Reference documentation for deal.II version 9.0.0
Public Types | Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Attributes | List of all members
TriaAccessor< 0, 1, spacedim > Class Template Reference

#include <deal.II/grid/tria_accessor.h>

Inheritance diagram for TriaAccessor< 0, 1, spacedim >:
[legend]

Public Types

enum  VertexKind { left_vertex, interior_vertex, right_vertex }
 
typedef void AccessorData
 

Public Member Functions

 TriaAccessor (const Triangulation< 1, spacedim > *tria, const VertexKind vertex_kind, const unsigned int vertex_index)
 
 TriaAccessor (const Triangulation< 1, spacedim > *tria=nullptr, const int=0, const int=0, const AccessorData *=nullptr)
 
template<int structdim2, int dim2, int spacedim2>
 TriaAccessor (const TriaAccessor< structdim2, dim2, spacedim2 > &)
 
template<int structdim2, int dim2, int spacedim2>
 TriaAccessor (const InvalidAccessor< structdim2, dim2, spacedim2 > &)
 
void copy_from (const TriaAccessor &)
 
int index () const
 
bool at_boundary () const
 
types::boundary_id boundary_id () const
 
const Manifold< 1, spacedim > & get_manifold () const
 
types::manifold_id manifold_id () const
 
bool used () const
 
Advancement of iterators
void operator++ () const
 
void operator-- () const
 
bool operator== (const TriaAccessor &) const
 
bool operator!= (const TriaAccessor &) const
 
Dealing with boundary indicators
void set_boundary_id (const types::boundary_id)
 
void set_manifold_id (const types::manifold_id)
 
void set_all_boundary_ids (const types::boundary_id)
 
void set_all_manifold_ids (const types::manifold_id)
 

Static Public Member Functions

static IteratorState::IteratorStates state ()
 
static int level ()
 
Orientation of sub-objects
static bool face_orientation (const unsigned int face)
 Always return false.
 
static bool face_flip (const unsigned int face)
 Always return false.
 
static bool face_rotation (const unsigned int face)
 Always return false.
 
static bool line_orientation (const unsigned int line)
 Always return false.
 
Accessing children
static bool has_children ()
 
static unsigned int n_children ()
 
static unsigned int number_of_children ()
 
static unsigned int max_refinement_depth ()
 
static TriaIterator< TriaAccessor< 0, 1, spacedim > > child (const unsigned int)
 Return an invalid object.
 
static TriaIterator< TriaAccessor< 0, 1, spacedim > > isotropic_child (const unsigned int)
 Return an invalid object.
 
static RefinementCase< 0 > refinement_case ()
 
static int child_index (const unsigned int i)
 Returns -1.
 
static int isotropic_child_index (const unsigned int i)
 Returns -1.
 

Static Public Attributes

static const unsigned int space_dimension = spacedim
 
static const unsigned int dimension = 1
 
static const unsigned int structure_dimension = 0
 

Protected Attributes

const Triangulation< 1, spacedim > * tria
 
VertexKind vertex_kind
 
unsigned int global_vertex_index
 

Accessing sub-objects

unsigned int vertex_index (const unsigned int i=0) const
 
Point< spacedim > & vertex (const unsigned int i=0) const
 
Point< spacedim > center () const
 
static typename ::internal::TriangulationImplementation::Iterators< 1, spacedim >::line_iterator line (const unsigned int)
 
static unsigned int line_index (const unsigned int i)
 
static typename ::internal::TriangulationImplementation::Iterators< 1, spacedim >::quad_iterator quad (const unsigned int i)
 
static unsigned int quad_index (const unsigned int i)
 

Detailed Description

template<int spacedim>
class TriaAccessor< 0, 1, spacedim >

This class is a specialization of TriaAccessor<structdim, dim, spacedim> for the case that structdim is zero and dim is one. This class represents vertices in a one-dimensional triangulation that is embedded in a space of dimensionality spacedim (for spacedim==dim==1 the triangulation represents a domain in \({\mathbb R}^\text{dim}\), for spacedim>dim==1 the triangulation is of a manifold embedded in a higher dimensional space).

The current specialization of the TriaAccessor<0,dim,spacedim> class for vertices of a one-dimensional triangulation exists since in the dim == 1 case vertices are also faces.

Author
Wolfgang Bangerth, 2010

Definition at line 1975 of file tria_accessor.h.

Member Typedef Documentation

◆ AccessorData

template<int spacedim>
typedef void TriaAccessor< 0, 1, spacedim >::AccessorData

Pointer to internal data.

Definition at line 2002 of file tria_accessor.h.

