Reference documentation for deal.II version 8.5.1
|
#include <deal.II/base/quadrature_lib.h>
Public Member Functions | |
QGaussLobatto (const unsigned int n) | |
Public Member Functions inherited from Quadrature< dim > | |
Quadrature (const unsigned int n_quadrature_points=0) | |
Quadrature (const SubQuadrature &, const Quadrature< 1 > &) | |
Quadrature (const Quadrature< dim !=1 ? 1 :0 > &quadrature_1d) | |
Quadrature (const Quadrature< dim > &q) | |
Quadrature (Quadrature< dim > &&)=default | |
Quadrature (const std::vector< Point< dim > > &points, const std::vector< double > &weights) | |
Quadrature (const std::vector< Point< dim > > &points) | |
Quadrature (const Point< dim > &point) | |
virtual | ~Quadrature () |
Quadrature & | operator= (const Quadrature< dim > &) |
bool | operator== (const Quadrature< dim > &p) const |
void | initialize (const std::vector< Point< dim > > &points, const std::vector< double > &weights) |
unsigned int | size () const |
const Point< dim > & | point (const unsigned int i) const |
const std::vector< Point< dim > > & | get_points () const |
double | weight (const unsigned int i) const |
const std::vector< double > & | get_weights () const |
std::size_t | memory_consumption () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Public Member Functions inherited from Subscriptor | |
Subscriptor () | |
Subscriptor (const Subscriptor &) | |
Subscriptor (Subscriptor &&) | |
virtual | ~Subscriptor () |
Subscriptor & | operator= (const Subscriptor &) |
Subscriptor & | operator= (Subscriptor &&) |
void | subscribe (const char *identifier=0) const |
void | unsubscribe (const char *identifier=0) const |
unsigned int | n_subscriptions () const |
void | list_subscribers () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Protected Member Functions | |
std::vector< long double > | compute_quadrature_points (const unsigned int q, const int alpha, const int beta) const |
std::vector< long double > | compute_quadrature_weights (const std::vector< long double > &x, const int alpha, const int beta) const |
long double | JacobiP (const long double x, const int alpha, const int beta, const unsigned int n) const |
Static Protected Member Functions | |
static long double | gamma (const unsigned int n) |
Additional Inherited Members | |
Public Types inherited from Quadrature< dim > | |
typedef Quadrature< dim-1 > | SubQuadrature |
Static Public Member Functions inherited from Subscriptor | |
static ::ExceptionBase & | ExcInUse (int arg1, char *arg2, std::string &arg3) |
static ::ExceptionBase & | ExcNoSubscriber (char *arg1, char *arg2) |
Protected Attributes inherited from Quadrature< dim > | |
std::vector< Point< dim > > | quadrature_points |
std::vector< double > | weights |
The Gauss-Lobatto family of quadrature rules for numerical integration.
This modification of the Gauss quadrature uses the two interval end points as well. Being exact for polynomials of degree 2n-3, this formula is suboptimal by two degrees.
The quadrature points are interval end points plus the roots of the derivative of the Legendre polynomial Pn-1 of degree n-1. The quadrature weights are 2/(n(n-1)(Pn-1(xi)2).
Definition at line 75 of file quadrature_lib.h.
QGaussLobatto< dim >::QGaussLobatto | ( | const unsigned int | n | ) |
Generate a formula with n
quadrature points (in each space direction).
Definition at line 970 of file quadrature_lib.cc.
|
protected |
Compute Legendre-Gauss-Lobatto quadrature points in the interval \([-1, +1]\). They are equal to the roots of the corresponding Jacobi polynomial (specified by alpha
, beta
). q
is the number of points.
|
protected |
Compute Legendre-Gauss-Lobatto quadrature weights. The quadrature points and weights are related to Jacobi polynomial specified by alpha
, beta
. x
denotes the quadrature points.
|
protected |
Evaluate a Jacobi polynomial \( P^{\alpha, \beta}_n(x) \) specified by the parameters alpha
, beta
, n
. Note: The Jacobi polynomials are not orthonormal and defined on the interval \([-1, +1]\). x
is the point of evaluation.
|
staticprotected |
Evaluate the Gamma function \( \Gamma(n) = (n-1)! \).
n | point of evaluation (integer). |