Reference documentation for deal.II version 9.0.0
|
#include <deal.II/base/quadrature_lib.h>
Public Member Functions | |
QTrianglePolar (const Quadrature< 1 > &radial_quadrature, const Quadrature< 1 > &angular_quadrature) | |
QTrianglePolar (const unsigned int &n) | |
Public Member Functions inherited from QSimplex< 2 > | |
QSimplex (const Quadrature< dim > &quad) | |
Quadrature< dim > | compute_affine_transformation (const std::array< Point< dim >, dim+1 > &vertices) const |
Public Member Functions inherited from Quadrature< dim > | |
Quadrature (const unsigned int n_quadrature_points=0) | |
Quadrature (const SubQuadrature &, const Quadrature< 1 > &) | |
Quadrature (const Quadrature< dim !=1 ? 1 :0 > &quadrature_1d) | |
Quadrature (const Quadrature< dim > &q) | |
Quadrature (Quadrature< dim > &&) noexcept=default | |
Quadrature (const std::vector< Point< dim > > &points, const std::vector< double > &weights) | |
Quadrature (const std::vector< Point< dim > > &points) | |
Quadrature (const Point< dim > &point) | |
virtual | ~Quadrature ()=default |
Quadrature & | operator= (const Quadrature< dim > &) |
Quadrature & | operator= (Quadrature< dim > &&)=default |
bool | operator== (const Quadrature< dim > &p) const |
void | initialize (const std::vector< Point< dim > > &points, const std::vector< double > &weights) |
unsigned int | size () const |
const Point< dim > & | point (const unsigned int i) const |
const std::vector< Point< dim > > & | get_points () const |
double | weight (const unsigned int i) const |
const std::vector< double > & | get_weights () const |
std::size_t | memory_consumption () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
bool | is_tensor_product () const |
std::conditional< dim==1, std::array< Quadrature< 1 >, dim >, const std::array< Quadrature< 1 >, dim > & >::type | get_tensor_basis () const |
Public Member Functions inherited from Subscriptor | |
Subscriptor () | |
Subscriptor (const Subscriptor &) | |
Subscriptor (Subscriptor &&) noexcept | |
virtual | ~Subscriptor () |
Subscriptor & | operator= (const Subscriptor &) |
Subscriptor & | operator= (Subscriptor &&) noexcept |
void | subscribe (const char *identifier=nullptr) const |
void | unsubscribe (const char *identifier=nullptr) const |
unsigned int | n_subscriptions () const |
void | list_subscribers () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Additional Inherited Members | |
Public Types inherited from Quadrature< dim > | |
typedef Quadrature< dim-1 > | SubQuadrature |
Static Public Member Functions inherited from Subscriptor | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Protected Attributes inherited from Quadrature< dim > | |
std::vector< Point< dim > > | quadrature_points |
std::vector< double > | weights |
bool | is_tensor_product_flag |
std::unique_ptr< std::array< Quadrature< 1 >, dim > > | tensor_basis |
A quadrature that implements a polar transformation from a square to a triangle to integrate singularities in the origin of the reference simplex. The quadrature is obtained through the following polar transformation:
\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{\hat x}{\sin(\theta)+\cos(\theta)} cos(\theta) \\ \frac{\hat x}{\sin(\theta)+\cos(\theta)} sin(\theta) \end{pmatrix} \qquad \theta := \frac\pi 2 \hat y \]
Definition at line 671 of file quadrature_lib.h.
QTrianglePolar::QTrianglePolar | ( | const Quadrature< 1 > & | radial_quadrature, |
const Quadrature< 1 > & | angular_quadrature | ||
) |
Construct a QTrianglePolar quadrature, with different formulas in the radial and angular directions.
radial_quadrature | Radial quadrature |
angular_quadrature | Angular quadrature |
Definition at line 1242 of file quadrature_lib.cc.
QTrianglePolar::QTrianglePolar | ( | const unsigned int & | n | ) |
Call the other constructor, with QGauss<1>(n) for both radial and angular quadrature.
n | Order of QGauss quadrature |
Definition at line 1272 of file quadrature_lib.cc.