Member Enumeration Documentation

◆ VertexKind

template<int spacedim>
enum TriaAccessor< 0, 1, spacedim >::VertexKind

Whether the vertex represented here is at the left end of the domain, the right end, or in the interior.

Enumerator
left_vertex 

Left vertex.

interior_vertex 

Interior vertex.

right_vertex 

Right vertex.

Definition at line 2008 of file tria_accessor.h.

Constructor & Destructor Documentation

◆ TriaAccessor() [1/4]

template<int spacedim>
TriaAccessor< 0, 1, spacedim >::TriaAccessor ( const Triangulation< 1, spacedim > *  tria,
const VertexKind  vertex_kind,
const unsigned int  vertex_index 
)

Constructor.

Since there is no mapping from vertices to cells, an accessor object for a point has no way to figure out whether it is at the boundary of the domain or not. Consequently, the second argument must be passed by the object that generates this accessor – e.g. a 1d cell that can figure out whether its left or right vertex are at the boundary.

The third argument is the global index of the vertex we point to.

◆ TriaAccessor() [2/4]

template<int spacedim>
TriaAccessor< 0, 1, spacedim >::TriaAccessor ( const Triangulation< 1, spacedim > *  tria = nullptr,
const int  = 0,
const int  = 0,
const AccessorData = nullptr 
)

Constructor. This constructor exists in order to maintain interface compatibility with the other accessor classes. However, it doesn't do anything useful here and so may not actually be called.

◆ TriaAccessor() [3/4]

template<int spacedim>
template<int structdim2, int dim2, int spacedim2>
TriaAccessor< 0, 1, spacedim >::TriaAccessor ( const TriaAccessor< structdim2, dim2, spacedim2 > &  )

Constructor. Should never be called and thus produces an error.

◆ TriaAccessor() [4/4]

template<int spacedim>
template<int structdim2, int dim2, int spacedim2>
TriaAccessor< 0, 1, spacedim >::TriaAccessor ( const InvalidAccessor< structdim2, dim2, spacedim2 > &  )

Constructor. Should never be called and thus produces an error.

Member Function Documentation

◆ copy_from()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::copy_from ( const TriaAccessor< 0, 1, spacedim > &  )

Copy operator. Since this is only called from iterators, do not return anything, since the iterator will return itself.

◆ state()

template<int spacedim>
static IteratorState::IteratorStates TriaAccessor< 0, 1, spacedim >::state ( )
static

Return the state of the iterator. Since an iterator to points can not be incremented or decremented, its state remains constant, and in particular equal to IteratorState::valid.

◆ level()

template<int spacedim>
static int TriaAccessor< 0, 1, spacedim >::level ( )
static

Level of this object. Vertices have no level, so this function always returns zero.

◆ index()

template<int spacedim>
int TriaAccessor< 0, 1, spacedim >::index ( ) const

Index of this object. Returns the global index of the vertex this object points to.

◆ operator++()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::operator++ ( ) const

This operator advances the iterator to the next element. For points, this operation is not defined, so you can't iterate over point iterators.

◆ operator--()

template<int spacedim>
void TriaAccessor< 0, 1, spacedim >::operator-- ( ) const

This operator moves the iterator to the previous element. For points, this operation is not defined, so you can't iterate over point iterators.

◆ operator==()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::operator== ( const TriaAccessor< 0, 1, spacedim > &  ) const

Compare for equality.

◆ operator!=()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::operator!= ( const TriaAccessor< 0, 1, spacedim > &  ) const

Compare for inequality.

◆ vertex_index()

template<int spacedim>
unsigned int TriaAccessor< 0, 1, spacedim >::vertex_index ( const unsigned int  i = 0) const

Return the global index of i-th vertex of the current object. If i is zero, this returns the index of the current point to which this object refers. Otherwise, it throws an exception.

Note that the returned value is only the index of the geometrical vertex. It has nothing to do with possible degrees of freedom associated with it. For this, see the DoFAccessor::vertex_dof_index functions.

Note
Despite the name, the index returned here is only global in the sense that it is specific to a particular Triangulation object or, in the case the triangulation is actually of type parallel::distributed::Triangulation, specific to that part of the distributed triangulation stored on the current processor.

◆ vertex()

template<int spacedim>
Point<spacedim>& TriaAccessor< 0, 1, spacedim >::vertex ( const unsigned int  i = 0) const

Return a reference to the ith vertex. If i is zero, this returns a reference to the current point to which this object refers. Otherwise, it throws an exception.

◆ center()

template<int spacedim>
Point<spacedim> TriaAccessor< 0, 1, spacedim >::center ( ) const

Return the center of this object, which of course coincides with the location of the vertex this object refers to.

◆ line()

template<int spacedim>
static typename ::internal::TriangulationImplementation::Iterators<1,spacedim>::line_iterator TriaAccessor< 0, 1, spacedim >::line ( const unsigned  int)
static

Pointer to the ith line bounding this object. Will point to an invalid object.

◆ line_index()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::line_index ( const unsigned int  i)
static

Line index of the ith line bounding this object.

Implemented only for structdim>1, otherwise an exception generated.

◆ quad()

template<int spacedim>
static typename ::internal::TriangulationImplementation::Iterators<1,spacedim>::quad_iterator TriaAccessor< 0, 1, spacedim >::quad ( const unsigned int  i)
static

Pointer to the ith quad bounding this object.

◆ quad_index()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::quad_index ( const unsigned int  i)
static

Quad index of the ith quad bounding this object.

Implemented only for structdim>2, otherwise an exception generated.

◆ at_boundary()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::at_boundary ( ) const

Return whether this point is at the boundary of the one-dimensional triangulation we deal with here.

◆ boundary_id()

template<int spacedim>
types::boundary_id TriaAccessor< 0, 1, spacedim >::boundary_id ( ) const

Return the boundary indicator of this object. The convention for one dimensional triangulations is that left end vertices (of each line segment from which the triangulation may be constructed) have boundary indicator zero, and right end vertices have boundary indicator one, unless explicitly set differently.

If the return value is the special value numbers::internal_face_boundary_id, then this object is in the interior of the domain.

See also
Glossary entry on boundary indicators

◆ get_manifold()

template<int spacedim>
const Manifold<1,spacedim>& TriaAccessor< 0, 1, spacedim >::get_manifold ( ) const

Return a constant reference to the manifold object used for this object.

◆ manifold_id()

template<int spacedim>
types::manifold_id TriaAccessor< 0, 1, spacedim >::manifold_id ( ) const

Return the manifold indicator of this object.

See also
Glossary entry on manifold indicators

◆ has_children()

template<int spacedim>
static bool TriaAccessor< 0, 1, spacedim >::has_children ( )
static

Test whether the object has children. Always false.

◆ n_children()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::n_children ( )
static

Return the number of immediate children of this object.This is always zero in dimension 0.

◆ number_of_children()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::number_of_children ( )
static

Compute and return the number of active descendants of this objects. Always zero.

◆ max_refinement_depth()

template<int spacedim>
static unsigned int TriaAccessor< 0, 1, spacedim >::max_refinement_depth ( )
static

Return the number of times that this object is refined. Always 0.

◆ refinement_case()

template<int spacedim>
static RefinementCase<0> TriaAccessor< 0, 1, spacedim >::refinement_case ( )
static

Always return no refinement.

◆ used()

template<int spacedim>
bool TriaAccessor< 0, 1, spacedim >::used ( ) const

Return whether the vertex pointed to here is used.

Member Data Documentation

◆ space_dimension

template<int spacedim>
const unsigned int TriaAccessor< 0, 1, spacedim >::space_dimension = spacedim
static

Dimension of the space the object represented by this accessor lives in. For example, if this accessor represents a quad that is part of a two- dimensional surface in four-dimensional space, then this value is four.

Definition at line 1983 of file tria_accessor.h.

◆ dimension

template<int spacedim>
const unsigned int TriaAccessor< 0, 1, spacedim >::dimension = 1
static

Dimensionality of the object that the thing represented by this accessor is part of. For example, if this accessor represents a line that is part of a hexahedron, then this value will be three.

Definition at line 1990 of file tria_accessor.h.

◆ structure_dimension

template<int spacedim>
const unsigned int TriaAccessor< 0, 1, spacedim >::structure_dimension = 0
static

Dimensionality of the current object represented by this accessor. For example, if it is line (irrespective of whether it is part of a quad or hex, and what dimension we are in), then this value equals 1.

Definition at line 1997 of file tria_accessor.h.

◆ tria

template<int spacedim>
const Triangulation<1,spacedim>* TriaAccessor< 0, 1, spacedim >::tria
protected

Pointer to the triangulation we operate on.

Definition at line 2400 of file tria_accessor.h.

◆ vertex_kind

template<int spacedim>
VertexKind TriaAccessor< 0, 1, spacedim >::vertex_kind
protected

Whether this is a left end, right end, or interior vertex. This information is provided by the cell at the time of creation.

Definition at line 2406 of file tria_accessor.h.

◆ global_vertex_index

template<int spacedim>
unsigned int TriaAccessor< 0, 1, spacedim >::global_vertex_index
protected

The global vertex index of the vertex this object corresponds to.

Definition at line 2411 of file tria_accessor.h.


The documentation for this class was generated from the following file: