|
| FE_BDM (const unsigned int p) |
|
virtual std::string | get_name () const |
|
virtual std::unique_ptr< FiniteElement< dim, dim > > | clone () const |
|
virtual void | convert_generalized_support_point_values_to_dof_values (const std::vector< Vector< double > > &support_point_values, std::vector< double > &nodal_values) const |
|
| FE_PolyTensor (const unsigned int degree, const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components) |
|
virtual double | shape_value (const unsigned int i, const Point< dim > &p) const |
|
virtual Tensor< 1, dim > | shape_grad (const unsigned int i, const Point< dim > &p) const |
|
virtual Tensor< 2, dim > | shape_grad_grad (const unsigned int i, const Point< dim > &p) const |
|
| FiniteElement (const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components) |
|
| FiniteElement (FiniteElement< dim, spacedim > &&)=default |
|
| FiniteElement (const FiniteElement< dim, spacedim > &)=default |
|
virtual | ~FiniteElement ()=default |
|
std::pair< std::unique_ptr< FiniteElement< dim, spacedim > >, unsigned int > | operator^ (const unsigned int multiplicity) const |
|
const FiniteElement< dim, spacedim > & | operator[] (const unsigned int fe_index) const |
|
virtual bool | operator== (const FiniteElement< dim, spacedim > &fe) const |
|
bool | operator!= (const FiniteElement< dim, spacedim > &) const |
|
virtual std::size_t | memory_consumption () const |
|
virtual Tensor< 3, dim > | shape_3rd_derivative (const unsigned int i, const Point< dim > &p) const |
|
virtual Tensor< 3, dim > | shape_3rd_derivative_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
|
virtual Tensor< 4, dim > | shape_4th_derivative (const unsigned int i, const Point< dim > &p) const |
|
virtual Tensor< 4, dim > | shape_4th_derivative_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
|
virtual bool | has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const |
|
virtual const FullMatrix< double > & | get_restriction_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const |
|
virtual const FullMatrix< double > & | get_prolongation_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const |
|
bool | prolongation_is_implemented () const |
|
bool | isotropic_prolongation_is_implemented () const |
|
bool | restriction_is_implemented () const |
|
bool | isotropic_restriction_is_implemented () const |
|
bool | restriction_is_additive (const unsigned int index) const |
|
const FullMatrix< double > & | constraints (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const |
|
bool | constraints_are_implemented (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const |
|
virtual bool | hp_constraints_are_implemented () const |
|
virtual void | get_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const |
|
virtual void | get_face_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const |
|
virtual void | get_subface_interpolation_matrix (const FiniteElement< dim, spacedim > &source, const unsigned int subface, FullMatrix< double > &matrix) const |
|
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_vertex_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
|
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_line_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
|
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_quad_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
|
virtual FiniteElementDomination::Domination | compare_for_face_domination (const FiniteElement< dim, spacedim > &fe_other) const |
|
std::pair< unsigned int, unsigned int > | system_to_component_index (const unsigned int index) const |
|
unsigned int | component_to_system_index (const unsigned int component, const unsigned int index) const |
|
std::pair< unsigned int, unsigned int > | face_system_to_component_index (const unsigned int index) const |
|
unsigned int | adjust_quad_dof_index_for_face_orientation (const unsigned int index, const bool face_orientation, const bool face_flip, const bool face_rotation) const |
|
virtual unsigned int | face_to_cell_index (const unsigned int face_dof_index, const unsigned int face, const bool face_orientation=true, const bool face_flip=false, const bool face_rotation=false) const |
|
unsigned int | adjust_line_dof_index_for_line_orientation (const unsigned int index, const bool line_orientation) const |
|
const ComponentMask & | get_nonzero_components (const unsigned int i) const |
|
unsigned int | n_nonzero_components (const unsigned int i) const |
|
bool | is_primitive () const |
|
bool | is_primitive (const unsigned int i) const |
|
unsigned int | n_base_elements () const |
|
virtual const FiniteElement< dim, spacedim > & | base_element (const unsigned int index) const |
|
unsigned int | element_multiplicity (const unsigned int index) const |
|
const FiniteElement< dim, spacedim > & | get_sub_fe (const ComponentMask &mask) const |
|
virtual const FiniteElement< dim, spacedim > & | get_sub_fe (const unsigned int first_component, const unsigned int n_selected_components) const |
|
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > | system_to_base_index (const unsigned int index) const |
|
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > | face_system_to_base_index (const unsigned int index) const |
|
types::global_dof_index | first_block_of_base (const unsigned int b) const |
|
std::pair< unsigned int, unsigned int > | component_to_base_index (const unsigned int component) const |
|
std::pair< unsigned int, unsigned int > | block_to_base_index (const unsigned int block) const |
|
std::pair< unsigned int, types::global_dof_index > | system_to_block_index (const unsigned int component) const |
|
unsigned int | component_to_block_index (const unsigned int component) const |
|
ComponentMask | component_mask (const FEValuesExtractors::Scalar &scalar) const |
|
ComponentMask | component_mask (const FEValuesExtractors::Vector &vector) const |
|
ComponentMask | component_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const |
|
ComponentMask | component_mask (const BlockMask &block_mask) const |
|
BlockMask | block_mask (const FEValuesExtractors::Scalar &scalar) const |
|
BlockMask | block_mask (const FEValuesExtractors::Vector &vector) const |
|
BlockMask | block_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const |
|
BlockMask | block_mask (const ComponentMask &component_mask) const |
|
virtual std::pair< Table< 2, bool >, std::vector< unsigned int > > | get_constant_modes () const |
|
const std::vector< Point< dim > > & | get_unit_support_points () const |
|
bool | has_support_points () const |
|
virtual Point< dim > | unit_support_point (const unsigned int index) const |
|
const std::vector< Point< dim-1 > > & | get_unit_face_support_points () const |
|
bool | has_face_support_points () const |
|
virtual Point< dim-1 > | unit_face_support_point (const unsigned int index) const |
|
const std::vector< Point< dim > > & | get_generalized_support_points () const |
|
bool | has_generalized_support_points () const |
|
const std::vector< Point< dim-1 > > & | get_generalized_face_support_points () const |
|
bool | has_generalized_face_support_points () const |
|
GeometryPrimitive | get_associated_geometry_primitive (const unsigned int cell_dof_index) const |
|
| Subscriptor () |
|
| Subscriptor (const Subscriptor &) |
|
| Subscriptor (Subscriptor &&) noexcept |
|
virtual | ~Subscriptor () |
|
Subscriptor & | operator= (const Subscriptor &) |
|
Subscriptor & | operator= (Subscriptor &&) noexcept |
|
void | subscribe (const char *identifier=nullptr) const |
|
void | unsubscribe (const char *identifier=nullptr) const |
|
unsigned int | n_subscriptions () const |
|
void | list_subscribers () const |
|
template<class Archive > |
void | serialize (Archive &ar, const unsigned int version) |
|
| FiniteElementData (const std::vector< unsigned int > &dofs_per_object, const unsigned int n_components, const unsigned int degree, const Conformity conformity=unknown, const BlockIndices &block_indices=BlockIndices()) |
|
unsigned int | n_dofs_per_vertex () const |
|
unsigned int | n_dofs_per_line () const |
|
unsigned int | n_dofs_per_quad () const |
|
unsigned int | n_dofs_per_hex () const |
|
unsigned int | n_dofs_per_face () const |
|
unsigned int | n_dofs_per_cell () const |
|
template<int structdim> |
unsigned int | n_dofs_per_object () const |
|
unsigned int | n_components () const |
|
unsigned int | n_blocks () const |
|
const BlockIndices & | block_indices () const |
|
unsigned int | tensor_degree () const |
|
bool | conforms (const Conformity) const |
|
bool | operator== (const FiniteElementData &) const |
|
|
enum | Conformity {
unknown = 0x00,
L2 = 0x01,
Hcurl = 0x02,
Hdiv = 0x04,
H1 = Hcurl | Hdiv,
H2 = 0x0e
} |
|
static ::ExceptionBase & | ExcShapeFunctionNotPrimitive (int arg1) |
|
static ::ExceptionBase & | ExcFENotPrimitive () |
|
static ::ExceptionBase & | ExcUnitShapeValuesDoNotExist () |
|
static ::ExceptionBase & | ExcFEHasNoSupportPoints () |
|
static ::ExceptionBase & | ExcEmbeddingVoid () |
|
static ::ExceptionBase & | ExcProjectionVoid () |
|
static ::ExceptionBase & | ExcWrongInterfaceMatrixSize (int arg1, int arg2) |
|
static ::ExceptionBase & | ExcInterpolationNotImplemented () |
|
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
|
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
|
const unsigned int | dofs_per_vertex |
|
const unsigned int | dofs_per_line |
|
const unsigned int | dofs_per_quad |
|
const unsigned int | dofs_per_hex |
|
const unsigned int | first_line_index |
|
const unsigned int | first_quad_index |
|
const unsigned int | first_hex_index |
|
const unsigned int | first_face_line_index |
|
const unsigned int | first_face_quad_index |
|
const unsigned int | dofs_per_face |
|
const unsigned int | dofs_per_cell |
|
const unsigned int | components |
|
const unsigned int | degree |
|
const Conformity | conforming_space |
|
const BlockIndices | block_indices_data |
|
static const unsigned int | space_dimension |
|
static const unsigned int | dimension = dim |
|
void | reinit_restriction_and_prolongation_matrices (const bool isotropic_restriction_only=false, const bool isotropic_prolongation_only=false) |
|
TableIndices< 2 > | interface_constraints_size () const |
|
virtual std::unique_ptr< InternalDataBase > | get_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
|
virtual std::unique_ptr< InternalDataBase > | get_face_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim-1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const |
|
virtual std::unique_ptr< InternalDataBase > | get_subface_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim-1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const |
|
virtual void | fill_fe_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const CellSimilarity::Similarity cell_similarity, const Quadrature< dim > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
|
virtual void | fill_fe_face_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const Quadrature< dim-1 > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
|
virtual void | fill_fe_subface_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int sub_no, const Quadrature< dim-1 > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
|
static std::vector< unsigned int > | compute_n_nonzero_components (const std::vector< ComponentMask > &nonzero_components) |
|
MappingType | mapping_type |
|
PolynomialsBDM< dim > | poly_space |
|
FullMatrix< double > | inverse_node_matrix |
|
Threads::Mutex | cache_mutex |
|
Point< dim > | cached_point |
|
std::vector< Tensor< 1, dim > > | cached_values |
|
std::vector< Tensor< 2, dim > > | cached_grads |
|
std::vector< Tensor< 3, dim > > | cached_grad_grads |
|
std::vector< std::vector< FullMatrix< double > > > | restriction |
|
std::vector< std::vector< FullMatrix< double > > > | prolongation |
|
FullMatrix< double > | interface_constraints |
|
std::vector< Point< dim > > | unit_support_points |
|
std::vector< Point< dim-1 > > | unit_face_support_points |
|
std::vector< Point< dim > > | generalized_support_points |
|
std::vector< Point< dim-1 > > | generalized_face_support_points |
|
Table< 2, int > | adjust_quad_dof_index_for_face_orientation_table |
|
std::vector< int > | adjust_line_dof_index_for_line_orientation_table |
|
std::vector< std::pair< unsigned int, unsigned int > > | system_to_component_table |
|
std::vector< std::pair< unsigned int, unsigned int > > | face_system_to_component_table |
|
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | system_to_base_table |
|
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | face_system_to_base_table |
|
BlockIndices | base_to_block_indices |
|
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | component_to_base_table |
|
const std::vector< bool > | restriction_is_additive_flags |
|
const std::vector< ComponentMask > | nonzero_components |
|
const std::vector< unsigned int > | n_nonzero_components_table |
|
const bool | cached_primitivity |
|
template<int dim>
class FE_BDM< dim >
The Brezzi-Douglas-Marini element.
Degrees of freedom
- Todo:
- The 3D version exhibits some numerical instabilities, in particular for higher order
- Todo:
- Restriction matrices are missing.
The matching pressure space for FE_BDM of order k is the element FE_DGP of order k-1.
The BDM element of order p
has p+1 degrees of freedom on each face. These are implemented as the function values in the p+1 Gauss points on each face.
Additionally, for order greater or equal 2, we have additional p(p-1), the number of vector valued polynomials in Pp, interior degrees of freedom. These are the vector function values in the first p(p-1)/2 of the p2 Gauss points in the cell.
Definition at line 56 of file fe_bdm.h.
template<int dim>
void FE_BDM< dim >::convert_generalized_support_point_values_to_dof_values |
( |
const std::vector< Vector< double > > & |
support_point_values, |
|
|
std::vector< double > & |
nodal_values |
|
) |
| const |
|
virtual |
Given the values of a function \(f(\mathbf x)\) at the (generalized) support points of the reference cell, this function then computes what the nodal values of the element are, i.e., \(\Psi_i[f]\), where \(\Psi_i\) are the node functionals of the element (see also Node values or node functionals). The values \(\Psi_i[f]\) are then the expansion coefficients for the shape functions of the finite element function that interpolates the given function \(f(x)\), i.e., \( f_h(\mathbf x) = \sum_i \Psi_i[f] \varphi_i(\mathbf x) \) is the finite element interpolant of \(f\) with the current element. The operation described here is used, for example, in the FETools::compute_node_matrix() function.
In more detail, let us assume that the generalized support points (see this glossary entry ) of the current element are \(\hat{\mathbf x}_i\) and that the node functionals associated with the current element are \(\Psi_i[\cdot]\). Then, the fact that the element is based on generalized support points, implies that if we apply \(\Psi_i\) to a (possibly vector-valued) finite element function \(\varphi\), the result must have the form \(\Psi_i[\varphi] = f_i(\varphi(\hat{\mathbf x}_i))\) – in other words, the value of the node functional \(\Psi_i\) applied to \(\varphi\) only depends on the values of \(\varphi\) at \(\hat{\mathbf x}_i\) and not on values anywhere else, or integrals of \(\varphi\), or any other kind of information.
The exact form of \(f_i\) depends on the element. For example, for scalar Lagrange elements, we have that in fact \(\Psi_i[\varphi] = \varphi(\hat{\mathbf x}_i)\). If you combine multiple scalar Lagrange elements via an FESystem object, then \(\Psi_i[\varphi] = \varphi(\hat{\mathbf x}_i)_{c(i)}\) where \(c(i)\) is the result of the FiniteElement::system_to_component_index() function's return value's first component. In these two cases, \(f_i\) is therefore simply the identity (in the scalar case) or a function that selects a particular vector component of its argument. On the other hand, for Raviart-Thomas elements, one would have that \(f_i(\mathbf y) = \mathbf y \cdot \mathbf n_i\) where \(\mathbf n_i\) is the normal vector of the face at which the shape function is defined.
Given all of this, what this function does is the following: If you input a list of values of a function \(\varphi\) at all generalized support points (where each value is in fact a vector of values with as many components as the element has), then this function returns a vector of values obtained by applying the node functionals to these values. In other words, if you pass in \(\{\varphi(\hat{\mathbf x}_i)\}_{i=0}^{N-1}\) then you will get out a vector \(\{\Psi[\varphi]\}_{i=0}^{N-1}\) where \(N\) equals dofs_per_cell
.
- Parameters
-
[in] | support_point_values | An array of size dofs_per_cell (which equals the number of points the get_generalized_support_points() function will return) where each element is a vector with as many entries as the element has vector components. This array should contain the values of a function at the generalized support points of the current element. |
[out] | nodal_values | An array of size dofs_per_cell that contains the node functionals of the element applied to the given function. |
- Note
- It is safe to call this function for (transformed) values on the real cell only for elements with trivial MappingType. For all other elements (for example for H(curl), or H(div) conforming elements) vector values have to be transformed to the reference cell first.
-
Given what the function is supposed to do, the function clearly can only work for elements that actually implement (generalized) support points. Elements that do not have generalized support points – e.g., elements whose nodal functionals evaluate integrals or moments of functions (such as FE_Q_Hierarchical) – can in general not make sense of the operation that is required for this function. They consequently may not implement it.
Reimplemented from FiniteElement< dim, dim >.
Definition at line 129 of file fe_bdm.cc.