Reference documentation for deal.II version 9.0.0
|
#include <deal.II/fe/fe_dgp_monomial.h>
Public Member Functions | |
FE_DGPMonomial (const unsigned int p) | |
virtual std::string | get_name () const |
virtual void | get_interpolation_matrix (const FiniteElement< dim > &source, FullMatrix< double > &matrix) const |
virtual void | get_face_interpolation_matrix (const FiniteElement< dim > &source, FullMatrix< double > &matrix) const |
virtual void | get_subface_interpolation_matrix (const FiniteElement< dim > &source, const unsigned int subface, FullMatrix< double > &matrix) const |
virtual bool | has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const |
virtual std::size_t | memory_consumption () const |
virtual std::unique_ptr< FiniteElement< dim, dim > > | clone () const |
template<> | |
bool | has_support_on_face (const unsigned int, const unsigned int face_index) const |
template<> | |
bool | has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const |
template<> | |
bool | has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const |
Functions to support hp | |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_vertex_dof_identities (const FiniteElement< dim > &fe_other) const |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_line_dof_identities (const FiniteElement< dim > &fe_other) const |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_quad_dof_identities (const FiniteElement< dim > &fe_other) const |
virtual bool | hp_constraints_are_implemented () const |
virtual FiniteElementDomination::Domination | compare_for_face_domination (const FiniteElement< dim > &fe_other) const |
Public Member Functions inherited from FE_Poly< PolynomialsP< dim >, dim > | |
FE_Poly (const PolynomialsP< dim > &poly_space, const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components) | |
unsigned int | get_degree () const |
std::vector< unsigned int > | get_poly_space_numbering () const |
std::vector< unsigned int > | get_poly_space_numbering_inverse () const |
virtual double | shape_value (const unsigned int i, const Point< dim > &p) const |
virtual double | shape_value_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 1, dim > | shape_grad (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 1, dim > | shape_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 2, dim > | shape_grad_grad (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 2, dim > | shape_grad_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 3, dim > | shape_3rd_derivative (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 3, dim > | shape_3rd_derivative_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 4, dim > | shape_4th_derivative (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 4, dim > | shape_4th_derivative_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
Public Member Functions inherited from FiniteElement< dim, dim > | |
FiniteElement (const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components) | |
FiniteElement (FiniteElement< dim, spacedim > &&)=default | |
FiniteElement (const FiniteElement< dim, spacedim > &)=default | |
virtual | ~FiniteElement ()=default |
std::pair< std::unique_ptr< FiniteElement< dim, spacedim > >, unsigned int > | operator^ (const unsigned int multiplicity) const |
const FiniteElement< dim, spacedim > & | operator[] (const unsigned int fe_index) const |
virtual bool | operator== (const FiniteElement< dim, spacedim > &fe) const |
bool | operator!= (const FiniteElement< dim, spacedim > &) const |
virtual const FullMatrix< double > & | get_restriction_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const |
virtual const FullMatrix< double > & | get_prolongation_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const |
bool | prolongation_is_implemented () const |
bool | isotropic_prolongation_is_implemented () const |
bool | restriction_is_implemented () const |
bool | isotropic_restriction_is_implemented () const |
bool | restriction_is_additive (const unsigned int index) const |
const FullMatrix< double > & | constraints (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const |
bool | constraints_are_implemented (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const |
virtual void | get_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const |
virtual void | get_face_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const |
virtual void | get_subface_interpolation_matrix (const FiniteElement< dim, spacedim > &source, const unsigned int subface, FullMatrix< double > &matrix) const |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_vertex_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_line_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_quad_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual FiniteElementDomination::Domination | compare_for_face_domination (const FiniteElement< dim, spacedim > &fe_other) const |
std::pair< unsigned int, unsigned int > | system_to_component_index (const unsigned int index) const |
unsigned int | component_to_system_index (const unsigned int component, const unsigned int index) const |
std::pair< unsigned int, unsigned int > | face_system_to_component_index (const unsigned int index) const |
unsigned int | adjust_quad_dof_index_for_face_orientation (const unsigned int index, const bool face_orientation, const bool face_flip, const bool face_rotation) const |
virtual unsigned int | face_to_cell_index (const unsigned int face_dof_index, const unsigned int face, const bool face_orientation=true, const bool face_flip=false, const bool face_rotation=false) const |
unsigned int | adjust_line_dof_index_for_line_orientation (const unsigned int index, const bool line_orientation) const |
const ComponentMask & | get_nonzero_components (const unsigned int i) const |
unsigned int | n_nonzero_components (const unsigned int i) const |
bool | is_primitive () const |
bool | is_primitive (const unsigned int i) const |
unsigned int | n_base_elements () const |
virtual const FiniteElement< dim, spacedim > & | base_element (const unsigned int index) const |
unsigned int | element_multiplicity (const unsigned int index) const |
const FiniteElement< dim, spacedim > & | get_sub_fe (const ComponentMask &mask) const |
virtual const FiniteElement< dim, spacedim > & | get_sub_fe (const unsigned int first_component, const unsigned int n_selected_components) const |
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > | system_to_base_index (const unsigned int index) const |
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > | face_system_to_base_index (const unsigned int index) const |
types::global_dof_index | first_block_of_base (const unsigned int b) const |
std::pair< unsigned int, unsigned int > | component_to_base_index (const unsigned int component) const |
std::pair< unsigned int, unsigned int > | block_to_base_index (const unsigned int block) const |
std::pair< unsigned int, types::global_dof_index > | system_to_block_index (const unsigned int component) const |
unsigned int | component_to_block_index (const unsigned int component) const |
ComponentMask | component_mask (const FEValuesExtractors::Scalar &scalar) const |
ComponentMask | component_mask (const FEValuesExtractors::Vector &vector) const |
ComponentMask | component_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const |
ComponentMask | component_mask (const BlockMask &block_mask) const |
BlockMask | block_mask (const FEValuesExtractors::Scalar &scalar) const |
BlockMask | block_mask (const FEValuesExtractors::Vector &vector) const |
BlockMask | block_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const |
BlockMask | block_mask (const ComponentMask &component_mask) const |
virtual std::pair< Table< 2, bool >, std::vector< unsigned int > > | get_constant_modes () const |
const std::vector< Point< dim > > & | get_unit_support_points () const |
bool | has_support_points () const |
virtual Point< dim > | unit_support_point (const unsigned int index) const |
const std::vector< Point< dim-1 > > & | get_unit_face_support_points () const |
bool | has_face_support_points () const |
virtual Point< dim-1 > | unit_face_support_point (const unsigned int index) const |
const std::vector< Point< dim > > & | get_generalized_support_points () const |
bool | has_generalized_support_points () const |
const std::vector< Point< dim-1 > > & | get_generalized_face_support_points () const |
bool | has_generalized_face_support_points () const |
GeometryPrimitive | get_associated_geometry_primitive (const unsigned int cell_dof_index) const |
virtual void | convert_generalized_support_point_values_to_dof_values (const std::vector< Vector< double > > &support_point_values, std::vector< double > &nodal_values) const |
Public Member Functions inherited from Subscriptor | |
Subscriptor () | |
Subscriptor (const Subscriptor &) | |
Subscriptor (Subscriptor &&) noexcept | |
virtual | ~Subscriptor () |
Subscriptor & | operator= (const Subscriptor &) |
Subscriptor & | operator= (Subscriptor &&) noexcept |
void | subscribe (const char *identifier=nullptr) const |
void | unsubscribe (const char *identifier=nullptr) const |
unsigned int | n_subscriptions () const |
void | list_subscribers () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Public Member Functions inherited from FiniteElementData< dim > | |
FiniteElementData (const std::vector< unsigned int > &dofs_per_object, const unsigned int n_components, const unsigned int degree, const Conformity conformity=unknown, const BlockIndices &block_indices=BlockIndices()) | |
unsigned int | n_dofs_per_vertex () const |
unsigned int | n_dofs_per_line () const |
unsigned int | n_dofs_per_quad () const |
unsigned int | n_dofs_per_hex () const |
unsigned int | n_dofs_per_face () const |
unsigned int | n_dofs_per_cell () const |
template<int structdim> | |
unsigned int | n_dofs_per_object () const |
unsigned int | n_components () const |
unsigned int | n_blocks () const |
const BlockIndices & | block_indices () const |
unsigned int | tensor_degree () const |
bool | conforms (const Conformity) const |
bool | operator== (const FiniteElementData &) const |
Private Member Functions | |
void | initialize_restriction () |
Static Private Member Functions | |
static std::vector< unsigned int > | get_dpo_vector (const unsigned int degree) |
Additional Inherited Members | |
Public Types inherited from FiniteElementData< dim > | |
enum | Conformity { unknown = 0x00, L2 = 0x01, Hcurl = 0x02, Hdiv = 0x04, H1 = Hcurl | Hdiv, H2 = 0x0e } |
Static Public Member Functions inherited from FiniteElement< dim, dim > | |
static ::ExceptionBase & | ExcShapeFunctionNotPrimitive (int arg1) |
static ::ExceptionBase & | ExcFENotPrimitive () |
static ::ExceptionBase & | ExcUnitShapeValuesDoNotExist () |
static ::ExceptionBase & | ExcFEHasNoSupportPoints () |
static ::ExceptionBase & | ExcEmbeddingVoid () |
static ::ExceptionBase & | ExcProjectionVoid () |
static ::ExceptionBase & | ExcWrongInterfaceMatrixSize (int arg1, int arg2) |
static ::ExceptionBase & | ExcInterpolationNotImplemented () |
Static Public Member Functions inherited from Subscriptor | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Public Attributes inherited from FiniteElementData< dim > | |
const unsigned int | dofs_per_vertex |
const unsigned int | dofs_per_line |
const unsigned int | dofs_per_quad |
const unsigned int | dofs_per_hex |
const unsigned int | first_line_index |
const unsigned int | first_quad_index |
const unsigned int | first_hex_index |
const unsigned int | first_face_line_index |
const unsigned int | first_face_quad_index |
const unsigned int | dofs_per_face |
const unsigned int | dofs_per_cell |
const unsigned int | components |
const unsigned int | degree |
const Conformity | conforming_space |
const BlockIndices | block_indices_data |
Static Public Attributes inherited from FiniteElement< dim, dim > | |
static const unsigned int | space_dimension |
Static Public Attributes inherited from FiniteElementData< dim > | |
static const unsigned int | dimension = dim |
Protected Member Functions inherited from FE_Poly< PolynomialsP< dim >, dim > | |
void | correct_third_derivatives (internal::FEValuesImplementation::FiniteElementRelatedData< dim, dim > &output_data, const internal::FEValuesImplementation::MappingRelatedData< dim, dim > &mapping_data, const unsigned int n_q_points, const unsigned int dof) const |
Protected Member Functions inherited from FiniteElement< dim, dim > | |
void | reinit_restriction_and_prolongation_matrices (const bool isotropic_restriction_only=false, const bool isotropic_prolongation_only=false) |
TableIndices< 2 > | interface_constraints_size () const |
virtual std::unique_ptr< InternalDataBase > | get_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
virtual std::unique_ptr< InternalDataBase > | get_face_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim-1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const |
virtual std::unique_ptr< InternalDataBase > | get_subface_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim-1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const |
virtual void | fill_fe_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const CellSimilarity::Similarity cell_similarity, const Quadrature< dim > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
virtual void | fill_fe_face_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const Quadrature< dim-1 > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
virtual void | fill_fe_subface_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int sub_no, const Quadrature< dim-1 > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
Static Protected Member Functions inherited from FiniteElement< dim, dim > | |
static std::vector< unsigned int > | compute_n_nonzero_components (const std::vector< ComponentMask > &nonzero_components) |
Protected Attributes inherited from FE_Poly< PolynomialsP< dim >, dim > | |
PolynomialsP< dim > | poly_space |
Protected Attributes inherited from FiniteElement< dim, dim > | |
std::vector< std::vector< FullMatrix< double > > > | restriction |
std::vector< std::vector< FullMatrix< double > > > | prolongation |
FullMatrix< double > | interface_constraints |
std::vector< Point< dim > > | unit_support_points |
std::vector< Point< dim-1 > > | unit_face_support_points |
std::vector< Point< dim > > | generalized_support_points |
std::vector< Point< dim-1 > > | generalized_face_support_points |
Table< 2, int > | adjust_quad_dof_index_for_face_orientation_table |
std::vector< int > | adjust_line_dof_index_for_line_orientation_table |
std::vector< std::pair< unsigned int, unsigned int > > | system_to_component_table |
std::vector< std::pair< unsigned int, unsigned int > > | face_system_to_component_table |
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | system_to_base_table |
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | face_system_to_base_table |
BlockIndices | base_to_block_indices |
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | component_to_base_table |
const std::vector< bool > | restriction_is_additive_flags |
const std::vector< ComponentMask > | nonzero_components |
const std::vector< unsigned int > | n_nonzero_components_table |
const bool | cached_primitivity |
Discontinuous finite elements based on monomials.
This finite element implements complete polynomial spaces, that is, dim- dimensional polynomials of degree p. For example, in 2d the element FE_DGP(1) would represent the span of the functions \(\{1,\hat x,\hat y\}\), which is in contrast to the element FE_DGQ(1) that is formed by the span of \(\{1,\hat x,\hat y,\hat x\hat y\}\). Since the DGP space has only three unknowns for each quadrilateral, it is immediately clear that this element can not be continuous.
The basis functions for this element are chosen to be the monomials listed above. Note that this is the main difference to the FE_DGP class that uses a set of polynomials of complete degree p
that form a Legendre basis on the unit square. Thus, there, the mass matrix is diagonal, if the grid cells are parallelograms. The basis here does not have this property; however, it is simpler to compute. On the other hand, this element has the additional disadvantage that the local cell matrices usually have a worse condition number than the ones originating from the FE_DGP element.
This class is not implemented for the codimension one case (spacedim != dim
).
It is worth noting that under a (bi-, tri-)linear mapping, the space described by this element does not contain \(P(k)\), even if we use a basis of polynomials of degree \(k\). Consequently, for example, on meshes with non-affine cells, a linear function can not be exactly represented by elements of type FE_DGP(1) or FE_DGPMonomial(1).
This can be understood by the following 2-d example: consider the cell with vertices at \((0,0),(1,0),(0,1),(s,s)\):
For this cell, a bilinear transformation \(F\) produces the relations \(x=\hat x+\hat x\hat y\) and \(y=\hat y+\hat x\hat y\) that correlate reference coordinates \(\hat x,\hat y\) and coordinates in real space \(x,y\). Under this mapping, the constant function is clearly mapped onto itself, but the two other shape functions of the \(P_1\) space, namely \(\phi_1(\hat x,\hat y)=\hat x\) and \(\phi_2(\hat x,\hat y)=\hat y\) are mapped onto \(\phi_1(x,y)=\frac{x-t}{t(s-1)},\phi_2(x,y)=t\) where \(t=\frac{y}{s-x+sx+y-sy}\).
For the simple case that \(s=1\), i.e. if the real cell is the unit square, the expressions can be simplified to \(t=y\) and \(\phi_1(x,y)=x,\phi_2(x,y)=y\). However, for all other cases, the functions \(\phi_1(x,y),\phi_2(x,y)\) are not linear any more, and neither is any linear combination of them. Consequently, the linear functions are not within the range of the mapped \(P_1\) polynomials.
