Reference documentation for deal.II version 9.0.0
Public Member Functions | List of all members
QAnisotropic< dim > Class Template Reference

#include <deal.II/base/quadrature.h>

Inheritance diagram for QAnisotropic< dim >:
[legend]

Public Member Functions

 QAnisotropic (const Quadrature< 1 > &qx)
 
 QAnisotropic (const Quadrature< 1 > &qx, const Quadrature< 1 > &qy)
 
 QAnisotropic (const Quadrature< 1 > &qx, const Quadrature< 1 > &qy, const Quadrature< 1 > &qz)
 
- Public Member Functions inherited from Quadrature< dim >
 Quadrature (const unsigned int n_quadrature_points=0)
 
 Quadrature (const SubQuadrature &, const Quadrature< 1 > &)
 
 Quadrature (const Quadrature< dim !=1 ? 1 :0 > &quadrature_1d)
 
 Quadrature (const Quadrature< dim > &q)
 
 Quadrature (Quadrature< dim > &&) noexcept=default
 
 Quadrature (const std::vector< Point< dim > > &points, const std::vector< double > &weights)
 
 Quadrature (const std::vector< Point< dim > > &points)
 
 Quadrature (const Point< dim > &point)
 
virtual ~Quadrature ()=default
 
Quadratureoperator= (const Quadrature< dim > &)
 
Quadratureoperator= (Quadrature< dim > &&)=default
 
bool operator== (const Quadrature< dim > &p) const
 
void initialize (const std::vector< Point< dim > > &points, const std::vector< double > &weights)
 
unsigned int size () const
 
const Point< dim > & point (const unsigned int i) const
 
const std::vector< Point< dim > > & get_points () const
 
double weight (const unsigned int i) const
 
const std::vector< double > & get_weights () const
 
std::size_t memory_consumption () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
bool is_tensor_product () const
 
std::conditional< dim==1, std::array< Quadrature< 1 >, dim >, const std::array< Quadrature< 1 >, dim > & >::type get_tensor_basis () const
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&) noexcept
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&) noexcept
 
void subscribe (const char *identifier=nullptr) const
 
void unsubscribe (const char *identifier=nullptr) const
 
unsigned int n_subscriptions () const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Additional Inherited Members

- Public Types inherited from Quadrature< dim >
typedef Quadrature< dim-1 > SubQuadrature
 
- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
- Protected Attributes inherited from Quadrature< dim >
std::vector< Point< dim > > quadrature_points
 
std::vector< double > weights
 
bool is_tensor_product_flag
 
std::unique_ptr< std::array< Quadrature< 1 >, dim > > tensor_basis
 

Detailed Description

template<int dim>
class QAnisotropic< dim >

Quadrature formula implementing anisotropic distributions of quadrature points on the reference cell. To this end, the tensor product of dim one-dimensional quadrature formulas is generated.

Note
Each constructor can only be used in the dimension matching the number of arguments.
Author
Guido Kanschat, 2005

Definition at line 288 of file quadrature.h.

Constructor & Destructor Documentation

◆ QAnisotropic() [1/3]

template<int dim>
QAnisotropic< dim >::QAnisotropic ( const Quadrature< 1 > &  qx)

Constructor for a one-dimensional formula. This one just copies the given quadrature rule.

Definition at line 359 of file quadrature.cc.

◆ QAnisotropic() [2/3]

template<int dim>
QAnisotropic< dim >::QAnisotropic ( const Quadrature< 1 > &  qx,
const Quadrature< 1 > &  qy 
)

Constructor for a two-dimensional formula.

Definition at line 376 of file quadrature.cc.

◆ QAnisotropic() [3/3]

template<int dim>
QAnisotropic< dim >::QAnisotropic ( const Quadrature< 1 > &  qx,
const Quadrature< 1 > &  qy,
const Quadrature< 1 > &  qz 
)

Constructor for a three-dimensional formula.

Definition at line 407 of file quadrature.cc.


The documentation for this class was generated from the following files: