Reference documentation for deal.II version 9.0.0
|
#include <deal.II/base/polynomials_rannacher_turek.h>
Public Member Functions | |
PolynomialsRannacherTurek () | |
double | compute_value (const unsigned int i, const Point< dim > &p) const |
template<int order> | |
Tensor< order, dim > | compute_derivative (const unsigned int i, const Point< dim > &p) const |
Tensor< 1, dim > | compute_grad (const unsigned int i, const Point< dim > &p) const |
Tensor< 2, dim > | compute_grad_grad (const unsigned int i, const Point< dim > &p) const |
void | compute (const Point< dim > &unit_point, std::vector< double > &values, std::vector< Tensor< 1, dim > > &grads, std::vector< Tensor< 2, dim > > &grad_grads, std::vector< Tensor< 3, dim > > &third_derivatives, std::vector< Tensor< 4, dim > > &fourth_derivatives) const |
Static Public Attributes | |
static const unsigned int | dimension = dim |
Basis for polynomial space on the unit square used for lowest order Rannacher Turek element.
The i-th basis function is the dual basis element corresponding to the dof which evaluates the function's mean value across the i-th face. The numbering can be found in GeometryInfo.
Definition at line 40 of file polynomials_rannacher_turek.h.
PolynomialsRannacherTurek< dim >::PolynomialsRannacherTurek | ( | ) |
Constructor, checking that the basis is implemented in this dimension.
Definition at line 24 of file polynomials_rannacher_turek.cc.
double PolynomialsRannacherTurek< dim >::compute_value | ( | const unsigned int | i, |
const Point< dim > & | p | ||
) | const |
Value of basis function i
at p
.
Definition at line 32 of file polynomials_rannacher_turek.cc.
Tensor< order, dim > PolynomialsRannacherTurek< dim >::compute_derivative | ( | const unsigned int | i, |
const Point< dim > & | p | ||
) | const |
order
-th of basis function i
at p
.
Consider using compute() instead.
Definition at line 199 of file polynomials_rannacher_turek.h.
Tensor< 1, dim > PolynomialsRannacherTurek< dim >::compute_grad | ( | const unsigned int | i, |
const Point< dim > & | p | ||
) | const |
Gradient of basis function i
at p
.
Definition at line 60 of file polynomials_rannacher_turek.cc.
Tensor< 2, dim > PolynomialsRannacherTurek< dim >::compute_grad_grad | ( | const unsigned int | i, |
const Point< dim > & | p | ||
) | const |
Gradient of gradient of basis function i
at p
.
Definition at line 97 of file polynomials_rannacher_turek.cc.
void PolynomialsRannacherTurek< dim >::compute | ( | const Point< dim > & | unit_point, |
std::vector< double > & | values, | ||
std::vector< Tensor< 1, dim > > & | grads, | ||
std::vector< Tensor< 2, dim > > & | grad_grads, | ||
std::vector< Tensor< 3, dim > > & | third_derivatives, | ||
std::vector< Tensor< 4, dim > > & | fourth_derivatives | ||
) | const |
Compute values and derivatives of all basis functions at unit_point
.
Size of the vectors must be either equal to the number of polynomials or zero. A size of zero means that we are not computing the vector entries.
Definition at line 137 of file polynomials_rannacher_turek.cc.
|
static |
Dimension we are working in.
Definition at line 46 of file polynomials_rannacher_turek.h.