Parallelization of "stencil-based" methods: step-69 (and beyond)

Martin Kronbichler¹, <u>Matthias Maier</u>, Ignacio Tomas²

Department of Mathematics Texas A&M University

¹ Institute for Computational Mechanics, TUM, Munich

² CSRI, Sandia National Laboratories

Motivation

Motivation

Simulation of hyperbolic systems of conservation laws

Goals:

Outline

1 Motivation

2 The compressible Euler equations

3 step-69

4 . . . and beyond

The compressible Euler equations

Hyperbolic system of conservation laws

 $\mathbf{u}_t + \operatorname{div} f(\mathbf{u}) = \mathbf{0},$

where $\mathbf{u}(\mathbf{x}, t) : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^{d+2}$, and $\mathbf{f}(\mathbf{u}) : \mathbb{R}^{d+2} \to \mathbb{R}^{(d+2) \times d}$, with space dim. $d \ge 1$.

State:
$$\mathbf{u} = \begin{bmatrix} \rho \\ \mathbf{m} \\ E \end{bmatrix}$$
 Flux: $f(\mathbf{u}) = \begin{bmatrix} \mathbf{m}^{\top} \\ \rho^{-1}\mathbf{m} \otimes \mathbf{m} + \mathbb{I}\rho \\ \frac{\mathbf{m}^{\top}}{\rho}(E+\rho) \end{bmatrix}$,

Here $\rho \in \mathbb{R}^+$ denotes the density, $\mathbf{m} \in \mathbb{R}^d$ is the momentum, and $E \in \mathbb{R}^+$ is the total energy of the system. The pressure $p \in \mathbb{R}^+$ is determined by an equation of state, e.g.,

Polytropic gas equation:
$$p(\mathbf{u}) := (\gamma - 1) \Big(E - rac{|\mathbf{m}|^2}{2\rho} \Big), \quad \gamma \in (1, 5/3].$$

Variational principle viable ??? Testing with **u**:

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathbf{u} \right\|_{L^{2}\Omega}^{2} + \underbrace{\left(\operatorname{div} f(\mathbf{u}), \mathbf{u} \right)_{L^{2}(\Omega)}}_{???} = 0.$$

- no energy estimate available
- no (quasi) best approximation
- etc.
- → none of the classical finite element toolbox available...

Solution theory

We call \mathbf{u} a viscosity solution if

$$\mathbf{u} = \lim_{\varepsilon \to 0} \mathbf{u}^{\varepsilon}$$
,

with

$$\mathbf{u}_t^{\varepsilon} + \operatorname{div} f(\mathbf{u}^{\varepsilon}) = \varepsilon \Delta \mathbf{u}^{\varepsilon}.$$

 global existence and uniqueness of viscosity solutions is an open problem.

So what can we do?

What can we meaningfully expect?

Invariant set

If \mathbf{u} is a viscosity solution, then

 $\mathbf{u}(\mathbf{x}, t) \in \mathcal{B} \quad \forall \mathbf{x} \in \Omega, \ \forall t \ge 0,$

where $\mathbf{u} \in \mathcal{B}$ implies

- positivity of density: $\rho > 0$
- positivity of internal energy:

$$E-\frac{|\mathbf{m}|^2}{2\rho}>0$$

• local minimum principle on specific entropy:

 $s(\mathbf{u}) \geq \min_{x \in \Omega} s(\mathbf{u}_0(\mathbf{x}))$

Conservation

Conservation of mass, momentum and total energy:

$$rac{\mathsf{d}}{\mathsf{d}t}\int_\Omega \mathbf{u}\,\mathsf{d}t + \int_{\partial\Omega} \mathbf{n}\cdot f(\mathbf{u})\,\mathsf{d}o_{\mathbf{x}} = 0.$$

→ Robustness: We want a numerical scheme that is conservative and maintains the invariant set.

How does (a subset of) the community judge our code?

Picture norm comparison of flow characteristics to (known) experimental results.

To summarize:

- Robustness: conservative and invariant domain preserving
 Most importantly: This implies that our scheme will never crash (no matter what mesh was used, or (admissible) initial data was prescribed)
- Accuracy (not discussed): second order convergent in case of known, smooth viscosity solutions
- Scalability: Large-scale 3D computation

• Guermond & Popov, Invariant domains and first-order continuous finite element approximation for hyperbolic systems, SIAM J. Numer. Anal. 54(4):2466-2489.

(Grossly oversimplified) formal derivation

Let $\mathbf{u}_h(\mathbf{x}, t) = \sum_j \varphi_j(\mathbf{x}) \mathbf{U}_j(t)$ be a finite element approximation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\boldsymbol{\varphi}_{i},\mathbf{u}_{h}\right)+\left(\boldsymbol{\varphi}_{i},\operatorname{div}\mathbb{f}(\mathbf{u}_{h})\right) = 0.$$

Forward Euler:

$$\sum_{\boldsymbol{\in}\mathcal{I}(i)} m_{ij} \frac{\mathbf{U}_{j}^{n+1} - \mathbf{U}_{j}^{n}}{\tau_{n}} + \left(\boldsymbol{\varphi}_{i}, \operatorname{div} \mathbb{f}\left(\sum_{j \in \mathcal{I}(i)} \mathbf{U}_{j}^{n}\right)\right) = 0.$$

Lump mass matrix and approximate flux, $f(\mathbf{u}_h^n) \approx \sum_j f(\mathbf{U}_j^n) \varphi_j$:

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\tau_n} + \sum_{j \in \mathcal{I}(i)} \mathbb{f}(\mathbf{U}_j^n) \cdot \mathbf{c}_{ij} = 0, \qquad m_i = \int_{\Omega} \varphi_i, \quad \mathbf{c}_{ij} = \int_{\Omega} \varphi_i \nabla \varphi_j.$$

• Guermond & Popov, Invariant domains and first-order continuous finite element approximation for hyperbolic systems, SIAM J. Numer. Anal. 54(4):2466-2489.

Scheme

$$m_i \frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\tau_n} + \sum_{j \in \mathcal{I}(i)} \mathbb{f}\left(\mathbf{U}_j^n\right) \cdot \mathbf{c}_{ij} - \sum_{j \in \mathcal{I}(i)} d_{ij}^n \mathbf{U}_j^n = 0,$$

where

$$m_i = \int_{\Omega} \varphi_i, \qquad \mathbf{c}_{ij} = \int_{\Omega} \varphi_i \nabla \varphi_j,$$

and where we have introduced a "graph viscosity" d_{ii}^n as stabilization term.

The correct construction of d_{ij}^n is key for robustness

Compute two characteristic propagation speeds associated with U_i^n or U_i^n :

$$\lambda_{-}^{1}(\boldsymbol{U}_{j}^{n},\boldsymbol{p}^{*}) \coloneqq \tilde{u}_{i}^{n} - \tilde{c}_{i}^{n}\sqrt{1 + \frac{\gamma + 1}{2\gamma}\left[\frac{\boldsymbol{p}^{*} - \tilde{\boldsymbol{p}}_{i}^{n}}{\tilde{\boldsymbol{p}}_{i}^{n}}\right]_{\text{pos}}}, \ \lambda_{+}^{3}(\boldsymbol{U}_{j}^{n},\boldsymbol{p}^{*}) \coloneqq \tilde{u}_{j}^{n} + \tilde{c}_{j}^{n}\sqrt{1 + \frac{\gamma + 1}{2\gamma}\left[\frac{\boldsymbol{p}^{*} - \tilde{\boldsymbol{p}}_{j}^{n}}{\tilde{\boldsymbol{p}}_{j}^{n}}\right]_{\text{pos}}},$$

and a two-rarefaction pressure:

$$ilde{
ho}^{st}(oldsymbol{U}_{i}^{n},oldsymbol{U}_{j}^{n})= ilde{
ho}_{j}\,\left(rac{ ilde{c}_{i}+ ilde{c}_{j}-rac{\gamma-1}{2}ig(ilde{u}_{j}- ilde{u}_{i}ig)}{ ilde{c}_{i}\,ig(rac{ ilde{
ho}_{j}}{ ilde{
ho}_{j}}ig)^{-rac{\gamma-1}{2\,\gamma}}+ ilde{c}_{j}}
ight)^{rac{arepsilon_{j}}{\gamma-1}},$$

and a monotone increasing and concave down function

$$\psi(p) \coloneqq f(\boldsymbol{U}_{i}^{n}, p) + f(\boldsymbol{U}_{j}^{n}, p) + \tilde{u}_{j} - \tilde{u}_{i}, \qquad f(\boldsymbol{U}, p) \coloneqq \begin{cases} \frac{\sqrt{2}(p - \tilde{p})}{\sqrt{\tilde{p}[(\gamma + 1)p + (\gamma - 1)\tilde{p}]}} & \text{if } p \geq \tilde{p}, \\ \left[(p/\tilde{p})^{\frac{\gamma - 1}{2\gamma}} - 1 \right] \frac{2\tilde{c}}{\gamma - 1}, & \text{otherwise.} \end{cases}$$

Now:

$$\tilde{\lambda}_{\max} = \max\left(\left[\lambda_{-}^{1}(\boldsymbol{U}_{i}^{n}, \boldsymbol{p}^{*})\right]_{\text{neg}}, \left[\lambda_{+}^{3}(\boldsymbol{U}_{j}^{n}, \boldsymbol{p}^{*})\right]_{\text{pos}}\right), \quad \boldsymbol{p}^{*} \coloneqq \begin{cases} \tilde{\boldsymbol{p}}^{*}(\boldsymbol{U}_{i}^{n}, \boldsymbol{U}_{j}^{n}) & \text{if } \psi(\boldsymbol{p}_{\max}) < 0, \\ \min(\tilde{\boldsymbol{p}}_{\max}, \tilde{\boldsymbol{p}}^{*}(\boldsymbol{U}_{i}^{n}, \boldsymbol{U}_{j}^{n})) & \text{otherwise.} \end{cases}$$

0 ---

Scheme

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} + \frac{\tau_{n}}{m_{i}} \Big(\sum_{j \in \mathcal{I}(i)} \operatorname{ff} \left(\mathbf{U}_{j}^{n} \right) \cdot \mathbf{c}_{ij} - \sum_{j \in \mathcal{I}(i)} d_{ij}^{n} \mathbf{U}_{j}^{n} \Big)$$

where
$$m_i = \int_{\Omega} \varphi_i, \quad \mathbf{c}_{ij} = \int_{\Omega} \varphi_i \nabla \varphi_j, \quad d_{ij}^n = \max \left(\tilde{\lambda}_{\max}(\boldsymbol{n}_{ij}, \boldsymbol{U}_i^n, \boldsymbol{U}_j^n) | \boldsymbol{c}_{ij} |, \tilde{\lambda}_{\max}(\boldsymbol{n}_{ji}, \boldsymbol{U}_j^n, \boldsymbol{U}_j^n) | \boldsymbol{c}_{ji} | \right)$$

 $\mathcal{I}(i)$ — all column indices coupling to *i*.

Stencil based: compare to matrix-vector multiplication

$$y_i = \sum_{j \in \mathcal{I}(i)} a_{ij} x_j,$$

... but highly nonlinear!

euler step // Step 1: compute off-diagonal d_{ii}^n : for $i = 1, \ldots, N$ do for $i \in \mathcal{I}(i), i \neq i$ do $\begin{vmatrix} d_{ij}^n \leftarrow \max\left(\tilde{\lambda}_{\max}(\boldsymbol{n}_{ij}, \boldsymbol{U}_i^n, \boldsymbol{U}_j^n) | \boldsymbol{c}_{ij} \end{vmatrix}, \ \tilde{\lambda}_{\max}(\boldsymbol{n}_{ji}, \boldsymbol{U}_j^n, \boldsymbol{U}_j^n) | \boldsymbol{c}_{ji} \end{vmatrix} \right)$ // Step 2: compute d_{ii}^n and τ_n : $\tau_n \leftarrow +\infty$ for $i = 1, \ldots, \mathcal{N}$ do $| d_{ji}^n \leftarrow -\sum_{j \in \mathcal{I}(i), j \neq i} d_{ii}^n, \qquad \tau_n \leftarrow \min\left(\tau_n, -c_{cfL} \frac{m_i}{2d^n}\right)$ // Step 3: perform update for $i = 1, \ldots, N$ do for $j \in \mathcal{I}(i)$ do $\begin{bmatrix} \mathbf{U}_{i}^{n+1} \leftarrow \mathbf{U}_{i}^{n} + \frac{\tau_{n}}{m_{i}} \left(\sum_{j \in \mathcal{I}(i)} \mathrm{f}(\mathbf{U}_{i}^{n}) \cdot \mathbf{c}_{ij} - \sum_{j \in \mathcal{I}(i)} d_{ij}^{n} \mathbf{U}_{i}^{n} \right) \end{bmatrix}$

// Step 4: MPI synchronization
U.update_ghost_values()

Parallelization approach (step-69)

- MPI parallelization via parallel::distributed::Triangulation LinearAlgebra::distributed::Vector
- Precompute m_i and c_{ij}.
 (This is the only place where finite elements enter)
- Distribute work onto threads with parallel::apply_to_subranges()
- Avoids global to (MPI) local index translations.
- (Asynchronous IO.)

```
const auto on subranges =
  [&1(
    std cxx20::ranges::iota view<unsigned int, unsigned int>::iterator i1.
    const std cxx20::ranges::iota view<unsigned int.
                                       unsigned int>::iterator i2) {
    for (const auto i :
         std cxx20::ranges::iota view<unsigned int, unsigned int>(*i1.
                                                                    *i2))
        const auto U i = gather(U, i):
        for (auto it = sparsity.begin(i): it != sparsity.end(i): ++it)
            const auto i = it->column():
            if (i \ge i)
            const auto U j = gather(U, j);
            const auto n ii = gather get entry(nii matrix, it);
            const double norm = get_entry(norm_matrix, jt);
            const auto lambda max =
              ProblemDescription<dim>::compute lambda max(U i, U i, n ii):
            double d = norm * lambda_max;
            if (boundary normal map.count(i) != 0 &&
                boundary normal map.count(i) != 0)
                const auto n ji = gather(nij matrix, j, i):
                const auto lambda max 2 =
                  ProblemDescription<dim>::compute_lambda_max(U_j,
                                                               n_{ii}:
                const double norm 2 = norm matrix(j, i);
                d = std::max(d, norm 2 * lambda max 2);
            set_entry(dij_matrix, jt, d);
            dij_matrix(j, i) = d;
          }
      3
  };
parallel::apply to subranges(indices relevant.begin(),
                             indices relevant.end().
                              on subranges.
                              40\overline{9}6):
```

MPI local index translations:

```
TimerOutput::Scope scope(
    computing_timer,
    "offline data - create sparsity pattern and set up matrices"):
 DynamicSparsityPattern dsp(n locally relevant, n locally relevant);
 const auto dofs per cell = discretization->finite element.dofs per cell:
 std::vector<types::global dof index> dof indices(dofs per cell):
 for (const auto &cell : dof handler.active cell iterators())
      if (cell->is artificial())
       continue
     /* We transform the set of global dof indices on the cell to the
      * corresponding "local" index range on the MPI process: */
      cell->get dof indices(dof indices);
     std::transform(dof_indices.begin(),
                     dof indices.end(),
                     dof indices.begin(),
                     [&](types::global_dof_index index) {
                       return partitioner->global to local(index);
     /* And simply add, for each dof, a coupling to all other "local"
       * dofs on the cell: */
     for (const auto dof : dof indices)
       dsp.add_entries(dof, dof_indices.begin(), dof_indices.end());
 sparsity pattern.copy from(dsp);
 lumped_mass_matrix.reinit(sparsity_pattern);
 norm matrix.reinit(sparsity pattern);
 for (auto &matrix : cii matrix)
    matrix.reinit(sparsity pattern):
 for (auto &matrix : nii matrix)
    matrix.reinit(sparsity pattern):
template <std::size t k>
DEAL II ALWAYS INLINE inline Tensor<1. k>
gather(const std::array<LinearAlgebra::distributed::Vector<double>, k> &U.
       const unsigned int
 Tensor<1, k> result:
 for (unsigned int j = 0; j < k; ++j)
result[j] = U[j].local_element(i);</pre>
 return result:
```

Asynchronous IO:

auto data_out = std::make_shared<DataOut<dim>>();

data_out->attach_dof_handler(offline_data.dof_handler);

const auto &component_names = ProblemDescription<dim>::component_names;

```
for (unsigned int i = 0; i < problem_dimension; ++i)
    data_out->add_data_vector(output_vector[i], component_names[i]);
```

```
const auto output_worker = [this, name, t, cycle, checkpoint, data_out]() {
    if (checkpoint)
```

```
const unsigned int i =
discretization.triangulation.locally_owned_subdomain();
std::string filename =
name + "-checkpoint-" + Utilities::int_to_string(1, 4) + ".archive";
```

```
std::ofstream file(filename, std::ios::binary | std::ios::trunc);
```

```
boost::archive::binary_oarchive oa(file);
oa << t < cycle;
for (const auto &it1 : output_vector)
for (const auto &it2 : it1)
oa << it2;</pre>
```

```
DataOutBase::VtkFlags flags(t,
cycle,
```

```
true,
DataOutBase::VtkFlags::best_speed);
```

```
data_out->set_flags(flags);
```

```
data_out->write_vtu_with_pvtu_record(
    "", name + "-solution", cycle, mpi_communicator, 6);
```

```
;
```

```
if (asynchronous_writeback)
```

```
'def DEAL_II_WITH_THREADS
background_thread_state = std::async(std::launch::async, output_worker);
se AssertThrow(
false,
ExcMessage(
    "\"asynchronous_writeback\" was set to true but deal.II was built "
    "without thread support (\"DEAL II_WITH_THREADS=false\")."));
```


... and beyond

... and beyond

$$m_{i}\left(\boldsymbol{U}_{i}^{L,n+1}-\boldsymbol{U}_{i}^{n}\right) = \tau_{n}\sum_{j\in\mathcal{I}(i)}\left(-\operatorname{f}(\boldsymbol{U}_{j}^{n})\cdot\boldsymbol{c}_{ij}+d_{ij}^{L,n}\left(\boldsymbol{U}_{j}^{n}-\boldsymbol{U}_{i}^{n}\right)\right).$$

$$\sum_{j\in\mathcal{I}(i)}m_{ij}\left(\boldsymbol{U}_{j}^{H,n+1}-\boldsymbol{U}_{j}^{n}\right) = \tau_{n}\sum_{j\in\mathcal{I}(i)}\left(-\operatorname{f}(\boldsymbol{U}_{j}^{n})\cdot\boldsymbol{c}_{ij}+d_{ij}^{L,n}\frac{\boldsymbol{\alpha}_{i}^{n}+\boldsymbol{\alpha}_{j}^{n}}{2}\left(\boldsymbol{U}_{j}^{n}-\boldsymbol{U}_{i}^{n}\right)\right),$$

with a suitable indicator α_i .

- The low-order $\boldsymbol{U}_{i}^{L,n+1}$ is robust, the high-order $\boldsymbol{U}_{i}^{H,n+1}$ is not.
- Key idea: Invariant-domain preserving convex Limiting ³

$$\boldsymbol{U}_{i}^{H,n+1} - \boldsymbol{U}_{i}^{L,n+1} = \sum_{j \in \mathcal{I}(i)} \boldsymbol{P}_{ij}^{n}, \text{ where } \boldsymbol{P}_{ij}^{n} = \dots$$
$$\boldsymbol{U}_{i}^{n+1} - \boldsymbol{U}_{i}^{L,n+1} = \sum_{j \in \mathcal{I}(i)} \boldsymbol{l}_{ij}^{n} \boldsymbol{P}_{ij}^{n}, \quad 0 \leq \boldsymbol{l}_{ij}^{n} \leq 1.$$

³Guermond, Nazarov, Popov, Tomas, *Second-order invariant domain preserving approximation of the Euler equations using convex limiting*, SIAM J. Sci. Comput. 40 (2018)

Coming soon...

https://github.com/conservation-laws/

Conservation Laws

℃ https://conservation-laws.43-1.org 🛛 conservation-laws@43-1.org

🗇 Packages 🛛 💄 People 💈

le 2 🕅 Teams

💷 Projects 🛛 🔅 Settings

This organization has no repositories.

Create a new repository

Thank you for your attention!

2D 38M gridpoints: https://www.youtube.com/watch?v=xIwJZlsXpZ4 3D 1.8B gridpoints: https://www.youtube.com/watch?v=vBCRAF_c8m8

https://www.dealii.org/

https://github.com/conservation-laws/