In 2d, the shape functions of this element look as follows.
\(P_0\) element, shape function 0 |
\(P_1\) element, shape function 0 | \(P_1\) element, shape function 1 |
\(P_1\) element, shape function 2 |
\(P_2\) element, shape function 0 | \(P_2\) element, shape function 1 |
\(P_2\) element, shape function 2 | \(P_2\) element, shape function 3 |
\(P_2\) element, shape function 4 | \(P_2\) element, shape function 5 |
\(P_3\) element, shape function 0 | \(P_3\) element, shape function 1 |
\(P_3\) element, shape function 2 | \(P_3\) element, shape function 3 |
\(P_3\) element, shape function 4 | \(P_3\) element, shape function 5 |
\(P_3\) element, shape function 6 | \(P_3\) element, shape function 7 |
\(P_3\) element, shape function 8 | \(P_3\) element, shape function 9 |
\(P_4\) element, shape function 0 | \(P_4\) element, shape function 1 |
\(P_4\) element, shape function 2 | \(P_4\) element, shape function 3 |
\(P_4\) element, shape function 4 | \(P_4\) element, shape function 5 |
\(P_4\) element, shape function 6 | \(P_4\) element, shape function 7 |
\(P_4\) element, shape function 8 | \(P_4\) element, shape function 9 |
\(P_4\) element, shape function 10 | \(P_4\) element, shape function 11 |
\(P_4\) element, shape function 12 | \(P_4\) element, shape function 13 |
\(P_4\) element, shape function 14 |
Definition at line 284 of file fe_dgp_monomial.h.
FE_DGPMonomial< dim >::FE_DGPMonomial | ( | const unsigned int | p | ) |
Constructor for the polynomial space of degree p
.
Definition at line 119 of file fe_dgp_monomial.cc.
|
virtual |
Return a string that uniquely identifies a finite element. This class returns FE_DGPMonomial<dim>(degree)
, with dim
and p
replaced by appropriate values.
Implements FiniteElement< dim, dim >.
Definition at line 148 of file fe_dgp_monomial.cc.
|
virtual |
If, on a vertex, several finite elements are active, the hp code first assigns the degrees of freedom of each of these FEs different global indices. It then calls this function to find out which of them should get identical values, and consequently can receive the same global DoF index. This function therefore returns a list of identities between DoFs of the present finite element object with the DoFs of fe_other
, which is a reference to a finite element object representing one of the other finite elements active on this particular vertex. The function computes which of the degrees of freedom of the two finite element objects are equivalent, both numbered between zero and the corresponding value of dofs_per_vertex of the two finite elements. The first index of each pair denotes one of the vertex dofs of the present element, whereas the second is the corresponding index of the other finite element.
This being a discontinuous element, the set of such constraints is of course empty.
Definition at line 326 of file fe_dgp_monomial.cc.
|
virtual |
Same as hp_vertex_dof_indices(), except that the function treats degrees of freedom on lines.
This being a discontinuous element, the set of such constraints is of course empty.
Definition at line 345 of file fe_dgp_monomial.cc.
|
virtual |
Same as hp_vertex_dof_indices(), except that the function treats degrees of freedom on quads.
This being a discontinuous element, the set of such constraints is of course empty.
Definition at line 364 of file fe_dgp_monomial.cc.
|
virtual |
Return whether this element implements its hanging node constraints in the new way, which has to be used to make elements "hp compatible".
For the FE_DGPMonomial class the result is always true (independent of the degree of the element), as it has no hanging nodes (being a discontinuous element).
Reimplemented from FiniteElement< dim, dim >.
Definition at line 316 of file fe_dgp_monomial.cc.
|
virtual |
Return whether this element dominates the one given as argument when they meet at a common face, whether it is the other way around, whether neither dominates, or if either could dominate.
For a definition of domination, see FiniteElementDomination::Domination and in particular the hp paper.
Definition at line 383 of file fe_dgp_monomial.cc.
|
virtual |
Return the matrix interpolating from the given finite element to the present one. The size of the matrix is then dofs_per_cell
times source.dofs_per_cell
.
These matrices are only available if the source element is also a FE_Q
element. Otherwise, an exception of type FiniteElement<dim>::ExcInterpolationNotImplemented is thrown.
Definition at line 178 of file fe_dgp_monomial.cc.
|
virtual |
Return the matrix interpolating from a face of one element to the face of the neighboring element. The size of the matrix is then dofs_per_face
times source.dofs_per_face
.
Derived elements will have to implement this function. They may only provide interpolation matrices for certain source finite elements, for example those from the same family. If they don't implement interpolation from a given element, then they must throw an exception of type FiniteElement<dim>::ExcInterpolationNotImplemented.
Definition at line 258 of file fe_dgp_monomial.cc.
|
virtual |
Return the matrix interpolating from a face of one element to the face of the neighboring element. The size of the matrix is then dofs_per_face
times source.dofs_per_face
.
Derived elements will have to implement this function. They may only provide interpolation matrices for certain source finite elements, for example those from the same family. If they don't implement interpolation from a given element, then they must throw an exception of type FiniteElement<dim>::ExcInterpolationNotImplemented.
Definition at line 287 of file fe_dgp_monomial.cc.
|
virtual |
This function returns true
, if the shape function shape_index
has non-zero function values somewhere on the face face_index
.
Reimplemented from FiniteElement< dim, dim >.
|
virtual |
Determine an estimate for the memory consumption (in bytes) of this object.
This function is made virtual, since finite element objects are usually accessed through pointers to their base class, rather than the class itself.
Reimplemented from FiniteElement< dim, dim >.
Definition at line 453 of file fe_dgp_monomial.cc.
|
virtual |
A sort of virtual copy constructor, this function returns a copy of the finite element object. Derived classes need to override the function here in this base class and return an object of the same type as the derived class.
Some places in the library, for example the constructors of FESystem as well as the hp::FECollection class, need to make copies of finite elements without knowing their exact type. They do so through this function.
Implements FiniteElement< dim, dim >.
Definition at line 167 of file fe_dgp_monomial.cc.
|
staticprivate |
Only for internal use. Its full name is get_dofs_per_object_vector
function and it creates the dofs_per_object
vector that is needed within the constructor to be passed to the constructor of FiniteElementData
.
Definition at line 242 of file fe_dgp_monomial.cc.
|
private |
Initialize the restriction matrices. Called from the constructor.
Definition at line 229 of file fe_dgp_monomial.cc.
|
virtual |
This function returns true
, if the shape function shape_index
has non-zero function values somewhere on the face face_index
. The function is typically used to determine whether some matrix elements resulting from face integrals can be assumed to be zero and may therefore be omitted from integration.
A default implementation is provided in this base class which always returns true
. This is the safe way to go.
Reimplemented from FiniteElement< dim, dim >.
Definition at line 400 of file fe_dgp_monomial.cc.
|
virtual |
This function returns true
, if the shape function shape_index
has non-zero function values somewhere on the face face_index
. The function is typically used to determine whether some matrix elements resulting from face integrals can be assumed to be zero and may therefore be omitted from integration.
A default implementation is provided in this base class which always returns true
. This is the safe way to go.
Reimplemented from FiniteElement< dim, dim >.
Definition at line 410 of file fe_dgp_monomial.cc.
|
virtual |
This function returns true
, if the shape function shape_index
has non-zero function values somewhere on the face face_index
. The function is typically used to determine whether some matrix elements resulting from face integrals can be assumed to be zero and may therefore be omitted from integration.
A default implementation is provided in this base class which always returns true
. This is the safe way to go.
Reimplemented from FiniteElement< dim, dim >.
Definition at line 431 of file fe_dgp_monomial.cc.