Reference documentation for deal.II version 9.0.0
Public Member Functions | List of all members
QGaussLobatto< dim > Class Template Reference

#include <deal.II/base/quadrature_lib.h>

Inheritance diagram for QGaussLobatto< dim >:
[legend]

Public Member Functions

 QGaussLobatto (const unsigned int n)
 
- Public Member Functions inherited from Quadrature< dim >
 Quadrature (const unsigned int n_quadrature_points=0)
 
 Quadrature (const SubQuadrature &, const Quadrature< 1 > &)
 
 Quadrature (const Quadrature< dim !=1 ? 1 :0 > &quadrature_1d)
 
 Quadrature (const Quadrature< dim > &q)
 
 Quadrature (Quadrature< dim > &&) noexcept=default
 
 Quadrature (const std::vector< Point< dim > > &points, const std::vector< double > &weights)
 
 Quadrature (const std::vector< Point< dim > > &points)
 
 Quadrature (const Point< dim > &point)
 
virtual ~Quadrature ()=default
 
Quadratureoperator= (const Quadrature< dim > &)
 
Quadratureoperator= (Quadrature< dim > &&)=default
 
bool operator== (const Quadrature< dim > &p) const
 
void initialize (const std::vector< Point< dim > > &points, const std::vector< double > &weights)
 
unsigned int size () const
 
const Point< dim > & point (const unsigned int i) const
 
const std::vector< Point< dim > > & get_points () const
 
double weight (const unsigned int i) const
 
const std::vector< double > & get_weights () const
 
std::size_t memory_consumption () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
bool is_tensor_product () const
 
std::conditional< dim==1, std::array< Quadrature< 1 >, dim >, const std::array< Quadrature< 1 >, dim > & >::type get_tensor_basis () const
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&) noexcept
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&) noexcept
 
void subscribe (const char *identifier=nullptr) const
 
void unsubscribe (const char *identifier=nullptr) const
 
unsigned int n_subscriptions () const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Additional Inherited Members

- Public Types inherited from Quadrature< dim >
typedef Quadrature< dim-1 > SubQuadrature
 
- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
- Protected Attributes inherited from Quadrature< dim >
std::vector< Point< dim > > quadrature_points
 
std::vector< double > weights
 
bool is_tensor_product_flag
 
std::unique_ptr< std::array< Quadrature< 1 >, dim > > tensor_basis
 

Detailed Description

template<int dim>
class QGaussLobatto< dim >

The Gauss-Lobatto family of quadrature rules for numerical integration.

This modification of the Gauss quadrature uses the two interval end points as well. Being exact for polynomials of degree 2n-3, this formula is suboptimal by two degrees.

The quadrature points are interval end points plus the roots of the derivative of the Legendre polynomial Pn-1 of degree n-1. The quadrature weights are 2/(n(n-1)(Pn-1(xi)2).

Note
This implementation has not been optimized concerning numerical stability and efficiency. It can be easily adapted to the general case of Gauss-Lobatto-Jacobi-Bouzitat quadrature with arbitrary parameters \(\alpha\), \(\beta\), of which the Gauss-Lobatto-Legendre quadrature ( \(\alpha = \beta = 0\)) is a special case.
See also
http://en.wikipedia.org/wiki/Handbook_of_Mathematical_Functions
Karniadakis, G.E. and Sherwin, S.J.: Spectral/hp element methods for computational fluid dynamics. Oxford: Oxford University Press, 2005
Author
Guido Kanschat, 2005, 2006; F. Prill, 2006

Definition at line 75 of file quadrature_lib.h.

Constructor & Destructor Documentation

◆ QGaussLobatto()

template<int dim>
QGaussLobatto< dim >::QGaussLobatto ( const unsigned int  n)

Generate a formula with n quadrature points (in each space direction).

Definition at line 810 of file quadrature_lib.cc.


The documentation for this class was generated from the following files: