
The State of Matrix-free Methods and HPC

Martin Kronbichler

Institute for Computational Mechanics
Technical University of Munich, Germany

May 26, 2020

Eighth deal.II Users and Developers Workshop

Supported by SPPEXA (German software for exascale computing project, DFG), project ExaDG
Supported by Bayerisches Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrechnen
(KONWIHR)

M. Kronbichler The State of Matrix-free Methods and HPC 1

Outline

What kind of matrix-free methods are there in deal.II and why?

Use cases of matrix-free methods

Geometric multigrid

M. Kronbichler The State of Matrix-free Methods and HPC 2

Today’s big HPC theme: On the road towards exascale

HPC community is moving towards exascale (machine with 1
Exaflop/s = 1018 floating point ops / sec)

We want to enable the user of deal.II to
I Select most efficient discretization parameters

I Meshing (high-order curved, adaptive, . . .)
I Polynomial degree

I Select most efficient iterative solver
I > 109 spatial unknowns, millions of time steps→

optimal-complexity solvers essential
I Example: multigrid

I Select most efficient implementation for given hardware
I Matrix-free vs matrix-based→ avoid memory wall
I Usage of most efficient instruction set – e.g. vectorization

with AVX/AVX-512
I Intel/AMD CPUs, NVIDIA GPUs, ARM SVE, . . .
I Scalability to 10,000+ nodes

SuperMUC-NG supercomputer (top) (source:
www.lrz.de) and efficiency of various instruc-
tion sets on Intel Skylake-X for DG operator
evaluation (bottom)

M. Kronbichler The State of Matrix-free Methods and HPC 3

Implement by ourselves or use external libraries?

External libraries
I Matrix-based linear algebra and

preconditioners: PETSc, Trilinos,
UMFPACK, cuSPARSE,
cuSOLVERS

I Mesh partitioning: p4est, METIS
I . . .

Programming frameworks & backends
I Distributed memory: MPI
I Threading (TBB; taskflow, . . . ?)
I CUDA for GPUs
I Vectorization: via compiler

(intrinsics) or C++ standard library

Implemented inside deal.II
I Algorithms for finite elements and beyond
I Linear algebra infrastructure not available

with adequate functionality or performance
externally

I MPI-parallel vector
LinearAlgebra::distributed
::Vector<Number>

I SIMD abstraction class
VectorizedArray<Number>

I Wrapper classes for unified interface to
external libraries

I Help our users to concentrate on their
application: separation of concerns

M. Kronbichler The State of Matrix-free Methods and HPC 4

Outline

What kind of matrix-free methods are there in deal.II and why?

Use cases of matrix-free methods

Geometric multigrid

M. Kronbichler The State of Matrix-free Methods and HPC 5

Matrix-free algorithms: hot topic in HPC

I What is limiting resource in FEM programs?
I Iterative solvers (or explicit time stepping) typically spend

60–95% of time in matrix-vector product
I Classical approach: sparse matrix-vector product

I 2 arithmetic operations (mult, add) per matrix entry
loaded from memory (8 byte for value + 4.x byte for index
data): 0.16–0.25 Flop/Byte

I Modern CPUs/GPUs can do 3–20 Flop/Byte
I Performance limit is memory bandwidth
I SpMV leaves resources unused
I Memory wall: gap to memory widens over time

I Matrix-free algorithm: transfer less, compute more
I Choice in deal.II: fast computation of FEM integrals
I 1–8 Flop/Byte
I Method of choice for higher polynomial degrees p

I Closely related to US CEED project

1 2 3 4 5 6 7 8
0

500

1,000

1,500

2,000

Polynomial degree p

B
yt

es
/D

oF

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

Polynomial degree p

O
pe

ra
tio

ns
/D

oF

sparse matrix-vector

matrix-free

M. Kronbichler The State of Matrix-free Methods and HPC 6

Matrix-free algorithm layout in deal.II

matrix-based: A =
Nel

∑
e=1

PT
e AePe (assembly)

v = Au (matrix-vector product
within iterative solver)

matrix-free:

v =
Nel

∑
e=1

PT
e Ae (Peu)

implication: cell loop within
iterative solvers, need optimized
loops + vector access

Matrix-vector product
Matrix-free evaluation of generic FEM operator
I v = 0
I loop over elements e = 1, . . . ,Nel

(i) Extract local vector values: ue = Peu
(ii) Apply operation locally by integration:

vK = AK uK (without forming AK)
(iii) Sum results from (ii) into the global solution

vector: v = v +PT
e ve

Design goals:

I Data locality for higher arithmetic intensity: single
sweep through data

I Absolute performance in unknowns per second
(DoFs/s), not maximal GFlop/s or GB/s

M. Kronbichler, K. Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63:135–147, 2012
M. Kronbichler, K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3), 29, 2019

M. Kronbichler The State of Matrix-free Methods and HPC 7

Matrix-vector product on cell by integration

Contribution of cell K to matrix-vector product: example for Laplacian

(AK uK)j =
∫

K
∇xφj ·∇xuhdx≈∑

q
wq detJq ∇xφj ·∇xuh

∣∣∣
x=xq

= ∑
q

∇ξ φjJ−1
q (wq detJq)J−T

q ∑
i

∇ξ φiuK ,i

∣∣∣
x=xq

, j = 1, . . . ,cell dofs

(a) Compute unit cell gradients ∇ξ uh = ∑(∇ξ φi)uK ,i at all
quadrature points

(b) At each quadrature point, apply geometry J−T
q , multiply

by quadrature weight and Jacobian determinant, apply
geometry for test function J−1

q

(c) Test by unit cell gradients of all basis functions and sum
over quadrature points

Matrix notation:

vK = AK uK

= STWSuK

with
Sqi = ∇ξ φi

∣∣
ξ q

Wqq = J−1
q (wq detJq)J−T

q

M. Kronbichler The State of Matrix-free Methods and HPC 8

Fast interpolation and integration: sum factorization via FEEvaluation

I Efficient evaluation of S and ST matrices with structure S3D =

Sζ ⊗Sη ⊗Dξ

Sζ ⊗Dη ⊗Sξ

Dζ ⊗Sη ⊗Sξ


I Ideas from spectral elements (1980s) for tensor product shape functions and tensor

product quadrature
I Visualization of interpolation of ∂u

∂ξ
with Q3 element (Lagrange basis) Sη ⊗Dξ :

successively apply 1D kernels

Vector values uK on nodes
∂uh

∂ξ
on quadrature points

Dξ Sη

Tensor-based evaluation reduces evaluation cost from 44 to 2×43

In general for degree p and dimension d : O((p+1)2d) to O(d(p+1)d+1)
M. Kronbichler The State of Matrix-free Methods and HPC 9

Sum factorization – implement ourselves or use performance libraries?

I Sum factorization consists of series of
matrix-matrix multiplication of size
(p+1)× (p+1) and (p+1)× (p+1)2 for
polynomial degree p

I Standard BLAS optimized for large N
I bad here due to function call overhead &

rearrangement cost
I Series of mat-mat! Batched BLAS possible?

I Combine small mat-mat of all elements
I Limit: Data locality between mat-mat lost
I Unclear how to best utilize data in caches

(CPU) or registers (GPU)

I Own implementation with SIMD and unrolled
loops (compiler via templated C++ code)

0 5 10 15 20 25
0

200

400

600

800

Polynomial degree p

G
Fl

op
/s

own implementation

Batched BLAS projected

BLAS-3 via MKL

System: 2×14 Intel Broadwell 2690 v4, peak: 1.3 TFlop/s, 115 GB/s

Own implementation 2–10 times faster in interesting regime 2≤ p ≤ 10

M. Kronbichler The State of Matrix-free Methods and HPC 10

Node-level performance over time

Track performance of operator eval-
uation per core over 10 years of
hardware
I Baseline: sparse matrix-vector

product, FE Q(1)

I Continuous H1 conforming
elements, affine (arithmetic
intensive) and high-order
deformed (memory intensive),
FE Q(4)

I Discontinuous elements,
affine, FE DGQ(4)

Matrix-free and SpMV within a fac-
tor 2 in 2010, more than 10× apart
today!

Opteron 2×
8C

Sandy Brid
ge 2×

8C

Hasw
ell 2
×8C

Hasw
ell 2
×14C

Broadwell 2
×20C

Sky
lake

2×
24C

0

25

50

75

100

125

m
ill

io
n

D
oF

s
/[

s
×

co
re

s]

matrix-free, H1 affine Q4 matrix-free, H1 curved Q4

matrix-free, DG-IP affine Q4 sparse matrix-vector Q1

M. Kronbichler The State of Matrix-free Methods and HPC 11

Comparison versus matrix-based: matrix-free and high order wins

Continuous finite elements, DG-SIP, hybridizable discontinuous Galerkin (HDG) representing
efficient sparse matrix-based scheme
Throughput of matrix-vector product measured using run time against Nelk3 “equivalent”
DoFs to make different discretizations comparable1

1 2 3 4 5 6 7 8
107

108

109

Polynomial degree

E
qu

iv
al

en
tD

oF
/s

3D affine mesh

1 2 3 4 5 6 7 8
107

108

109

Polynomial degree

E
qu

iv
al

en
tD

oF
/s

3D curved mesh

continuous FEM matrix-free continuous FEM stat. cond. matrix DG-SIP matrix-free HDG trace matrix

1Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SIAM J Sci Comput 40:A3423–48, 2018
M. Kronbichler The State of Matrix-free Methods and HPC 12

If you care about performance with p ≥ 2, use matrix-free methods!

I Best efficiency (DoFs/s) of matrix-free operator evaluation for degrees p = 3,4,5,6
I 10× faster than best matrix-based method (hybridization/static condensation) for same p
I 3× faster for high order than sparse mat-vec for linear FEM with same # DoFs

I step-37, step-48, step-50, step-59, step-64, step-67 tutorial programs
I Current support in deal.II not for all elements

I Available: continuous FE Q and discontinuous FE DGQ elements, systems of these
elements

I Plan for next release: H(div) and H(curl) elements: some nodal form of
FE RaviartThomas and some FE NedelecNodal (to be introduced)

Ingredients
I SIMD vectorization essential to use arithmetic power in

CPU→ better throughput / Watt
I LinearAlgebra::distributed::Vector rather

than using PETSc or Trilinos to embed MPI-local index
access & efficient ghost update (∼ 2× improvement)

I Evaluator class FEEvaluation
M. Kronbichler The State of Matrix-free Methods and HPC 13

CPU code example: Cell term for Laplacian from step-37 tutorial

Evaluation of weak form (∇φj ,∇uh)Ωh
representing product v = Au

void cell(MatrixFree<dim> &data,
Vector &v,
const Vector &u,
const std::pair<unsigned int,unsigned int> &range)

{
FEEvaluation<dim,degree> eval (data);
for (unsigned int cell=range.first; cell<range.second; ++cell)
{

eval.reinit (cell); // set pointers to data
eval.gather_evaluate(u, // read from source

/*interpolate_values=*/ false, // sum factorization
/*interpolate_gradients=*/ true);

for (unsigned int q=0; q<eval.n_q_points; ++q)
eval.submit_gradient (eval.get_gradient(q), q);// equation

eval.integrate_scatter (false, true, // integrate, sum factoriz
v); // sum into result vector

}
}

M. Kronbichler The State of Matrix-free Methods and HPC 14

CPU versus GPU code

I CPU code most mature
I Basic support on GPUs available (work by Karl Ljungkvist, Bruno Turcksin, Daniel Arndt,

Peter Munch)
I CPU and GPU use different implementations but provide similar interfaces
I GPU code reduces implementation to operation at quadrature point by functor with

CUDA threads to parallelize over quadrature points:

template <int dim, int fe_degree>
__device__ void LaplaceOperatorQuad<dim, fe_degree>::

operator()(CUDAWrappers::FEEvaluation<dim, fe_degree> *eval,
const unsigned int q) const

{
// test expression gradient(u) by nabla phi,
// i.e., (nabla phi_i, nabla u)_K
eval->submit_gradient(eval->get_gradient());

}

I step-64 tutorial program
I Could implement similar interface for CPU code: hide loop over q, iterator for index

M. Kronbichler The State of Matrix-free Methods and HPC 15

Outline

What kind of matrix-free methods are there in deal.II and why?

Use cases of matrix-free methods

Geometric multigrid

M. Kronbichler The State of Matrix-free Methods and HPC 16

Using matrix-free algorithms in practice

I Explicit time integration only needs action of a right hand side / residual
I For well-conditioned matrices (mass, Helmholtz with nice parameters): conjugate

gradient solver
I Many established preconditioners such as ILU, Gauss–Seidel, AMG, . . . not directly

available in matrix-free context
I I have used AMG by using matrix-free operator evaluation for mat-vec and matrix for

hierarchy generation
I Matrix-free operator evaluation requires specific preconditioners

I Active research topic
I Most work in terms of multigrid methods
I Previously: variants of Jacobi smoothers
I Future: block smoothers via fast diagonalization method / approximate Kronecker inverses

M. Kronbichler The State of Matrix-free Methods and HPC 17

Explicit time integration: the step-67 tutorial program

Fast integration infrastructure via MatrixFree and FEEvaluation straight-forwardly
applicable to explicit time integration
I New tutorial program in 9.2 release
I Solves the Euler equations with a high-order discontinuous

Galerkin scheme
I Attention mostly on wave-like phenomena because plain DG cannot

deal with shocks
I Demonstrates matrix-free facilities for

I systems of equations,
I inverse mass matrix in DG, and
I overlap of vector operations within MatrixFree::cell loop by

tracking dependencies→ hides memory access cost behind
computations

I Performance for degree p = 5 in 3D: 1252 million DoFs/s on 40 cores
I Throughput around 3× higher per core than other reported DG results (e.g. Flexi project)

M. Kronbichler The State of Matrix-free Methods and HPC 18

step-67 cell integrator

Cell term (∇v ,F (wh))K : similar code as in Laplace case

void EulerOperator<dim, degree, n_points_1d>::local_apply_cell(...) const
{

// evaluator for 'dim + 2' components
FEEvaluation<dim, degree, n_points_1d, dim + 2, Number> eval(matrix_free);

for (unsigned int cell = cell_range.first; cell < cell_range.second; ++cell)
{
eval.reinit(cell);
eval.gather_evaluate(src, true, false);
for (unsigned int q = 0; q < eval.n_q_points; ++q)
{

// weak form: (nabla v, euler_flux(w(x_q)))
const auto w_q = eval.get_value(q);
eval.submit_gradient(euler_flux<dim>(w_q), q);

}
eval.integrate_scatter(false, true, dst);

}
}

M. Kronbichler The State of Matrix-free Methods and HPC 19

step-67 inner face integrator

Interface term
〈
v ,n ·F ∗(w−h ,w

+
h)
〉

F : two evaluators from both elements adjacent to a face

void EulerOperator<dim, degree, n_points_1d>::local_apply_inner_face(...) const {
FEFaceEvaluation<dim, degree, n_points_1d, dim + 2, Number> eval_m(mf, true);
FEFaceEvaluation<dim, degree, n_points_1d, dim + 2, Number> eval_p(mf, false);

for (unsigned int face = face_range.first; face < face_range.second; ++face)
{
eval_p.reinit(face); eval_p.gather_evaluate(src, true, false);
eval_m.reinit(face); eval_m.gather_evaluate(src, true, false);
for (unsigned int q = 0; q < eval_m.n_q_points; ++q)
{

// implement all point-wise work in separate function 'numerical_flux'
const auto numerical_flux =

euler_numerical_flux<dim>(eval_m.get_value(q), eval_p.get_value(q),
eval_m.get_normal_vector(q));

eval_m.submit_value(-numerical_flux, q);
eval_p.submit_value(numerical_flux, q);

}
eval_p.integrate_scatter(true, false, dst);
eval_m.integrate_scatter(true, false, dst);

} }

M. Kronbichler The State of Matrix-free Methods and HPC 20

Conjugate gradient solver, diagonal precondition: CEED benchmarks

I Benchmark problem BP5 of US
exascale discretization initiative CEED

I 3D Poisson, deformed geometry,
continuous elements

I conjugate gradient + diagonal
preconditioner, GLL quadrature

I 1 node of dual-socket Intel Skylake
I Matrix-vector product no longer

dominant
I Vector operations take significant time

when operated from RAM

https://ceed.exascaleproject.org/bps/
Fischer, Min, Rathnayake, Dutta, Kolev, Dobrev, Camier, Kronbichler,
Warburton, Świrydowicz, and Brown: Scalability of High-Performance PDE
Solvers, Int. J. High Perf. Comput. Appl., 2020

104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

1.2

DoFs per node

s
/[

bi
lli

on
D

oF
s
×

C
G

its
]

load imbalance all cached from RAM

mat-vec inner products
diagonal precond. vector updates

M. Kronbichler The State of Matrix-free Methods and HPC 21

Solution: Fuse vector operations with mat-vec

I Solution: Data locality
I Vector operations of CG before/after touching

DoFs in mat-vec via MatrixFree::cell loop

I Overlap arithmetic intensive phase of mat-vec
with memory-intensive vector operation

103 104 105 106 107 108
0

1,000

2,000

3,000

DoFs per node

[m
ill

io
n

D
oF

s
×

C
G

its
]/

s

Skylake plain CG Skylake optimized CG Nvidia V100 plain CG

Achieved throughput 34M DoFs:
I Volta: 2560 MDoFs/s
I Intel Skylake 2×24C baseline:

1010 MDoFs/s
I Skylake optimized: 2420 MDoFs/s

Arithmetic:
I Volta: 586 GFlop/s
I Skylake optimized: 702 GFlop/s

Memory:
I Volta: 699 GB/s
I Skylake optimized: 191 GB/s

Note: Skylake (opt) and Volta run vastly
different implementations! CPU code
considerably more complex!

M. Kronbichler The State of Matrix-free Methods and HPC 22

Outline

What kind of matrix-free methods are there in deal.II and why?

Use cases of matrix-free methods

Geometric multigrid

M. Kronbichler The State of Matrix-free Methods and HPC 23

Geometric multigrid in deal.II

I Level smoothers crucial ingredient
I Select methods where fast operator

evaluation (matrix-free) is core component
I Point-diagonal (Jacobi) or block-diagonal with

tensor product inversion
I Chebyshev iteration around these methods to

improve efficiency: class
PreconditionChebyshev

I In deal.II: flexible geometric multigrid
infrastructure like h-MG, p-MG (→ planned),
adaptive meshes

Clevenger, Heister, Kanschat, Kronbichler, A Flexible, Parallel, Adaptive Geometric Multigrid
method for FEM, arXiv:1904.03317, 2019
Fehn, Munch, Wall, Kronbichler, Hybrid multigrid methods for high-order discontinuous
Galerkin discretizations, JCP, 2020

Sample view of
active mesh on
3 processors

level `= 2level `= 1level `= 0

M. Kronbichler The State of Matrix-free Methods and HPC 24

Multigrid node-level comparison: CPU vs Xeon Phi vs GPU

GMG with full multigrid cycle, Chebyshev (5,6) smoother, continuous Q4 elements

10−3 10−2 10−1 100
0

40

80

120

160

time FMG cycle [s]

m
ill

io
n

D
oF

/s
/n

od
e

Single-node

Intel 2×14C Intel 64C KNL NVIDIA P100

Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SISC 40:A3423–48, 2018
Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC, 6(1):2/1–2/29, 2019

One matrix-vector product
with SpMV for statically con-
densed finite elements with
Q4 elements, 17m DoF, 79
million DoF/s on Broadwell

Matrix-free solves a linear
system faster than one
SpMV!

Sparse matrix inefficient,
non-HPC format for p ≥ 3!

