consumption () const
 
- Public Member Functions inherited from FunctionTime< numbers::NumberTraits< double >::real_type >
 FunctionTime (const numbers::NumberTraits< double >::real_type initial_time=numbers::NumberTraits< double >::real_type(0.0))
 
virtual ~FunctionTime ()=default
 
numbers::NumberTraits< double >::real_type get_time () const
 
virtual void set_time (const numbers::NumberTraits< double >::real_type new_time)
 
virtual void advance_time (const numbers::NumberTraits< double >::real_type delta_t)
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&) noexcept
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&) noexcept
 
void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Private Attributes

const Tensor< 1, dim > exponents
 

Additional Inherited Members

- Public Types inherited from Function< dim >
using time_type = typename FunctionTime< typename numbers::NumberTraits< double >::real_type >::time_type
 
- Public Types inherited from FunctionTime< numbers::NumberTraits< double >::real_type >
using time_type = numbers::NumberTraits< double >::real_type
 
- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
- Public Attributes inherited from Function< dim >
const unsigned int n_components
 
- Static Public Attributes inherited from Function< dim >
static const unsigned int dimension
 

Detailed Description

template<int dim>
class Functions::Monomial< dim >

A class that represents a function object for a monomial. Monomials are polynomials with only a single term, i.e. in 1-d they have the form \(x^\alpha\), in 2-d the form \(x_1^{\alpha_1}x_2^{\alpha_2}\), and in 3-d \(x_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}\). Monomials are therefore described by a \(dim\)-tuple of exponents. Consequently, the class's constructor takes a Tensor<1,dim> to describe the set of exponents. Most of the time these exponents will of course be integers, but real exponents are of course equally valid. Exponents can't be real when the bases are negative numbers.

Author
Wolfgang Bangerth, 2006

Definition at line 1341 of file function_lib.h.

Constructor & Destructor Documentation

◆ Monomial()

template<int dim>
Functions::Monomial< dim >::Monomial ( const Tensor< 1, dim > &  exponents,
const unsigned int  n_components = 1 
)

Constructor. The first argument is explained in the general description of the class. The second argument denotes the number of vector components this object shall represent. All vector components will have the same value.

Definition at line 2170 of file function_lib.cc.

Member Function Documentation

◆ value()

template<int dim>
double Functions::Monomial< dim >::value ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtual

Function value at one point.

Reimplemented from Function< dim >.

Definition at line 2180 of file function_lib.cc.

◆ vector_value()

template<int dim>
void Functions::Monomial< dim >::vector_value ( const Point< dim > &  p,
Vector< double > &  values 
) const
overridevirtual

Return all components of a vector-valued function at a given point.

values shall have the right size beforehand, i.e. n_components.

Reimplemented from Function< dim >.

Definition at line 2201 of file function_lib.cc.

◆ value_list()

template<int dim>
void Functions::Monomial< dim >::value_list ( const std::vector< Point< dim >> &  points,
std::vector< double > &  values,
const unsigned int  component = 0 
) const
overridevirtual

Function values at multiple points.

Reimplemented from Function< dim >.

Definition at line 2253 of file function_lib.cc.

◆ gradient()

template<int dim>
Tensor< 1, dim > Functions::Monomial< dim >::gradient ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtual

Function gradient at one point.

Reimplemented from Function< dim >.

Definition at line 2214 of file function_lib.cc.

Member Data Documentation

◆ exponents

template<int dim>
const Tensor<1, dim> Functions::Monomial< dim >::exponents
private

The set of exponents.

Definition at line 1387 of file function_lib.h.


The documentation for this class was generated from the following files: