Reference documentation for deal.II version 9.0.0
|
#include <deal.II/base/polynomials_integrated_legendre_sz.h>
Public Member Functions | |
IntegratedLegendreSZ (const unsigned int p) | |
Public Member Functions inherited from Polynomials::Polynomial< double > | |
Polynomial (const std::vector< double > &coefficients) | |
Polynomial (const unsigned int n) | |
Polynomial (const std::vector< Point< 1 > > &lagrange_support_points, const unsigned int evaluation_point) | |
Polynomial () | |
double | value (const double x) const |
void | value (const double x, std::vector< double > &values) const |
void | value (const double x, const unsigned int n_derivatives, double *values) const |
unsigned int | degree () const |
void | scale (const double factor) |
void | shift (const number2 offset) |
Polynomial< double > | derivative () const |
Polynomial< double > | primitive () const |
Polynomial< double > & | operator*= (const double s) |
Polynomial< double > & | operator*= (const Polynomial< double > &p) |
Polynomial< double > & | operator+= (const Polynomial< double > &p) |
Polynomial< double > & | operator-= (const Polynomial< double > &p) |
bool | operator== (const Polynomial< double > &p) const |
void | print (std::ostream &out) const |
void | serialize (Archive &ar, const unsigned int version) |
Public Member Functions inherited from Subscriptor | |
Subscriptor () | |
Subscriptor (const Subscriptor &) | |
Subscriptor (Subscriptor &&) noexcept | |
virtual | ~Subscriptor () |
Subscriptor & | operator= (const Subscriptor &) |
Subscriptor & | operator= (Subscriptor &&) noexcept |
void | subscribe (const char *identifier=nullptr) const |
void | unsubscribe (const char *identifier=nullptr) const |
unsigned int | n_subscriptions () const |
void | list_subscribers () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Static Public Member Functions | |
static std::vector< Polynomials::Polynomial< double > > | generate_complete_basis (const unsigned int degree) |
Static Public Member Functions inherited from Subscriptor | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Static Private Member Functions | |
static const std::vector< double > | get_coefficients (const unsigned int k) |
Additional Inherited Members | |
Protected Member Functions inherited from Polynomials::Polynomial< double > | |
void | transform_into_standard_form () |
Static Protected Member Functions inherited from Polynomials::Polynomial< double > | |
static void | scale (std::vector< double > &coefficients, const double factor) |
static void | shift (std::vector< double > &coefficients, const number2 shift) |
static void | multiply (std::vector< double > &coefficients, const double factor) |
Protected Attributes inherited from Polynomials::Polynomial< double > | |
std::vector< double > | coefficients |
bool | in_lagrange_product_form |
std::vector< double > | lagrange_support_points |
double | lagrange_weight |
Class implementing the integrated Legendre polynomials described in the PhD thesis of Sabine Zaglmayr.
This class was written based upon the existing deal.II Legendre class as a base, but with the coefficients adjusted so that the recursive formula is for the integrated Legendre polynomials described in the PhD thesis of Sabine Zaglmayr. The polynomials can be generated recursively from:
However, it is also possible to generate them directly from the Legendre polynomials:
\(L_{n} = \frac{l_{n} - l_{n-2}}{2n-1)}\)
Definition at line 48 of file polynomials_integrated_legendre_sz.h.
IntegratedLegendreSZ::IntegratedLegendreSZ | ( | const unsigned int | p | ) |
Constructor generating the coefficients of the polynomials at degree p.
Definition at line 21 of file polynomials_integrated_legendre_sz.cc.
|
static |
Return the complete set of Integrated Legendre polynomials up to the given degree.
Definition at line 75 of file polynomials_integrated_legendre_sz.cc.
|
staticprivate |
Main function to compute the co-efficients of the polynomial at degree p.
Definition at line 28 of file polynomials_integrated_legendre_sz.cc.