M. Kronbichler The State of Matrix-free Methods and HPC 25

Scalability of multigrid: discontinuous elements

I Discontinuous elements
FE DGQHermite<3>(5)

I Conjugate gradient solver
preconditioned by ch multigrid
I DG: Chebyshev (6,6) iteration

around block-Jacobi (fast
diagonalization)

I FEM: Chebyshev (6,6) around
point Jacobi

I Multigrid V-cycle in single
precision

I 2 CG iterations (tolerance 10−3)
I Intel Xeon Platinum 8174, 48

cores per node, up to 6336
nodes (full SuperMUC-NG)

96 384 1536 6.1k 25k 98k 304k

10−2

10−1

100

1.9T
232B

DoFs

29B
DoFs

3.6B
DoFs

454M
DoFs

57M
DoFs

7M
DoFs

Number of cores

S
ol

ve
rt

im
e

[s
]

Arithmetic performance 1.9 trillion DoFs:
5.8 PFlop/s (5.5 PFlop/s in SP, 0.27 PFlop/s in DP)
180 GB/s per node (STREAM: 210 GB/s)

M. Kronbichler The State of Matrix-free Methods and HPC 26

Comparison of matrix-free GMG, matrix-based GMG, and AMG

112 448 1.8k 7.2k 28.7k

10−1

100

101

Number of Processors

so
lv

e
tim

e/
s

AMG, 256M MB, 256M MF, 256M ideal

AMG, 32M MB, 32M MF, 32M

I Adaptively refined mesh in 3D for Fishera
corner hyper L

I Continuous Q2 elements
I Experiment: Timo Heister, Conrad

Clevenger, step-50 tutorial program
I Matrix-free (MF) solves 8 times as many

unknowns in same time as matrix-based
AMG and GMG solvers

I Matrix-based (MB) GMG solver slows
down for many cores because
Trilinos/Epetra mat-vec includes barrier
on all levels
I Involves cores that have dropped out on

coarse levels→ slowdown
I Our own parallel vector in MF scales

much better: only point-to-point
M. Kronbichler The State of Matrix-free Methods and HPC 27

Bringing it all together – a CFD application

3D Taylor–Green vortex at Re =
1600: iso-contours of q-criterion
(value 0.1) colored by velocity
magnitude

t=0

t=10

t=20

Opportunities with tuned implementation: We are one order of magni-
tude faster in normalized run time than all results from Wang et al. (2013)

• Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-
resolved turbulent incompressible flows, Int J Numer Meth Fluids 88:32–54, 2018 + recent updates
• Wang et al., High-order CFD methods: current status and perspective, Int J Numer Meth Fluids 72:811–845, 2013
• www.flexi-project.org
• Huismann, Stiller, Fröhlich, Scaling to the stars – a linearly scaling elliptic solver for p-multigrid, J Comput Phys, 2019

M. Kronbichler The State of Matrix-free Methods and HPC 28

Recent focus: Improve scaling of initialization routines

Previous optimizations: Solver stage
At large scale, setup routines were expensive: example with Q5 elements on 1024 nodes /
49k MPI ranks

1.4×107

5.7×107

2.3×108

9.1×108

3.6×109

1.4×101
0

5.8×101
0

2.3×101
1

10−2

10−1

100

101

DoFs

tim
e

[s
]

9.1 release, May 2019

1.4×107

5.7×107

2.3×108

9.1×108

3.6×109

1.4×101
0

5.8×101
0

2.3×101
1

10−2

10−1

100

101

DoFs

tim
e

[s
]

November 2019

create mesh distribute (mg) dofs setup MF setup mg transfer init smoother GMG V-cycle

M. Kronbichler The State of Matrix-free Methods and HPC 29

Summary and next steps

I Matrix-free algorithms from deal.II among leading high-order FEM algorithms, especially
on Intel/AMD CPUs

I More work to be done for GPUs
I Support for systems of equations, DG, no. integration points 6= no. of shape functions
I Collaboration with libCEED?

I Evaluate geometry on the fly to reduce memory access
I Work on support for Raviart–Thomas and Nédélec elements
I Bring fused vector operations for CG and Chebyshev into deal.II via specialized

matrix-free operators
I Reduce cost of memory-heavy ghost exchange by MPI-3 shared memory concepts→

plan for new vector class LA::SharedMPI::Vector (Peter Munch)
I Improve data locality on CPU codes by new cell-centric loops for DG (Peter Munch)

I All face integrals around an element done together with element integral
I Support for ARM SVE in VectorizedArray: I’m in contact with Japanese partners to

soon work on Fujitsu’s A64FX processor
M. Kronbichler The State of Matrix-free Methods and HPC 30

	What kind of matrix-free methods are there in deal.II and why?
	Use cases of matrix-free methods
	Geometric multigrid

