Reference documentation for deal.II version 8.5.1
|
Namespaces | |
BlockVectorIterators | |
DoFHandler | |
SolverGMRES | |
SymmetricTensorAccessors | |
Triangulation | |
Classes | |
class | AlignedVectorMove |
class | AlignedVectorSet |
struct | bool2type |
struct | CurlType |
struct | CurlType< 1 > |
struct | CurlType< 2 > |
struct | CurlType< 3 > |
struct | EvaluatorTensorProduct |
struct | EvaluatorTensorProduct< evaluate_evenodd, dim, fe_degree, n_q_points_1d, Number > |
struct | EvaluatorTensorProduct< evaluate_general, dim, fe_degree, n_q_points_1d, Number > |
struct | EvaluatorTensorProduct< evaluate_general, dim,-1, 0, Number > |
struct | EvaluatorTensorProduct< evaluate_symmetric, dim, fe_degree, n_q_points_1d, Number > |
struct | int2type |
struct | NumberType |
struct | NumberType< VectorizedArray< T > > |
class | SubfaceCase |
struct | SubfacePossibilities |
struct | SubfacePossibilities< 0 > |
struct | SubfacePossibilities< 1 > |
struct | SubfacePossibilities< 2 > |
struct | SubfacePossibilities< 3 > |
struct | TableEntry |
Enumerations | |
enum | EvaluatorVariant { evaluate_general, evaluate_symmetric, evaluate_evenodd } |
Functions | |
static ::ExceptionBase & | ExcAccessToUninitializedField () |
template<class DI > | |
bool | is_active_iterator (const DI &) |
template<int dim, int spacedim, typename VectorType , typename DoFHandlerType > | |
void | maybe_update_jacobian_3rd_derivatives (const CellSimilarity::Similarity cell_similarity, const typename ::QProjector< dim >::DataSetDescriptor data_set, const typename ::MappingFEField< dim, spacedim, VectorType, DoFHandlerType >::InternalData &data, const FiniteElement< dim, spacedim > &fe, const ComponentMask &fe_mask, const std::vector< unsigned int > &fe_to_real, std::vector< DerivativeForm< 4, dim, spacedim > > &jacobian_3rd_derivatives) |
template<int dim, int spacedim, typename VectorType , typename DoFHandlerType > | |
void | maybe_update_jacobian_pushed_forward_3rd_derivatives (const CellSimilarity::Similarity cell_similarity, const typename ::QProjector< dim >::DataSetDescriptor data_set, const typename ::MappingFEField< dim, spacedim, VectorType, DoFHandlerType >::InternalData &data, const FiniteElement< dim, spacedim > &fe, const ComponentMask &fe_mask, const std::vector< unsigned int > &fe_to_real, std::vector< Tensor< 5, spacedim > > &jacobian_pushed_forward_3rd_derivatives) |
template<int dim, int spacedim, typename VectorType , typename DoFHandlerType > | |
void | maybe_compute_face_data (const ::Mapping< dim, spacedim > &mapping, const typename ::Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int subface_no, const std::vector< double > &weights, const typename ::MappingFEField< dim, spacedim, VectorType, DoFHandlerType >::InternalData &data, internal::FEValues::MappingRelatedData< dim, spacedim > &output_data) |
template<int dim, int spacedim, typename VectorType , typename DoFHandlerType > | |
void | do_fill_fe_face_values (const ::Mapping< dim, spacedim > &mapping, const typename ::Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int subface_no, const typename ::QProjector< dim >::DataSetDescriptor data_set, const Quadrature< dim-1 > &quadrature, const typename ::MappingFEField< dim, spacedim, VectorType, DoFHandlerType >::InternalData &data, const FiniteElement< dim, spacedim > &fe, const ComponentMask &fe_mask, const std::vector< unsigned int > &fe_to_real, internal::FEValues::MappingRelatedData< dim, spacedim > &output_data) |
template<typename DoFHandlerType > | |
void | extract_interpolation_matrices (const DoFHandlerType &, ::Table< 2, FullMatrix< double > > &) |
This namespace defines the copy and set functions used in AlignedVector. These functions operate in parallel when there are enough elements in the vector.
In this namespace, the evaluator routines that evaluate the tensor products are implemented.
Enumerator | |
---|---|
evaluate_general | Do not use anything more than the tensor product structure of the finite element. |
evaluate_symmetric | Perform evaluation by exploiting symmetry in the finite element: i.e., skip some computations by utilizing the symmetry in the shape functions and quadrature points. |
evaluate_evenodd | Use symmetry to apply the operator to even and odd parts of the input vector separately: see the documentation of the EvaluatorTensorProduct specialization for more information. |
Definition at line 35 of file tensor_product_kernels.h.
|
inline |
void internal::maybe_update_jacobian_3rd_derivatives | ( | const CellSimilarity::Similarity | cell_similarity, |
const typename ::QProjector< dim >::DataSetDescriptor | data_set, | ||
const typename ::MappingFEField< dim, spacedim, VectorType, DoFHandlerType >::InternalData & | data, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const ComponentMask & | fe_mask, | ||
const std::vector< unsigned int > & | fe_to_real, | ||
std::vector< DerivativeForm< 4, dim, spacedim > > & | jacobian_3rd_derivatives | ||
) |
Update the fourth derivative of the transformation from unit to real cell, the Jacobian hessian gradients.
Skip the computation if possible as indicated by the first argument.
Definition at line 911 of file mapping_fe_field.cc.
void internal::maybe_update_jacobian_pushed_forward_3rd_derivatives | ( | const CellSimilarity::Similarity | cell_similarity, |
const typename ::QProjector< dim >::DataSetDescriptor | data_set, | ||
const typename ::MappingFEField< dim, spacedim, VectorType, DoFHandlerType >::InternalData & | data, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const ComponentMask & | fe_mask, | ||
const std::vector< unsigned int > & | fe_to_real, | ||
std::vector< Tensor< 5, spacedim > > & | jacobian_pushed_forward_3rd_derivatives | ||
) |
Update the fourth derivative of the transformation from unit to real cell, the Jacobian hessian gradients, pushed forward to the real cell coordinates.
Skip the computation if possible as indicated by the first argument.
Definition at line 967 of file mapping_fe_field.cc.
void internal::maybe_compute_face_data | ( | const ::Mapping< dim, spacedim > & | mapping, |
const typename ::Triangulation< dim, spacedim >::cell_iterator & | cell, | ||
const unsigned int | face_no, | ||
const unsigned int | subface_no, | ||
const std::vector< double > & | weights, | ||
const typename ::MappingFEField< dim, spacedim, VectorType, DoFHandlerType >::InternalData & | data, | ||
internal::FEValues::MappingRelatedData< dim, spacedim > & | output_data | ||
) |
Depending on what information is called for in the update flags of the data
object, compute the various pieces of information that is required by the fill_fe_face_values() and fill_fe_subface_values() functions. This function simply unifies the work that would be done by those two functions.
The resulting data is put into the output_data
argument.
Definition at line 1082 of file mapping_fe_field.cc.
void internal::do_fill_fe_face_values | ( | const ::Mapping< dim, spacedim > & | mapping, |
const typename ::Triangulation< dim, spacedim >::cell_iterator & | cell, | ||
const unsigned int | face_no, | ||
const unsigned int | subface_no, | ||
const typename ::QProjector< dim >::DataSetDescriptor | data_set, | ||
const Quadrature< dim-1 > & | quadrature, | ||
const typename ::MappingFEField< dim, spacedim, VectorType, DoFHandlerType >::InternalData & | data, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const ComponentMask & | fe_mask, | ||
const std::vector< unsigned int > & | fe_to_real, | ||
internal::FEValues::MappingRelatedData< dim, spacedim > & | output_data | ||
) |
Do the work of MappingFEField::fill_fe_face_values() and MappingFEField::fill_fe_subface_values() in a generic way, using the 'data_set' to differentiate whether we will work on a face (and if so, which one) or subface.
Definition at line 1220 of file mapping_fe_field.cc.
void internal::extract_interpolation_matrices | ( | const DoFHandlerType & | , |
::Table< 2, FullMatrix< double > > & | |||
) |
Generate a table that contains interpolation matrices between each combination of finite elements used in a DoFHandler of some kind. Since not all elements can be interpolated onto each other, the table may contain empty matrices for those combinations of elements for which no such interpolation is implemented.
Definition at line 186 of file solution_transfer.cc.