Reference documentation for deal.II version 9.0.0
|
#include <deal.II/fe/fe_values.h>
Classes | |
struct | OutputType |
struct | ShapeFunctionData |
Public Types | |
typedef double | value_type |
typedef ::Tensor< 1, spacedim > | gradient_type |
typedef ::Tensor< 2, spacedim > | hessian_type |
typedef ::Tensor< 3, spacedim > | third_derivative_type |
Public Member Functions | |
Scalar () | |
Scalar (const FEValuesBase< dim, spacedim > &fe_values_base, const unsigned int component) | |
Scalar & | operator= (const Scalar< dim, spacedim > &) |
value_type | value (const unsigned int shape_function, const unsigned int q_point) const |
gradient_type | gradient (const unsigned int shape_function, const unsigned int q_point) const |
hessian_type | hessian (const unsigned int shape_function, const unsigned int q_point) const |
third_derivative_type | third_derivative (const unsigned int shape_function, const unsigned int q_point) const |
template<class InputVector > | |
void | get_function_values (const InputVector &fe_function, std::vector< typename ProductType< value_type, typename InputVector::value_type >::type > &values) const |
template<class InputVector > | |
void | get_function_values_from_local_dof_values (const InputVector &dof_values, std::vector< typename OutputType< typename InputVector::value_type >::value_type > &values) const |
template<class InputVector > | |
void | get_function_gradients (const InputVector &fe_function, std::vector< typename ProductType< gradient_type, typename InputVector::value_type >::type > &gradients) const |
template<class InputVector > | |
void | get_function_gradients_from_local_dof_values (const InputVector &dof_values, std::vector< typename OutputType< typename InputVector::value_type >::gradient_type > &gradients) const |
template<class InputVector > | |
void | get_function_hessians (const InputVector &fe_function, std::vector< typename ProductType< hessian_type, typename InputVector::value_type >::type > &hessians) const |
template<class InputVector > | |
void | get_function_hessians_from_local_dof_values (const InputVector &dof_values, std::vector< typename OutputType< typename InputVector::value_type >::hessian_type > &hessians) const |
template<class InputVector > | |
void | get_function_laplacians (const InputVector &fe_function, std::vector< typename ProductType< value_type, typename InputVector::value_type >::type > &laplacians) const |
template<class InputVector > | |
void | get_function_laplacians_from_local_dof_values (const InputVector &dof_values, std::vector< typename OutputType< typename InputVector::value_type >::laplacian_type > &laplacians) const |
template<class InputVector > | |
void | get_function_third_derivatives (const InputVector &fe_function, std::vector< typename ProductType< third_derivative_type, typename InputVector::value_type >::type > &third_derivatives) const |
template<class InputVector > | |
void | get_function_third_derivatives_from_local_dof_values (const InputVector &dof_values, std::vector< typename OutputType< typename InputVector::value_type >::third_derivative_type > &third_derivatives) const |
Private Attributes | |
const SmartPointer< const FEValuesBase< dim, spacedim > > | fe_values |
const unsigned int | component |
std::vector< ShapeFunctionData > | shape_function_data |
A class representing a view to a single scalar component of a possibly vector-valued finite element. Views are discussed in the Handling vector valued problems module.
You get an object of this type if you apply a FEValuesExtractors::Scalar to an FEValues, FEFaceValues or FESubfaceValues object.
Definition at line 139 of file fe_values.h.
typedef double FEValuesViews::Scalar< dim, spacedim >::value_type |
A typedef for the data type of values of the view this class represents. Since we deal with a single components, the value type is a scalar double.
Definition at line 147 of file fe_values.h.
typedef ::Tensor<1,spacedim> FEValuesViews::Scalar< dim, spacedim >::gradient_type |
A typedef for the type of gradients of the view this class represents. Here, for a scalar component of the finite element, the gradient is a Tensor<1,dim>
.
Definition at line 154 of file fe_values.h.
typedef ::Tensor<2,spacedim> FEValuesViews::Scalar< dim, spacedim >::hessian_type |
A typedef for the type of second derivatives of the view this class represents. Here, for a scalar component of the finite element, the Hessian is a Tensor<2,dim>
.
Definition at line 161 of file fe_values.h.
typedef ::Tensor<3,spacedim> FEValuesViews::Scalar< dim, spacedim >::third_derivative_type |
A typedef for the type of third derivatives of the view this class represents. Here, for a scalar component of the finite element, the Third derivative is a Tensor<3,dim>
.
Definition at line 168 of file fe_values.h.
FEValuesViews::Scalar< dim, spacedim >::Scalar | ( | ) |
Default constructor. Creates an invalid object.
Definition at line 178 of file fe_values.cc.
FEValuesViews::Scalar< dim, spacedim >::Scalar | ( | const FEValuesBase< dim, spacedim > & | fe_values_base, |
const unsigned int | component | ||
) |
Constructor for an object that represents a single scalar component of a FEValuesBase object (or of one of the classes derived from FEValuesBase).
Definition at line 137 of file fe_values.cc.
Scalar< dim, spacedim > & FEValuesViews::Scalar< dim, spacedim >::operator= | ( | const Scalar< dim, spacedim > & | ) |
Copy operator. This is not a lightweight object so we don't allow copying and generate an exception if this function is called.
Definition at line 188 of file fe_values.cc.
value_type FEValuesViews::Scalar< dim, spacedim >::value | ( | const unsigned int | shape_function, |
const unsigned int | q_point | ||
) | const |
Return the value of the vector component selected by this view, for the shape function and quadrature point selected by the arguments.
shape_function | Number of the shape function to be evaluated. Note that this number runs from zero to dofs_per_cell, even in the case of an FEFaceValues or FESubfaceValues object. |
q_point | Number of the quadrature point at which function is to be evaluated. |
update_values
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. gradient_type FEValuesViews::Scalar< dim, spacedim >::gradient | ( | const unsigned int | shape_function, |
const unsigned int | q_point | ||
) | const |
Return the gradient (a tensor of rank 1) of the vector component selected by this view, for the shape function and quadrature point selected by the arguments.
update_gradients
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. hessian_type FEValuesViews::Scalar< dim, spacedim >::hessian | ( | const unsigned int | shape_function, |
const unsigned int | q_point | ||
) | const |
Return the Hessian (the tensor of rank 2 of all second derivatives) of the vector component selected by this view, for the shape function and quadrature point selected by the arguments.
update_hessians
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. third_derivative_type FEValuesViews::Scalar< dim, spacedim >::third_derivative | ( | const unsigned int | shape_function, |
const unsigned int | q_point | ||
) | const |
Return the tensor of rank 3 of all third derivatives of the vector component selected by this view, for the shape function and quadrature point selected by the arguments.
update_third_derivatives
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. void FEValuesViews::Scalar< dim, spacedim >::get_function_values | ( | const InputVector & | fe_function, |
std::vector< typename ProductType< value_type, typename InputVector::value_type >::type > & | values | ||
) | const |
Return the values of the selected scalar component of the finite element function characterized by fe_function
at the quadrature points of the cell, face or subface selected the last time the reinit
function of the FEValues object was called.
This function is the equivalent of the FEValuesBase::get_function_values function but it only works on the selected scalar component.
The data type stored by the output vector must be what you get when you multiply the values of shape functions (i.e., value_type
) times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function
argument).
update_values
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. Definition at line 1418 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_values_from_local_dof_values | ( | const InputVector & | dof_values, |
std::vector< typename OutputType< typename InputVector::value_type >::value_type > & | values | ||
) | const |
Same as above, but using a vector of local degree-of-freedom values.
The dof_values
vector must have a length equal to number of DoFs on a cell, and each entry dof_values
[i] is the value of the local DoF i
. The fundamental prerequisite for the InputVector
is that it must be possible to create an ArrayView from it; this is satisfied by the std::vector
class.
The DoF values typically would be obtained in the following way:
or, for a generic Number
type,
Definition at line 1442 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_gradients | ( | const InputVector & | fe_function, |
std::vector< typename ProductType< gradient_type, typename InputVector::value_type >::type > & | gradients | ||
) | const |
Return the gradients of the selected scalar component of the finite element function characterized by fe_function
at the quadrature points of the cell, face or subface selected the last time the reinit
function of the FEValues object was called.
This function is the equivalent of the FEValuesBase::get_function_gradients function but it only works on the selected scalar component.
The data type stored by the output vector must be what you get when you multiply the gradients of shape functions (i.e., gradient_type
) times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function
argument).
update_gradients
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. Definition at line 1462 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_gradients_from_local_dof_values | ( | const InputVector & | dof_values, |
std::vector< typename OutputType< typename InputVector::value_type >::gradient_type > & | gradients | ||
) | const |
Same as above, but using a vector of local degree-of-freedom values.
The dof_values
vector must have a length equal to number of DoFs on a cell, and each entry dof_values
[i] is the value of the local DoF i
. The fundamental prerequisite for the InputVector
is that it must be possible to create an ArrayView from it; this is satisfied by the std::vector
class.
The DoF values typically would be obtained in the following way:
or, for a generic Number
type,
Definition at line 1486 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_hessians | ( | const InputVector & | fe_function, |
std::vector< typename ProductType< hessian_type, typename InputVector::value_type >::type > & | hessians | ||
) | const |
Return the Hessians of the selected scalar component of the finite element function characterized by fe_function
at the quadrature points of the cell, face or subface selected the last time the reinit
function of the FEValues object was called.
This function is the equivalent of the FEValuesBase::get_function_hessians function but it only works on the selected scalar component.
The data type stored by the output vector must be what you get when you multiply the Hessians of shape functions (i.e., hessian_type
) times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function
argument).
update_hessians
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. Definition at line 1506 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_hessians_from_local_dof_values | ( | const InputVector & | dof_values, |
std::vector< typename OutputType< typename InputVector::value_type >::hessian_type > & | hessians | ||
) | const |
Same as above, but using a vector of local degree-of-freedom values.
The dof_values
vector must have a length equal to number of DoFs on a cell, and each entry dof_values
[i] is the value of the local DoF i
. The fundamental prerequisite for the InputVector
is that it must be possible to create an ArrayView from it; this is satisfied by the std::vector
class.
The DoF values typically would be obtained in the following way:
or, for a generic Number
type,
Definition at line 1530 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_laplacians | ( | const InputVector & | fe_function, |
std::vector< typename ProductType< value_type, typename InputVector::value_type >::type > & | laplacians | ||
) | const |
Return the Laplacians of the selected scalar component of the finite element function characterized by fe_function
at the quadrature points of the cell, face or subface selected the last time the reinit
function of the FEValues object was called. The Laplacians are the trace of the Hessians.
This function is the equivalent of the FEValuesBase::get_function_laplacians function but it only works on the selected scalar component.
The data type stored by the output vector must be what you get when you multiply the Laplacians of shape functions (i.e., value_type
) times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function
argument).
update_hessians
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. Definition at line 1550 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_laplacians_from_local_dof_values | ( | const InputVector & | dof_values, |
std::vector< typename OutputType< typename InputVector::value_type >::laplacian_type > & | laplacians | ||
) | const |
Same as above, but using a vector of local degree-of-freedom values.
The dof_values
vector must have a length equal to number of DoFs on a cell, and each entry dof_values
[i] is the value of the local DoF i
. The fundamental prerequisite for the InputVector
is that it must be possible to create an ArrayView from it; this is satisfied by the std::vector
class.
The DoF values typically would be obtained in the following way:
or, for a generic Number
type,
Definition at line 1574 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_third_derivatives | ( | const InputVector & | fe_function, |
std::vector< typename ProductType< third_derivative_type, typename InputVector::value_type >::type > & | third_derivatives | ||
) | const |
Return the third derivatives of the selected scalar component of the finite element function characterized by fe_function
at the quadrature points of the cell, face or subface selected the last time the reinit
function of the FEValues object was called.
This function is the equivalent of the FEValuesBase::get_function_third_derivatives function but it only works on the selected scalar component.
The data type stored by the output vector must be what you get when you multiply the third derivatives of shape functions (i.e., third_derivative_type
) times the type used to store the values of the unknowns \(U_j\) of your finite element vector \(U\) (represented by the fe_function
argument).
update_third_derivatives
flag must be an element of the list of UpdateFlags that you passed to the constructor of this object. See The interplay of UpdateFlags, Mapping, and FiniteElement in FEValues for more information. Definition at line 1594 of file fe_values.cc.
void FEValuesViews::Scalar< dim, spacedim >::get_function_third_derivatives_from_local_dof_values | ( | const InputVector & | dof_values, |
std::vector< typename OutputType< typename InputVector::value_type >::third_derivative_type > & | third_derivatives | ||
) | const |
Same as above, but using a vector of local degree-of-freedom values.
The dof_values
vector must have a length equal to number of DoFs on a cell, and each entry dof_values
[i] is the value of the local DoF i
. The fundamental prerequisite for the InputVector
is that it must be possible to create an ArrayView from it; this is satisfied by the std::vector
class.
The DoF values typically would be obtained in the following way:
or, for a generic Number
type,
Definition at line 1618 of file fe_values.cc.
|
private |
A pointer to the FEValuesBase object we operate on.
Definition at line 480 of file fe_values.h.
|
private |
The single scalar component this view represents of the FEValuesBase object.
Definition at line 486 of file fe_values.h.
|
private |
Store the data about shape functions.
Definition at line 491 of file fe_values.h.