Reference documentation for deal.II version 8.5.1
Public Member Functions | List of all members
StraightBoundary< dim, spacedim > Class Template Reference

#include <deal.II/grid/tria_boundary.h>

Inheritance diagram for StraightBoundary< dim, spacedim >:
[legend]

Public Member Functions

 StraightBoundary ()
 
virtual Point< spacedim > get_new_point_on_line (const typename Triangulation< dim, spacedim >::line_iterator &line) const
 
virtual Point< spacedim > get_new_point_on_quad (const typename Triangulation< dim, spacedim >::quad_iterator &quad) const
 
virtual void get_intermediate_points_on_line (const typename Triangulation< dim, spacedim >::line_iterator &line, std::vector< Point< spacedim > > &points) const
 
virtual void get_intermediate_points_on_quad (const typename Triangulation< dim, spacedim >::quad_iterator &quad, std::vector< Point< spacedim > > &points) const
 
virtual Tensor< 1, spacedim > normal_vector (const typename Triangulation< dim, spacedim >::face_iterator &face, const Point< spacedim > &p) const
 
virtual void get_normals_at_vertices (const typename Triangulation< dim, spacedim >::face_iterator &face, typename Boundary< dim, spacedim >::FaceVertexNormals &face_vertex_normals) const
 
virtual Point< spacedim > project_to_surface (const typename Triangulation< dim, spacedim >::line_iterator &line, const Point< spacedim > &candidate) const
 
virtual Point< spacedim > project_to_surface (const typename Triangulation< dim, spacedim >::quad_iterator &quad, const Point< spacedim > &candidate) const
 
virtual Point< spacedim > project_to_surface (const typename Triangulation< dim, spacedim >::hex_iterator &hex, const Point< spacedim > &candidate) const
 
- Public Member Functions inherited from Boundary< dim, spacedim >
virtual ~Boundary ()
 
void get_intermediate_points_on_face (const typename Triangulation< dim, spacedim >::face_iterator &face, std::vector< Point< spacedim > > &points) const
 
- Public Member Functions inherited from FlatManifold< dim, spacedim >
 FlatManifold (const Tensor< 1, spacedim > &periodicity=Tensor< 1, spacedim >(), const double tolerance=1e-10)
 
virtual Point< spacedim > get_new_point (const Quadrature< spacedim > &quad) const 1
 
virtual Point< spacedim > get_new_point (const std::vector< Point< spacedim > > &surrounding_points, const std::vector< double > &weights) const
 
virtual void add_new_points (const std::vector< Point< spacedim > > &surrounding_points, const Table< 2, double > &weights, std::vector< Point< spacedim > > &new_points) const
 
virtual Point< spacedim > project_to_manifold (const std::vector< Point< spacedim > > &points, const Point< spacedim > &candidate) const
 
virtual Tensor< 1, spacedim > get_tangent_vector (const Point< spacedim > &x1, const Point< spacedim > &x2) const
 
const Tensor< 1, spacedim > & get_periodicity () const
 
- Public Member Functions inherited from Manifold< dim, spacedim >
virtual ~Manifold ()
 
virtual Point< spacedim > get_intermediate_point (const Point< spacedim > &p1, const Point< spacedim > &p2, const double w) const
 
virtual Point< spacedim > get_new_point_on_hex (const typename Triangulation< dim, spacedim >::hex_iterator &hex) const
 
Point< spacedim > get_new_point_on_face (const typename Triangulation< dim, spacedim >::face_iterator &face) const
 
Point< spacedim > get_new_point_on_cell (const typename Triangulation< dim, spacedim >::cell_iterator &cell) const
 
virtual void get_normals_at_vertices (const typename Triangulation< dim, spacedim >::face_iterator &face, FaceVertexNormals &face_vertex_normals) const
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&)
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&)
 
void subscribe (const char *identifier=0) const
 
void unsubscribe (const char *identifier=0) const
 
unsigned int n_subscriptions () const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Additional Inherited Members

- Public Types inherited from Manifold< dim, spacedim >
typedef Tensor< 1, spacedim > FaceVertexNormals[GeometryInfo< dim >::vertices_per_face]
 
- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, char *arg2, std::string &arg3)
 
static ::ExceptionBaseExcNoSubscriber (char *arg1, char *arg2)
 
- Protected Member Functions inherited from Boundary< dim, spacedim >
const std::vector< Point< 1 > > & get_line_support_points (const unsigned int n_intermediate_points) const
 

Detailed Description

template<int dim, int spacedim = dim>
class StraightBoundary< dim, spacedim >

Specialization of Boundary<dim,spacedim>, which places the new point right into the middle of the given points. The middle is defined as the arithmetic mean of the points.

This class does not really describe a boundary in the usual sense. By placing new points in the middle of old ones, it rather assumes that the boundary of the domain is given by the polygon/polyhedron defined by the boundary of the initial coarse triangulation.

Author
Wolfgang Bangerth, 1998, 2001, Ralf Hartmann, 2001

Definition at line 53 of file tria.h.

Constructor & Destructor Documentation

◆ StraightBoundary()

template<int dim, int spacedim>
StraightBoundary< dim, spacedim >::StraightBoundary ( )

Default constructor. Some compilers require this for some reasons.

Definition at line 190 of file tria_boundary.cc.

Member Function Documentation

◆ get_new_point_on_line()

template<int dim, int spacedim>
Point< spacedim > StraightBoundary< dim, spacedim >::get_new_point_on_line ( const typename Triangulation< dim, spacedim >::line_iterator &  line) const
virtual

Let the new point be the arithmetic mean of the two vertices of the line.

Refer to the general documentation of this class and the documentation of the base class for more information.

Reimplemented from Manifold< dim, spacedim >.

Reimplemented in HyperBallBoundary< dim, spacedim >, and CylinderBoundary< dim, spacedim >.

Definition at line 197 of file tria_boundary.cc.

◆ get_new_point_on_quad()

template<int dim, int spacedim>
Point< spacedim > StraightBoundary< dim, spacedim >::get_new_point_on_quad ( const typename Triangulation< dim, spacedim >::quad_iterator &  quad) const
virtual

Let the new point be the arithmetic mean of the four vertices of this quad and the four midpoints of the lines, which are already created at the time of calling this function.

Refer to the general documentation of this class and the documentation of the base class for more information.

Reimplemented from Manifold< dim, spacedim >.

Reimplemented in HyperBallBoundary< dim, spacedim >, and CylinderBoundary< dim, spacedim >.

Definition at line 287 of file tria_boundary.cc.

◆ get_intermediate_points_on_line()

template<int dim, int spacedim>
void StraightBoundary< dim, spacedim >::get_intermediate_points_on_line ( const typename Triangulation< dim, spacedim >::line_iterator &  line,
std::vector< Point< spacedim > > &  points 
) const
virtual

Gives n=points.size() points that splits the StraightBoundary line into \(n+1\) partitions of equal lengths.

Refer to the general documentation of this class and the documentation of the base class.

Reimplemented from Boundary< dim, spacedim >.

Reimplemented in HyperBallBoundary< dim, spacedim >, and CylinderBoundary< dim, spacedim >.

Definition at line 316 of file tria_boundary.cc.

◆ get_intermediate_points_on_quad()

template<int dim, int spacedim>
void StraightBoundary< dim, spacedim >::get_intermediate_points_on_quad ( const typename Triangulation< dim, spacedim >::quad_iterator &  quad,
std::vector< Point< spacedim > > &  points 
) const
virtual

Gives n=points.size()=m*m points that splits the StraightBoundary quad into \((m+1)(m+1)\) subquads of equal size.

Refer to the general documentation of this class and the documentation of the base class.

Reimplemented from Boundary< dim, spacedim >.

Reimplemented in HyperBallBoundary< dim, spacedim >, and CylinderBoundary< dim, spacedim >.

Definition at line 343 of file tria_boundary.cc.

◆ normal_vector()

template<int dim, int spacedim>
Tensor< 1, spacedim > StraightBoundary< dim, spacedim >::normal_vector ( const typename Triangulation< dim, spacedim >::face_iterator &  face,
const Point< spacedim > &  p 
) const
virtual

Implementation of the function declared in the base class.

Refer to the general documentation of this class and the documentation of the base class.

Reimplemented from Manifold< dim, spacedim >.

Reimplemented in HyperBallBoundary< dim, spacedim >.

Definition at line 501 of file tria_boundary.cc.

◆ get_normals_at_vertices()

template<int dim, int spacedim = dim>
virtual void StraightBoundary< dim, spacedim >::get_normals_at_vertices ( const typename Triangulation< dim, spacedim >::face_iterator &  face,
typename Boundary< dim, spacedim >::FaceVertexNormals face_vertex_normals 
) const
virtual

Compute the normals to the boundary at the vertices of the given face.

Refer to the general documentation of this class and the documentation of the base class.

Reimplemented in HyperBallBoundary< dim, spacedim >, and CylinderBoundary< dim, spacedim >.

◆ project_to_surface() [1/3]

template<int dim, int spacedim>
Point< spacedim > StraightBoundary< dim, spacedim >::project_to_surface ( const typename Triangulation< dim, spacedim >::line_iterator &  line,
const Point< spacedim > &  candidate 
) const
virtual

Given a candidate point and a line segment characterized by the iterator, return a point that lies on the surface described by this object. This function is used in some mesh smoothing algorithms that try to move around points in order to improve the mesh quality but need to ensure that points that were on the boundary remain on the boundary.

The point returned is the projection of the candidate point onto the line through the two vertices of the given line iterator.

If spacedim==1, then the line represented by the line iterator is the entire space (i.e. it is a cell, not a part of the boundary), and the returned point equals the given input point.

Reimplemented from Boundary< dim, spacedim >.

Definition at line 685 of file tria_boundary.cc.

◆ project_to_surface() [2/3]

template<int dim, int spacedim>
Point< spacedim > StraightBoundary< dim, spacedim >::project_to_surface ( const typename Triangulation< dim, spacedim >::quad_iterator &  quad,
const Point< spacedim > &  candidate 
) const
virtual

Same function as above but for a point that is to be projected onto the area characterized by the given quad.

The point returned is the projection of the candidate point onto the bilinear surface spanned by the four vertices of the given quad iterator.

If spacedim<=2, then the surface represented by the quad iterator is the entire space (i.e. it is a cell, not a part of the boundary), and the returned point equals the given input point.

Reimplemented from Boundary< dim, spacedim >.

Definition at line 843 of file tria_boundary.cc.

◆ project_to_surface() [3/3]

template<int dim, int spacedim>
Point< spacedim > StraightBoundary< dim, spacedim >::project_to_surface ( const typename Triangulation< dim, spacedim >::hex_iterator &  hex,
const Point< spacedim > &  candidate 
) const
virtual

Same function as above but for a point that is to be projected onto the area characterized by the given quad.

The point returned is the projection of the candidate point onto the trilinear manifold spanned by the eight vertices of the given hex iterator.

If spacedim<=3, then the manifold represented by the hex iterator is the entire space (i.e. it is a cell, not a part of the boundary), and the returned point equals the given input point.

Reimplemented from Boundary< dim, spacedim >.

Definition at line 858 of file tria_boundary.cc.


The documentation for this class was generated from the following files: