Reference documentation for deal.II version 9.2.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Types | Public Member Functions | Private Attributes | List of all members
FESeries::Fourier< dim, spacedim > Class Template Reference

#include <deal.II/fe/fe_series.h>

Inheritance diagram for FESeries::Fourier< dim, spacedim >:
[legend]

Public Types

using CoefficientType = typename std::complex< double >
 

Public Member Functions

 Fourier (const std::vector< unsigned int > &n_coefficients_per_direction, const hp::FECollection< dim, spacedim > &fe_collection, const hp::QCollection< dim > &q_collection)
 
 Fourier (const unsigned int n_coefficients_per_direction, const hp::FECollection< dim, spacedim > &fe_collection, const hp::QCollection< dim > &q_collection)
 
template<typename Number >
void calculate (const ::Vector< Number > &local_dof_values, const unsigned int cell_active_fe_index, Table< dim, CoefficientType > &fourier_coefficients)
 
unsigned int get_n_coefficients_per_direction (const unsigned int index) const
 
void precalculate_all_transformation_matrices ()
 
template<class Archive >
void save_transformation_matrices (Archive &ar, const unsigned int version)
 
template<class Archive >
void load_transformation_matrices (Archive &ar, const unsigned int version)
 
bool operator== (const Fourier< dim, spacedim > &fourier) const
 
template<typename Number >
void calculate (const Vector< Number > &local_dof_values, const unsigned int cell_active_fe_index, Table< dim, CoefficientType > &fourier_coefficients)
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&) noexcept
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&) noexcept
 
void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Private Attributes

const std::vector< unsigned intn_coefficients_per_direction
 
SmartPointer< const hp::FECollection< dim, spacedim > > fe_collection
 
const hp::QCollection< dim > q_collection
 
Table< dim, Tensor< 1, dim > > k_vectors
 
std::vector< FullMatrix< CoefficientType > > fourier_transform_matrices
 
std::vector< CoefficientTypeunrolled_coefficients
 

Additional Inherited Members

- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Detailed Description

template<int dim, int spacedim = dim>
class FESeries::Fourier< dim, spacedim >

A class to calculate expansion of a scalar FE field into Fourier series on a reference element. The exponential form of the Fourier series is based on completeness and Hermitian orthogonality of the set of exponential functions \( \phi_{\bf k}({\bf x}) = \exp(2 \pi i\, {\bf k} \cdot {\bf x})\). For example in 1D the L2-orthogonality condition reads

\[ \int_0^1 \phi_k(x) \phi_l^\ast(x) dx=\delta_{kl}. \]

Note that \( \phi_{\bf k} = \phi_{-\bf k}^\ast \).

The arbitrary scalar FE field on the reference element can be expanded in the complete orthogonal exponential basis as

\[ u({\bf x}) = \sum_{\bf k} c_{\bf k} \phi_{\bf k}({\bf x}). \]

From the orthogonality property of the basis, it follows that

\[ c_{\bf k} = \int_{[0,1]^d} u({\bf x}) \phi_{\bf k}^\ast ({\bf x}) d{\bf x}\,. \]

It is this complex-valued expansion coefficients, that are calculated by this class. Note that \( u({\bf x}) = \sum_i u_i N_i({\bf x})\), where \( N_i({\bf x}) \) are real-valued FiniteElement shape functions. Consequently \( c_{\bf k} \equiv c_{-\bf k}^\ast \) and we only need to compute \( c_{\bf k} \) for positive indices \( \bf k \) .

Author
Denis Davydov, 2016.

Definition at line 91 of file fe_series.h.

Member Typedef Documentation

◆ CoefficientType

template<int dim, int spacedim = dim>
using FESeries::Fourier< dim, spacedim >::CoefficientType = typename std::complex<double>

Definition at line 94 of file fe_series.h.

Constructor & Destructor Documentation

◆ Fourier() [1/2]

template<int dim, int spacedim>
FESeries::Fourier< dim, spacedim >::Fourier ( const std::vector< unsigned int > &  n_coefficients_per_direction,
const hp::FECollection< dim, spacedim > &  fe_collection,
const hp::QCollection< dim > &  q_collection 
)

Constructor that initializes all required data structures.

The n_coefficients_per_direction defines the number of coefficients in each direction, fe_collection is the hp::FECollection for which expansion will be used and q_collection is the hp::QCollection used to integrate the expansion for each FiniteElement in fe_collection.

Definition at line 176 of file fe_series_fourier.cc.

◆ Fourier() [2/2]

template<int dim, int spacedim>
FESeries::Fourier< dim, spacedim >::Fourier ( const unsigned int  n_coefficients_per_direction,
const hp::FECollection< dim, spacedim > &  fe_collection,
const hp::QCollection< dim > &  q_collection 
)

A non-default constructor. The n_coefficients_per_direction defines the number of modes in each direction, fe_collection is the hp::FECollection for which expansion will be used and q_collection is the hp::QCollection used to integrate the expansion for each FiniteElement in fe_collection.

Definition at line 201 of file fe_series_fourier.cc.

Member Function Documentation

◆ calculate() [1/2]

template<int dim, int spacedim = dim>
template<typename Number >
void FESeries::Fourier< dim, spacedim >::calculate ( const ::Vector< Number > &  local_dof_values,
const unsigned int  cell_active_fe_index,
Table< dim, CoefficientType > &  fourier_coefficients 
)

Calculate fourier_coefficients of the cell vector field given by local_dof_values corresponding to FiniteElement with cell_active_fe_index .

◆ get_n_coefficients_per_direction()

template<int dim, int spacedim>
unsigned int FESeries::Fourier< dim, spacedim >::get_n_coefficients_per_direction ( const unsigned int  index) const

Return the number of coefficients in each coordinate direction for the finite element associated with index in the provided hp::FECollection.

Definition at line 251 of file fe_series_fourier.cc.

◆ precalculate_all_transformation_matrices()

template<int dim, int spacedim>
void FESeries::Fourier< dim, spacedim >::precalculate_all_transformation_matrices

Calculate all transformation matrices to transfer the finite element solution to the series expansion representation.

These matrices will be generated on demand by calling calculate() and stored for recurring purposes. Usually, this operation consumes a lot of workload. With this function, all matrices will be calculated in advance. This way, we can separate their costly generation from the actual application.

Definition at line 231 of file fe_series_fourier.cc.

◆ save_transformation_matrices()

template<int dim, int spacedim = dim>
template<class Archive >
void FESeries::Fourier< dim, spacedim >::save_transformation_matrices ( Archive &  ar,
const unsigned int  version 
)

Write all transformation matrices of this object to a stream for the purpose of serialization.

Since any of its transformation matrices has to be generated only once for a given scenario, it is common practice to determine them in advance calling precalculate_all_transformation_matrices() and keep them via serialization.

◆ load_transformation_matrices()

template<int dim, int spacedim = dim>
template<class Archive >
void FESeries::Fourier< dim, spacedim >::load_transformation_matrices ( Archive &  ar,
const unsigned int  version 
)

Read all transformation matrices from a stream and recover them for this object.

◆ operator==()

template<int dim, int spacedim>
bool FESeries::Fourier< dim, spacedim >::operator== ( const Fourier< dim, spacedim > &  fourier) const
inline

Test for equality of two series expansion objects.

Definition at line 217 of file fe_series_fourier.cc.

◆ calculate() [2/2]

template<int dim, int spacedim = dim>
template<typename Number >
void FESeries::Fourier< dim, spacedim >::calculate ( const Vector< Number > &  local_dof_values,
const unsigned int  cell_active_fe_index,
Table< dim, CoefficientType > &  fourier_coefficients 
)

Definition at line 262 of file fe_series_fourier.cc.

Member Data Documentation

◆ n_coefficients_per_direction

template<int dim, int spacedim = dim>
const std::vector<unsigned int> FESeries::Fourier< dim, spacedim >::n_coefficients_per_direction
private

Number of coefficients in each direction for each finite element in the registered hp::FECollection.

Definition at line 185 of file fe_series.h.

◆ fe_collection

template<int dim, int spacedim = dim>
SmartPointer<const hp::FECollection<dim, spacedim> > FESeries::Fourier< dim, spacedim >::fe_collection
private

hp::FECollection for which transformation matrices will be calculated.

Definition at line 190 of file fe_series.h.

◆ q_collection

template<int dim, int spacedim = dim>
const hp::QCollection<dim> FESeries::Fourier< dim, spacedim >::q_collection
private

hp::QCollection used in calculation of transformation matrices.

Definition at line 195 of file fe_series.h.

◆ k_vectors

template<int dim, int spacedim = dim>
Table<dim, Tensor<1, dim> > FESeries::Fourier< dim, spacedim >::k_vectors
private

Angular frequencies \( 2 \pi {\bf k} \) .

Definition at line 200 of file fe_series.h.

◆ fourier_transform_matrices

template<int dim, int spacedim = dim>
std::vector<FullMatrix<CoefficientType> > FESeries::Fourier< dim, spacedim >::fourier_transform_matrices
private

Transformation matrices for each FiniteElement.

Definition at line 205 of file fe_series.h.

◆ unrolled_coefficients

template<int dim, int spacedim = dim>
std::vector<CoefficientType> FESeries::Fourier< dim, spacedim >::unrolled_coefficients
private

Auxiliary vector to store unrolled coefficients.

Definition at line 210 of file fe_series.h.


The documentation for this class was generated from the following files: