Reference documentation for deal.II version 9.0.0
Public Member Functions | Private Attributes | List of all members
FE_Nothing< dim, spacedim > Class Template Reference

#include <deal.II/fe/fe_nothing.h>

Inheritance diagram for FE_Nothing< dim, spacedim >:
[legend]

Public Member Functions

 FE_Nothing (const unsigned int n_components=1, const bool dominate=false)
 
virtual std::unique_ptr< FiniteElement< dim, spacedim > > clone () const override
 
virtual std::string get_name () const override
 
virtual UpdateFlags requires_update_flags (const UpdateFlags update_flags) const override
 
virtual double shape_value (const unsigned int i, const Point< dim > &p) const override
 
virtual std::unique_ptr< typename FiniteElement< dim, spacedim >::InternalDataBaseget_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const override
 
virtual FiniteElementDomination::Domination compare_for_face_domination (const FiniteElement< dim, spacedim > &fe_other) const override
 
virtual std::vector< std::pair< unsigned int, unsigned int > > hp_vertex_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const override
 
virtual std::vector< std::pair< unsigned int, unsigned int > > hp_line_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const override
 
virtual std::vector< std::pair< unsigned int, unsigned int > > hp_quad_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const override
 
virtual bool hp_constraints_are_implemented () const override
 
virtual void get_interpolation_matrix (const FiniteElement< dim, spacedim > &source_fe, FullMatrix< double > &interpolation_matrix) const override
 
virtual void get_face_interpolation_matrix (const FiniteElement< dim, spacedim > &source_fe, FullMatrix< double > &interpolation_matrix) const override
 
virtual void get_subface_interpolation_matrix (const FiniteElement< dim, spacedim > &source_fe, const unsigned int index, FullMatrix< double > &interpolation_matrix) const override
 
bool is_dominating () const
 
virtual bool operator== (const FiniteElement< dim, spacedim > &fe) const override
 
- Public Member Functions inherited from FiniteElement< dim, spacedim >
 FiniteElement (const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components)
 
 FiniteElement (FiniteElement< dim, spacedim > &&)=default
 
 FiniteElement (const FiniteElement< dim, spacedim > &)=default
 
virtual ~FiniteElement ()=default
 
std::pair< std::unique_ptr< FiniteElement< dim, spacedim > >, unsigned int > operator^ (const unsigned int multiplicity) const
 
const FiniteElement< dim, spacedim > & operator[] (const unsigned int fe_index) const
 
bool operator!= (const FiniteElement< dim, spacedim > &) const
 
virtual std::size_t memory_consumption () const
 
virtual double shape_value_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const
 
virtual Tensor< 1, dim > shape_grad (const unsigned int i, const Point< dim > &p) const
 
virtual Tensor< 1, dim > shape_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const
 
virtual Tensor< 2, dim > shape_grad_grad (const unsigned int i, const Point< dim > &p) const
 
virtual Tensor< 2, dim > shape_grad_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const
 
virtual Tensor< 3, dim > shape_3rd_derivative (const unsigned int i, const Point< dim > &p) const
 
virtual Tensor< 3, dim > shape_3rd_derivative_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const
 
virtual Tensor< 4, dim > shape_4th_derivative (const unsigned int i, const Point< dim > &p) const
 
virtual Tensor< 4, dim > shape_4th_derivative_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const
 
virtual bool has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const
 
virtual const FullMatrix< double > & get_restriction_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const
 
virtual const FullMatrix< double > & get_prolongation_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const
 
bool prolongation_is_implemented () const
 
bool isotropic_prolongation_is_implemented () const
 
bool restriction_is_implemented () const
 
bool isotropic_restriction_is_implemented () const
 
bool restriction_is_additive (const unsigned int index) const
 
const FullMatrix< double > & constraints (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const
 
bool constraints_are_implemented (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const
 
std::pair< unsigned int, unsigned int > system_to_component_index (const unsigned int index) const
 
unsigned int component_to_system_index (const unsigned int component, const unsigned int index) const
 
std::pair< unsigned int, unsigned int > face_system_to_component_index (const unsigned int index) const
 
unsigned int adjust_quad_dof_index_for_face_orientation (const unsigned int index, const bool face_orientation, const bool face_flip, const bool face_rotation) const
 
virtual unsigned int face_to_cell_index (const unsigned int face_dof_index, const unsigned int face, const bool face_orientation=true, const bool face_flip=false, const bool face_rotation=false) const
 
unsigned int adjust_line_dof_index_for_line_orientation (const unsigned int index, const bool line_orientation) const
 
const ComponentMaskget_nonzero_components (const unsigned int i) const
 
unsigned int n_nonzero_components (const unsigned int i) const
 
bool is_primitive () const
 
bool is_primitive (const unsigned int i) const
 
unsigned int n_base_elements () const
 
virtual const FiniteElement< dim, spacedim > & base_element (const unsigned int index) const
 
unsigned int element_multiplicity (const unsigned int index) const
 
const FiniteElement< dim, spacedim > & get_sub_fe (const ComponentMask &mask) const
 
virtual const FiniteElement< dim, spacedim > & get_sub_fe (const unsigned int first_component, const unsigned int n_selected_components) const
 
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > system_to_base_index (const unsigned int index) const
 
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > face_system_to_base_index (const unsigned int index) const
 
types::global_dof_index first_block_of_base (const unsigned int b) const
 
std::pair< unsigned int, unsigned int > component_to_base_index (const unsigned int component) const
 
std::pair< unsigned int, unsigned int > block_to_base_index (const unsigned int block) const
 
std::pair< unsigned int, types::global_dof_indexsystem_to_block_index (const unsigned int component) const
 
unsigned int component_to_block_index (const unsigned int component) const
 
ComponentMask component_mask (const FEValuesExtractors::Scalar &scalar) const
 
ComponentMask component_mask (const FEValuesExtractors::Vector &vector) const
 
ComponentMask component_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const
 
ComponentMask component_mask (const BlockMask &block_mask) const
 
BlockMask block_mask (const FEValuesExtractors::Scalar &scalar) const
 
BlockMask block_mask (const FEValuesExtractors::Vector &vector) const
 
BlockMask block_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const
 
BlockMask block_mask (const ComponentMask &component_mask) const
 
virtual std::pair< Table< 2, bool >, std::vector< unsigned int > > get_constant_modes () const
 
const std::vector< Point< dim > > & get_unit_support_points () const
 
bool has_support_points () const
 
virtual Point< dim > unit_support_point (const unsigned int index) const
 
const std::vector< Point< dim-1 > > & get_unit_face_support_points () const
 
bool has_face_support_points () const
 
virtual Point< dim-1 > unit_face_support_point (const unsigned int index) const
 
const std::vector< Point< dim > > & get_generalized_support_points () const
 
bool has_generalized_support_points () const
 
const std::vector< Point< dim-1 > > & get_generalized_face_support_points () const
 
bool has_generalized_face_support_points () const
 
GeometryPrimitive get_associated_geometry_primitive (const unsigned int cell_dof_index) const
 
virtual void convert_generalized_support_point_values_to_dof_values (const std::vector< Vector< double > > &support_point_values, std::vector< double > &nodal_values) const
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&) noexcept
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&) noexcept
 
void subscribe (const char *identifier=nullptr) const
 
void unsubscribe (const char *identifier=nullptr) const
 
unsigned int n_subscriptions () const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
- Public Member Functions inherited from FiniteElementData< dim >
 FiniteElementData (const std::vector< unsigned int > &dofs_per_object, const unsigned int n_components, const unsigned int degree, const Conformity conformity=unknown, const BlockIndices &block_indices=BlockIndices())
 
unsigned int n_dofs_per_vertex () const
 
unsigned int n_dofs_per_line () const
 
unsigned int n_dofs_per_quad () const
 
unsigned int n_dofs_per_hex () const
 
unsigned int n_dofs_per_face () const
 
unsigned int n_dofs_per_cell () const
 
template<int structdim>
unsigned int n_dofs_per_object () const
 
unsigned int n_components () const
 
unsigned int n_blocks () const
 
const BlockIndicesblock_indices () const
 
unsigned int tensor_degree () const
 
bool conforms (const Conformity) const
 
bool operator== (const FiniteElementData &) const
 

Private Attributes

const bool dominate
 

Additional Inherited Members

- Public Types inherited from FiniteElementData< dim >
enum  Conformity {
  unknown = 0x00, L2 = 0x01, Hcurl = 0x02, Hdiv = 0x04,
  H1 = Hcurl | Hdiv, H2 = 0x0e
}
 
- Static Public Member Functions inherited from FiniteElement< dim, spacedim >
static ::ExceptionBaseExcShapeFunctionNotPrimitive (int arg1)
 
static ::ExceptionBaseExcFENotPrimitive ()
 
static ::ExceptionBaseExcUnitShapeValuesDoNotExist ()
 
static ::ExceptionBaseExcFEHasNoSupportPoints ()
 
static ::ExceptionBaseExcEmbeddingVoid ()
 
static ::ExceptionBaseExcProjectionVoid ()
 
static ::ExceptionBaseExcWrongInterfaceMatrixSize (int arg1, int arg2)
 
static ::ExceptionBaseExcInterpolationNotImplemented ()
 
- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
- Public Attributes inherited from FiniteElementData< dim >
const unsigned int dofs_per_vertex
 
const unsigned int dofs_per_line
 
const unsigned int dofs_per_quad
 
const unsigned int dofs_per_hex
 
const unsigned int first_line_index
 
const unsigned int first_quad_index
 
const unsigned int first_hex_index
 
const unsigned int first_face_line_index
 
const unsigned int first_face_quad_index
 
const unsigned int dofs_per_face
 
const unsigned int dofs_per_cell
 
const unsigned int components
 
const unsigned int degree
 
const Conformity conforming_space
 
const BlockIndices block_indices_data
 
- Static Public Attributes inherited from FiniteElement< dim, spacedim >
static const unsigned int space_dimension = spacedim
 
- Static Public Attributes inherited from FiniteElementData< dim >
static const unsigned int dimension = dim
 
- Protected Member Functions inherited from FiniteElement< dim, spacedim >
void reinit_restriction_and_prolongation_matrices (const bool isotropic_restriction_only=false, const bool isotropic_prolongation_only=false)
 
TableIndices< 2 > interface_constraints_size () const
 
virtual std::unique_ptr< InternalDataBaseget_face_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim-1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const
 
virtual std::unique_ptr< InternalDataBaseget_subface_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim-1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const
 
virtual void fill_fe_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const CellSimilarity::Similarity cell_similarity, const Quadrature< dim > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const =0
 
virtual void fill_fe_face_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const Quadrature< dim-1 > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const =0
 
virtual void fill_fe_subface_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int sub_no, const Quadrature< dim-1 > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const =0
 
- Static Protected Member Functions inherited from FiniteElement< dim, spacedim >
static std::vector< unsigned int > compute_n_nonzero_components (const std::vector< ComponentMask > &nonzero_components)
 
- Protected Attributes inherited from FiniteElement< dim, spacedim >
std::vector< std::vector< FullMatrix< double > > > restriction
 
std::vector< std::vector< FullMatrix< double > > > prolongation
 
FullMatrix< double > interface_constraints
 
std::vector< Point< dim > > unit_support_points
 
std::vector< Point< dim-1 > > unit_face_support_points
 
std::vector< Point< dim > > generalized_support_points
 
std::vector< Point< dim-1 > > generalized_face_support_points
 
Table< 2, int > adjust_quad_dof_index_for_face_orientation_table
 
std::vector< int > adjust_line_dof_index_for_line_orientation_table
 
std::vector< std::pair< unsigned int, unsigned int > > system_to_component_table
 
std::vector< std::pair< unsigned int, unsigned int > > face_system_to_component_table
 
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > system_to_base_table
 
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > face_system_to_base_table
 
BlockIndices base_to_block_indices
 
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > component_to_base_table
 
const std::vector< bool > restriction_is_additive_flags
 
const std::vector< ComponentMasknonzero_components
 
const std::vector< unsigned int > n_nonzero_components_table
 
const bool cached_primitivity
 

Detailed Description

template<int dim, int spacedim = dim>
class FE_Nothing< dim, spacedim >

Definition of a finite element with zero degrees of freedom. This class is useful (in the context of an hp method) to represent empty cells in the triangulation on which no degrees of freedom should be allocated, or to describe a field that is extended by zero to a part of the domain where we don't need it. Thus a triangulation may be divided into two regions: an active region where normal elements are used, and an inactive region where FE_Nothing elements are used. The hp::DoFHandler will therefore assign no degrees of freedom to the FE_Nothing cells, and this subregion is therefore implicitly deleted from the computation. step-10 and step-46 show use cases for this element. An interesting application for this element is also presented in the paper A. Cangiani, J. Chapman, E. Georgoulis, M. Jensen: Implementation of the Continuous-Discontinuous Galerkin Finite Element Method, arXiv:1201.2878v1 [math.NA], 2012 (see http://arxiv.org/abs/1201.2878).

Note that some care must be taken that the resulting mesh topology continues to make sense when FE_Nothing elements are introduced. This is particularly true when dealing with hanging node constraints, because the library makes some basic assumptions about the nature of those constraints. The following geometries are acceptable:

+---------+----+----+
| | 0 | |
| 1 +----+----+
| | 0 | |
+---------+----+----+
+---------+----+----+
| | 1 | |
| 0 +----+----+
| | 1 | |
+---------+----+----+

Here, 0 denotes an FE_Nothing cell, and 1 denotes some other element type. The library has no difficulty computing the necessary hanging node constraints in these cases (i.e. no constraint). However, the following geometry is NOT acceptable (at least in the current implementation):

+---------+----+----+
| | 0 | |
| 1 +----+----+
| | 1 | |
+---------+----+----+

The distinction lies in the mixed nature of the child faces, a case we have not implemented as of yet.

Author
Joshua White, Wolfgang Bangerth

Definition at line 80 of file fe_nothing.h.

Constructor & Destructor Documentation

◆ FE_Nothing()

template<int dim, int spacedim>
FE_Nothing< dim, spacedim >::FE_Nothing ( const unsigned int  n_components = 1,
const bool  dominate = false 
)

Constructor. First argument denotes the number of components to give this finite element (default = 1).

Second argument decides whether FE_Nothing will dominate any other FE in compare_for_face_domination() (default = false). Therefore at interfaces where, for example, a Q1 meets an FE_Nothing, we will force the traces of the two functions to be the same. Because the FE_Nothing encodes a space that is zero everywhere, this means that the Q1 field will be forced to become zero at this interface.

Definition at line 38 of file fe_nothing.cc.

Member Function Documentation

◆ clone()

template<int dim, int spacedim>
std::unique_ptr< FiniteElement< dim, spacedim > > FE_Nothing< dim, spacedim >::clone ( ) const
overridevirtual

A sort of virtual copy constructor, this function returns a copy of the finite element object. Derived classes need to override the function here in this base class and return an object of the same type as the derived class.

Some places in the library, for example the constructors of FESystem as well as the hp::FECollection class, need to make copies of finite elements without knowing their exact type. They do so through this function.

Implements FiniteElement< dim, spacedim >.

Definition at line 59 of file fe_nothing.cc.

◆ get_name()

template<int dim, int spacedim>
std::string FE_Nothing< dim, spacedim >::get_name ( ) const
overridevirtual

Return a string that uniquely identifies a finite element. In this case it is FE_Nothing<dim>.

Implements FiniteElement< dim, spacedim >.

Definition at line 68 of file fe_nothing.cc.

◆ requires_update_flags()

template<int dim, int spacedim>
UpdateFlags FE_Nothing< dim, spacedim >::requires_update_flags ( const UpdateFlags  update_flags) const
overridevirtual

Given a set of update flags, compute which other quantities also need to be computed in order to satisfy the request by the given flags. Then return the combination of the original set of flags and those just computed.

As an example, if update_flags contains update_gradients a finite element class will typically require the computation of the inverse of the Jacobian matrix in order to rotate the gradient of shape functions on the reference cell to the real cell. It would then return not just update_gradients, but also update_covariant_transformation, the flag that makes the mapping class produce the inverse of the Jacobian matrix.

An extensive discussion of the interaction between this function and FEValues can be found in the How Mapping, FiniteElement, and FEValues work together documentation module.

See also
UpdateFlags

Implements FiniteElement< dim, spacedim >.

Definition at line 88 of file fe_nothing.cc.

◆ shape_value()

template<int dim, int spacedim>
double FE_Nothing< dim, spacedim >::shape_value ( const unsigned int  i,
const Point< dim > &  p 
) const
overridevirtual

Return the value of the ith shape function at the point p. p is a point on the reference element. Because the current element has no degrees of freedom, this function should obviously not be called in practice. All this function really does, therefore, is trigger an exception.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 97 of file fe_nothing.cc.

◆ get_data()

template<int dim, int spacedim>
std::unique_ptr< typename FiniteElement< dim, spacedim >::InternalDataBase > FE_Nothing< dim, spacedim >::get_data ( const UpdateFlags  update_flags,
const Mapping< dim, spacedim > &  mapping,
const Quadrature< dim > &  quadrature,
::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &  output_data 
) const
overridevirtual

Prepare internal data structures and fill in values independent of the cell. Returns a pointer to an object of which the caller of this function then has to assume ownership (which includes destruction when it is no more needed).

In the current case, this function just returns a default pointer, since no meaningful data exists for this element.

Implements FiniteElement< dim, spacedim >.

Definition at line 109 of file fe_nothing.cc.

◆ compare_for_face_domination()

template<int dim, int spacedim>
FiniteElementDomination::Domination FE_Nothing< dim, spacedim >::compare_for_face_domination ( const FiniteElement< dim, spacedim > &  fe_other) const
overridevirtual

Return whether this element dominates the one given as argument when they meet at a common face, whether it is the other way around, whether neither dominates, or if either could dominate.

For a definition of domination, see FiniteElementDomination::Domination and in particular the hp paper.

In the current case, this element is assumed to dominate if the second argument in the constructor dominate is true. When this argument is false and fe_other is also of type FE_Nothing(), either element can dominate. Otherwise there are no_requirements.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 208 of file fe_nothing.cc.

◆ hp_vertex_dof_identities()

template<int dim, int spacedim>
std::vector< std::pair< unsigned int, unsigned int > > FE_Nothing< dim, spacedim >::hp_vertex_dof_identities ( const FiniteElement< dim, spacedim > &  fe_other) const
overridevirtual

If, on a vertex, several finite elements are active, the hp code first assigns the degrees of freedom of each of these FEs different global indices. It then calls this function to find out which of them should get identical values, and consequently can receive the same global DoF index. This function therefore returns a list of identities between DoFs of the present finite element object with the DoFs of fe_other, which is a reference to a finite element object representing one of the other finite elements active on this particular vertex. The function computes which of the degrees of freedom of the two finite element objects are equivalent, both numbered between zero and the corresponding value of dofs_per_vertex of the two finite elements. The first index of each pair denotes one of the vertex dofs of the present element, whereas the second is the corresponding index of the other finite element.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 231 of file fe_nothing.cc.

◆ hp_line_dof_identities()

template<int dim, int spacedim>
std::vector< std::pair< unsigned int, unsigned int > > FE_Nothing< dim, spacedim >::hp_line_dof_identities ( const FiniteElement< dim, spacedim > &  fe_other) const
overridevirtual

Same as hp_vertex_dof_indices(), except that the function treats degrees of freedom on lines.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 244 of file fe_nothing.cc.

◆ hp_quad_dof_identities()

template<int dim, int spacedim>
std::vector< std::pair< unsigned int, unsigned int > > FE_Nothing< dim, spacedim >::hp_quad_dof_identities ( const FiniteElement< dim, spacedim > &  fe_other) const
overridevirtual

Same as hp_vertex_dof_indices(), except that the function treats degrees of freedom on quads.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 257 of file fe_nothing.cc.

◆ hp_constraints_are_implemented()

template<int dim, int spacedim>
bool FE_Nothing< dim, spacedim >::hp_constraints_are_implemented ( ) const
overridevirtual

Return whether this element implements its hanging node constraints in the new way, which has to be used to make elements "hp compatible". That means, the element properly implements the get_face_interpolation_matrix and get_subface_interpolation_matrix methods. Therefore the return value also indicates whether a call to the get_face_interpolation_matrix() method and the get_subface_interpolation_matrix() method will generate an error or not.

Currently the main purpose of this function is to allow the make_hanging_node_constraints method to decide whether the new procedures, which are supposed to work in the hp framework can be used, or if the old well verified but not hp capable functions should be used. Once the transition to the new scheme for computing the interface constraints is complete, this function will be superfluous and will probably go away.

Derived classes should implement this function accordingly. The default assumption is that a finite element does not provide hp capable face interpolation, and the default implementation therefore returns false.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 270 of file fe_nothing.cc.

◆ get_interpolation_matrix()

template<int dim, int spacedim>
void FE_Nothing< dim, spacedim >::get_interpolation_matrix ( const FiniteElement< dim, spacedim > &  source_fe,
FullMatrix< double > &  interpolation_matrix 
) const
overridevirtual

Return the matrix interpolating from the given finite element to the present one. Since the current finite element has no degrees of freedom, the interpolation matrix is necessarily empty.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 280 of file fe_nothing.cc.

◆ get_face_interpolation_matrix()

template<int dim, int spacedim>
void FE_Nothing< dim, spacedim >::get_face_interpolation_matrix ( const FiniteElement< dim, spacedim > &  source_fe,
FullMatrix< double > &  interpolation_matrix 
) const
overridevirtual

Return the matrix interpolating from a face of one element to the face of the neighboring element. The size of the matrix is then source.dofs_per_face times this->dofs_per_face.

Since the current finite element has no degrees of freedom, the interpolation matrix is necessarily empty.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 300 of file fe_nothing.cc.

◆ get_subface_interpolation_matrix()

template<int dim, int spacedim>
void FE_Nothing< dim, spacedim >::get_subface_interpolation_matrix ( const FiniteElement< dim, spacedim > &  source_fe,
const unsigned int  index,
FullMatrix< double > &  interpolation_matrix 
) const
overridevirtual

Return the matrix interpolating from a face of one element to the subface of the neighboring element. The size of the matrix is then source.dofs_per_face times this->dofs_per_face.

Since the current finite element has no degrees of freedom, the interpolation matrix is necessarily empty.

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 319 of file fe_nothing.cc.

◆ is_dominating()

template<int dim, int spacedim>
bool FE_Nothing< dim, spacedim >::is_dominating ( ) const
Returns
true if the FE dominates any other.

Definition at line 176 of file fe_nothing.cc.

◆ operator==()

template<int dim, int spacedim>
bool FE_Nothing< dim, spacedim >::operator== ( const FiniteElement< dim, spacedim > &  fe) const
overridevirtual

Comparison operator. In addition to the fields already checked by FiniteElement::operator==(), this operator also checks for equality of the arguments passed to the constructors of the current object as well as the object against which the comparison is done (which for this purpose obviously also needs to be of type FE_Nothing).

Reimplemented from FiniteElement< dim, spacedim >.

Definition at line 185 of file fe_nothing.cc.

Member Data Documentation

◆ dominate

template<int dim, int spacedim = dim>
const bool FE_Nothing< dim, spacedim >::dominate
private

If true, this element will dominate any other apart from itself in compare_for_face_domination();

Definition at line 273 of file fe_nothing.h.


The documentation for this class was generated from the following files: