Reference documentation for deal.II version 9.2.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Attributes | List of all members
FE_Poly< PolynomialType, dim, spacedim >::InternalData Class Reference

#include <deal.II/fe/fe_poly.h>

Inheritance diagram for FE_Poly< PolynomialType, dim, spacedim >::InternalData:
[legend]

Public Attributes

Table< 2, doubleshape_values
 
Table< 2, Tensor< 1, dim > > shape_gradients
 
Table< 2, Tensor< 2, dim > > shape_hessians
 
Table< 2, Tensor< 3, dim > > shape_3rd_derivatives
 
- Public Attributes inherited from FiniteElement< dim, spacedim >::InternalDataBase
UpdateFlags update_each
 

Additional Inherited Members

- Public Member Functions inherited from FiniteElement< dim, spacedim >::InternalDataBase
 InternalDataBase ()
 
virtual ~InternalDataBase ()=default
 
 InternalDataBase (const InternalDataBase &)=delete
 
virtual std::size_t memory_consumption () const
 

Detailed Description

template<class PolynomialType, int dim = PolynomialType::dimension, int spacedim = dim>
class FE_Poly< PolynomialType, dim, spacedim >::InternalData

Fields of cell-independent data.

For information about the general purpose of this class, see the documentation of the base class.

Definition at line 409 of file fe_poly.h.

Member Data Documentation

◆ shape_values

template<class PolynomialType , int dim = PolynomialType::dimension, int spacedim = dim>
Table<2, double> FE_Poly< PolynomialType, dim, spacedim >::InternalData::shape_values

Array with shape function values in quadrature points. There is one row for each shape function, containing values for each quadrature point.

In this array, we store the values of the shape function in the quadrature points on the unit cell. Since these values do not change under transformation to the real cell, we only need to copy them over when visiting a concrete cell.

Definition at line 421 of file fe_poly.h.

◆ shape_gradients

template<class PolynomialType , int dim = PolynomialType::dimension, int spacedim = dim>
Table<2, Tensor<1, dim> > FE_Poly< PolynomialType, dim, spacedim >::InternalData::shape_gradients

Array with shape function gradients in quadrature points. There is one row for each shape function, containing values for each quadrature point.

We store the gradients in the quadrature points on the unit cell. We then only have to apply the transformation (which is a matrix-vector multiplication) when visiting an actual cell.

Definition at line 432 of file fe_poly.h.

◆ shape_hessians

template<class PolynomialType , int dim = PolynomialType::dimension, int spacedim = dim>
Table<2, Tensor<2, dim> > FE_Poly< PolynomialType, dim, spacedim >::InternalData::shape_hessians

Array with shape function hessians in quadrature points. There is one row for each shape function, containing values for each quadrature point.

We store the hessians in the quadrature points on the unit cell. We then only have to apply the transformation when visiting an actual cell.

Definition at line 443 of file fe_poly.h.

◆ shape_3rd_derivatives

template<class PolynomialType , int dim = PolynomialType::dimension, int spacedim = dim>
Table<2, Tensor<3, dim> > FE_Poly< PolynomialType, dim, spacedim >::InternalData::shape_3rd_derivatives

Array with shape function third derivatives in quadrature points. There is one row for each shape function, containing values for each quadrature point.

We store the third derivatives in the quadrature points on the unit cell. We then only have to apply the transformation when visiting an actual cell.

Definition at line 454 of file fe_poly.h.


The documentation for this class was generated from the following file: