Reference documentation for deal.II version 9.0.0
Public Attributes | List of all members
FE_DGVector< PolynomialType, dim, spacedim >::InternalData Class Reference
Inheritance diagram for FE_DGVector< PolynomialType, dim, spacedim >::InternalData:
[legend]

Public Attributes

std::vector< std::vector< Tensor< 1, dim > > > shape_values
 
std::vector< std::vector< Tensor< 2, dim > > > shape_gradients
 
- Public Attributes inherited from FiniteElement< dim, spacedim >::InternalDataBase
UpdateFlags update_each
 

Additional Inherited Members

- Public Member Functions inherited from FiniteElement< dim, spacedim >::InternalDataBase
 InternalDataBase ()
 
virtual ~InternalDataBase ()=default
 
virtual std::size_t memory_consumption () const
 

Detailed Description

template<class PolynomialType, int dim, int spacedim = dim>
class FE_DGVector< PolynomialType, dim, spacedim >::InternalData

Fields of cell-independent data.

For information about the general purpose of this class, see the documentation of the base class.

Definition at line 101 of file fe_dg_vector.h.

Member Data Documentation

◆ shape_values

template<class PolynomialType, int dim, int spacedim = dim>
std::vector<std::vector<Tensor<1,dim> > > FE_DGVector< PolynomialType, dim, spacedim >::InternalData::shape_values

Array with shape function values in quadrature points. There is one row for each shape function, containing values for each quadrature point. Since the shape functions are vector-valued (with as many components as there are space dimensions), the value is a tensor.

In this array, we store the values of the shape function in the quadrature points on the unit cell. The transformation to the real space cell is then simply done by multiplication with the Jacobian of the mapping.

Definition at line 115 of file fe_dg_vector.h.

◆ shape_gradients

template<class PolynomialType, int dim, int spacedim = dim>
std::vector<std::vector<Tensor<2,dim> > > FE_DGVector< PolynomialType, dim, spacedim >::InternalData::shape_gradients

Array with shape function gradients in quadrature points. There is one row for each shape function, containing values for each quadrature point.

We store the gradients in the quadrature points on the unit cell. We then only have to apply the transformation (which is a matrix-vector multiplication) when visiting an actual cell.

Definition at line 126 of file fe_dg_vector.h.


The documentation for this class was generated from the following file: