Reference documentation for deal.II version 8.5.1
|
#include <deal.II/base/auto_derivative_function.h>
Public Types | |
enum | DifferenceFormula { Euler, UpwindEuler, FourthOrder } |
Public Member Functions | |
AutoDerivativeFunction (const double h, const unsigned int n_components=1, const double initial_time=0.0) | |
virtual | ~AutoDerivativeFunction () |
void | set_formula (const DifferenceFormula formula=Euler) |
void | set_h (const double h) |
virtual Tensor< 1, dim > | gradient (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim > > &gradients) const |
virtual void | gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim > > &gradients, const unsigned int component=0) const |
virtual void | vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim > > > &gradients) const |
Public Member Functions inherited from Function< dim > | |
Function (const unsigned int n_components=1, const double initial_time=0.0) | |
virtual | ~Function ()=0 |
Function & | operator= (const Function &f) |
virtual double | value (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_value (const Point< dim > &p, Vector< double > &values) const |
virtual void | value_list (const std::vector< Point< dim > > &points, std::vector< double > &values, const unsigned int component=0) const |
virtual void | vector_value_list (const std::vector< Point< dim > > &points, std::vector< Vector< double > > &values) const |
virtual void | vector_values (const std::vector< Point< dim > > &points, std::vector< std::vector< double > > &values) const |
virtual void | vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, double > > &gradients) const |
virtual void | gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim, double > > &gradients, const unsigned int component=0) const |
virtual void | vector_gradients (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, double > > > &gradients) const |
virtual void | vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, double > > > &gradients) const |
virtual double | laplacian (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_laplacian (const Point< dim > &p, Vector< double > &values) const |
virtual void | laplacian_list (const std::vector< Point< dim > > &points, std::vector< double > &values, const unsigned int component=0) const |
virtual void | vector_laplacian_list (const std::vector< Point< dim > > &points, std::vector< Vector< double > > &values) const |
virtual SymmetricTensor< 2, dim, double > | hessian (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, double > > &values) const |
virtual void | hessian_list (const std::vector< Point< dim > > &points, std::vector< SymmetricTensor< 2, dim, double > > &values, const unsigned int component=0) const |
virtual void | vector_hessian_list (const std::vector< Point< dim > > &points, std::vector< std::vector< SymmetricTensor< 2, dim, double > > > &values) const |
std::size_t | memory_consumption () const |
Public Member Functions inherited from FunctionTime< Number > | |
FunctionTime (const Number initial_time=Number(0.0)) | |
virtual | ~FunctionTime () |
Number | get_time () const |
virtual void | set_time (const Number new_time) |
virtual void | advance_time (const Number delta_t) |
Public Member Functions inherited from Subscriptor | |
Subscriptor () | |
Subscriptor (const Subscriptor &) | |
Subscriptor (Subscriptor &&) | |
virtual | ~Subscriptor () |
Subscriptor & | operator= (const Subscriptor &) |
Subscriptor & | operator= (Subscriptor &&) |
void | subscribe (const char *identifier=0) const |
void | unsubscribe (const char *identifier=0) const |
unsigned int | n_subscriptions () const |
void | list_subscribers () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Static Public Member Functions | |
static DifferenceFormula | get_formula_of_order (const unsigned int ord) |
Static Public Member Functions inherited from Subscriptor | |
static ::ExceptionBase & | ExcInUse (int arg1, char *arg2, std::string &arg3) |
static ::ExceptionBase & | ExcNoSubscriber (char *arg1, char *arg2) |
Private Attributes | |
double | h |
std::vector< Tensor< 1, dim > > | ht |
DifferenceFormula | formula |
Additional Inherited Members | |
Public Attributes inherited from Function< dim > | |
const unsigned int | n_components |
Static Public Attributes inherited from Function< dim > | |
static const unsigned int | dimension |
This class automatically computes the gradient of a function by employing numerical difference quotients. This only, if the user function does not provide the gradient function himself.
The following example of an user defined function overloads and implements only the value() function but not the gradient() function. If the gradient() function is invoked then the gradient function implemented by the AutoDerivativeFunction is called, where the latter function employs numerical difference quotients.
If the user overloads and implements also the gradient function, then, of course, the users gradient function is called.
Note, that the usage of the value() and gradient() functions explained above, also applies to the value_list() and gradient_list() functions as well as to the vector valued versions of these functions, see e.g. vector_value(), vector_gradient(), vector_value_list() and vector_gradient_list().
The gradient() and gradient_list() functions make use of the Function::value() function. The vector_gradient() and vector_gradient_list() make use of the Function::vector_value() function. Make sure that the user defined function implements the value() function and the vector_value() function, respectively.
Furthermore note, that an object of this class does not represent the derivative of a function, like FunctionDerivative, that gives a directional derivative by calling the value() function. In fact, this class (the AutoDerivativeFunction class) can substitute the Function class as base class for user defined classes. This class implements the gradient() functions for automatic computation of numerical difference quotients and serves as intermediate class between the base Function class and the user defined function class.
Definition at line 76 of file auto_derivative_function.h.
enum AutoDerivativeFunction::DifferenceFormula |
Names of difference formulas.
Definition at line 83 of file auto_derivative_function.h.
AutoDerivativeFunction< dim >::AutoDerivativeFunction | ( | const double | h, |
const unsigned int | n_components = 1 , |
||
const double | initial_time = 0.0 |
||
) |
Constructor. Takes the difference step size h
. It's within the user's responsibility to choose an appropriate value here. h
should be chosen taking into account the absolute value as well as the amount of local variation of the function. Setting h=1e-6
might be a good choice for functions with an absolute value of about 1, that furthermore does not vary to much.
h
can be changed later using the set_h() function.
Sets DifferenceFormula formula
to the default Euler
formula of the set_formula() function. Change this preset formula by calling the set_formula() function.
Definition at line 26 of file auto_derivative_function.cc.
|
virtual |
Virtual destructor; absolutely necessary in this case.
Definition at line 41 of file auto_derivative_function.cc.
void AutoDerivativeFunction< dim >::set_formula | ( | const DifferenceFormula | formula = Euler | ) |
Choose the difference formula. See the enum DifferenceFormula for available choices.
Definition at line 48 of file auto_derivative_function.cc.
void AutoDerivativeFunction< dim >::set_h | ( | const double | h | ) |
Takes the difference step size h
. It's within the user's responsibility to choose an appropriate value here. h
should be chosen taking into account the absolute value of as well as the amount of local variation of the function. Setting h=1e-6
might be a good choice for functions with an absolute value of about 1, that furthermore does not vary to much.
Definition at line 69 of file auto_derivative_function.cc.
|
virtual |
Return the gradient of the specified component of the function at the given point.
Compute numerical difference quotients using the preset DifferenceFormula.
Reimplemented from Function< dim >.
Definition at line 79 of file auto_derivative_function.cc.
|
virtual |
Return the gradient of all components of the function at the given point.
Compute numerical difference quotients using the preset DifferenceFormula.
Definition at line 133 of file auto_derivative_function.cc.
|
virtual |
Set gradients
to the gradients of the specified component of the function at the points
. It is assumed that gradients
already has the right size, i.e. the same size as the points
array.
Compute numerical difference quotients using the preset DifferenceFormula.
Definition at line 209 of file auto_derivative_function.cc.
|
virtual |
Set gradients
to the gradients of the function at the points
, for all components. It is assumed that gradients
already has the right size, i.e. the same size as the points
array.
The outer loop over gradients
is over the points in the list, the inner loop over the different components of the function.
Compute numerical difference quotients using the preset DifferenceFormula.
Definition at line 271 of file auto_derivative_function.cc.
|
static |
Return a DifferenceFormula of the order ord
at minimum.
Definition at line 337 of file auto_derivative_function.cc.
|
private |
Step size of the difference formula. Set by the set_h() function.
Definition at line 213 of file auto_derivative_function.h.
|
private |
Includes the unit vectors scaled by h
.
Definition at line 218 of file auto_derivative_function.h.
|
private |
Difference formula. Set by the set_formula() function.
Definition at line 223 of file auto_derivative_function.h.