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Today’s big HPC theme: On the road towards exascale

HPC community is moving towards exascale (machine with 1
Exaflop/s = 1018 floating point ops / sec)

We want to enable the user of deal.II to
I Select most efficient discretization parameters

I Meshing (high-order curved, adaptive, . . . )
I Polynomial degree

I Select most efficient iterative solver
I > 109 spatial unknowns, millions of time steps→

optimal-complexity solvers essential
I Example: multigrid

I Select most efficient implementation for given hardware
I Matrix-free vs matrix-based→ avoid memory wall
I Usage of most efficient instruction set – e.g. vectorization

with AVX/AVX-512
I Intel/AMD CPUs, NVIDIA GPUs, ARM SVE, . . .
I Scalability to 10,000+ nodes

SuperMUC-NG supercomputer (top) (source:
www.lrz.de) and efficiency of various instruc-
tion sets on Intel Skylake-X for DG operator
evaluation (bottom)
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Implement by ourselves or use external libraries?

External libraries
I Matrix-based linear algebra and

preconditioners: PETSc, Trilinos,
UMFPACK, cuSPARSE,
cuSOLVERS

I Mesh partitioning: p4est, METIS
I . . .

Programming frameworks & backends
I Distributed memory: MPI
I Threading (TBB; taskflow, . . . ?)
I CUDA for GPUs
I Vectorization: via compiler

(intrinsics) or C++ standard library

Implemented inside deal.II
I Algorithms for finite elements and beyond
I Linear algebra infrastructure not available

with adequate functionality or performance
externally

I MPI-parallel vector
LinearAlgebra::distributed
::Vector<Number>

I SIMD abstraction class
VectorizedArray<Number>

I Wrapper classes for unified interface to
external libraries

I Help our users to concentrate on their
application: separation of concerns
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Matrix-free algorithms: hot topic in HPC

I What is limiting resource in FEM programs?
I Iterative solvers (or explicit time stepping) typically spend

60–95% of time in matrix-vector product
I Classical approach: sparse matrix-vector product

I 2 arithmetic operations (mult, add) per matrix entry
loaded from memory (8 byte for value + 4.x byte for index
data): 0.16–0.25 Flop/Byte

I Modern CPUs/GPUs can do 3–20 Flop/Byte
I Performance limit is memory bandwidth
I SpMV leaves resources unused
I Memory wall: gap to memory widens over time

I Matrix-free algorithm: transfer less, compute more
I Choice in deal.II: fast computation of FEM integrals
I 1–8 Flop/Byte
I Method of choice for higher polynomial degrees p

I Closely related to US CEED project
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Matrix-free algorithm layout in deal.II

matrix-based: A =
Nel

∑
e=1

PT
e AePe (assembly)

v = Au (matrix-vector product
within iterative solver)

matrix-free:

v =
Nel

∑
e=1

PT
e Ae (Peu)

implication: cell loop within
iterative solvers, need optimized
loops + vector access

Matrix-vector product
Matrix-free evaluation of generic FEM operator
I v = 0
I loop over elements e = 1, . . . ,Nel

(i) Extract local vector values: ue = Peu
(ii) Apply operation locally by integration:

vK = AK uK (without forming AK )
(iii) Sum results from (ii) into the global solution

vector: v = v +PT
e ve

Design goals:

I Data locality for higher arithmetic intensity: single
sweep through data

I Absolute performance in unknowns per second
(DoFs/s), not maximal GFlop/s or GB/s

M. Kronbichler, K. Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63:135–147, 2012
M. Kronbichler, K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3), 29, 2019
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Matrix-vector product on cell by integration

Contribution of cell K to matrix-vector product: example for Laplacian

(AK uK )j =
∫

K
∇xφj ·∇xuhdx≈∑

q
wq detJq ∇xφj ·∇xuh

∣∣∣
x=xq

= ∑
q

∇ξ φjJ−1
q (wq detJq)J−T

q ∑
i

∇ξ φiuK ,i

∣∣∣
x=xq

, j = 1, . . . ,cell dofs

(a) Compute unit cell gradients ∇ξ uh = ∑(∇ξ φi)uK ,i at all
quadrature points

(b) At each quadrature point, apply geometry J−T
q , multiply

by quadrature weight and Jacobian determinant, apply
geometry for test function J−1

q

(c) Test by unit cell gradients of all basis functions and sum
over quadrature points

Matrix notation:

vK = AK uK

= STWSuK

with
Sqi = ∇ξ φi

∣∣
ξ q

Wqq = J−1
q (wq detJq)J−T

q
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Fast interpolation and integration: sum factorization via FEEvaluation

I Efficient evaluation of S and ST matrices with structure S3D =

Sζ ⊗Sη ⊗Dξ

Sζ ⊗Dη ⊗Sξ

Dζ ⊗Sη ⊗Sξ


I Ideas from spectral elements (1980s) for tensor product shape functions and tensor

product quadrature
I Visualization of interpolation of ∂u

∂ξ
with Q3 element (Lagrange basis) Sη ⊗Dξ :

successively apply 1D kernels

Vector values uK on nodes
∂uh

∂ξ
on quadrature points

Dξ Sη

Tensor-based evaluation reduces evaluation cost from 44 to 2×43

In general for degree p and dimension d : O((p+1)2d) to O(d(p+1)d+1)
M. Kronbichler The State of Matrix-free Methods and HPC 9



Sum factorization – implement ourselves or use performance libraries?

I Sum factorization consists of series of
matrix-matrix multiplication of size
(p+1)× (p+1) and (p+1)× (p+1)2 for
polynomial degree p

I Standard BLAS optimized for large N
I bad here due to function call overhead &

rearrangement cost
I Series of mat-mat! Batched BLAS possible?

I Combine small mat-mat of all elements
I Limit: Data locality between mat-mat lost
I Unclear how to best utilize data in caches

(CPU) or registers (GPU)

I Own implementation with SIMD and unrolled
loops (compiler via templated C++ code)
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Node-level performance over time

Track performance of operator eval-
uation per core over 10 years of
hardware
I Baseline: sparse matrix-vector

product, FE Q(1)

I Continuous H1 conforming
elements, affine (arithmetic
intensive) and high-order
deformed (memory intensive),
FE Q(4)

I Discontinuous elements,
affine, FE DGQ(4)

Matrix-free and SpMV within a fac-
tor 2 in 2010, more than 10× apart
today!
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Comparison versus matrix-based: matrix-free and high order wins

Continuous finite elements, DG-SIP, hybridizable discontinuous Galerkin (HDG) representing
efficient sparse matrix-based scheme
Throughput of matrix-vector product measured using run time against Nelk3 “equivalent”
DoFs to make different discretizations comparable1
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1Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SIAM J Sci Comput 40:A3423–48, 2018
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If you care about performance with p ≥ 2, use matrix-free methods!

I Best efficiency (DoFs/s) of matrix-free operator evaluation for degrees p = 3,4,5,6
I 10× faster than best matrix-based method (hybridization/static condensation) for same p
I 3× faster for high order than sparse mat-vec for linear FEM with same # DoFs

I step-37, step-48, step-50, step-59, step-64, step-67 tutorial programs
I Current support in deal.II not for all elements

I Available: continuous FE Q and discontinuous FE DGQ elements, systems of these
elements

I Plan for next release: H(div) and H(curl) elements: some nodal form of
FE RaviartThomas and some FE NedelecNodal (to be introduced)

Ingredients
I SIMD vectorization essential to use arithmetic power in

CPU→ better throughput / Watt
I LinearAlgebra::distributed::Vector rather

than using PETSc or Trilinos to embed MPI-local index
access & efficient ghost update (∼ 2× improvement)

I Evaluator class FEEvaluation
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CPU code example: Cell term for Laplacian from step-37 tutorial

Evaluation of weak form (∇φj ,∇uh)Ωh
representing product v = Au

void cell(MatrixFree<dim> &data,
Vector &v,
const Vector &u,
const std::pair<unsigned int,unsigned int> &range)

{
FEEvaluation<dim,degree> eval (data);
for (unsigned int cell=range.first; cell<range.second; ++cell)
{

eval.reinit (cell); // set pointers to data
eval.gather_evaluate(u, // read from source

/*interpolate_values=*/ false, // sum factorization
/*interpolate_gradients=*/ true);

for (unsigned int q=0; q<eval.n_q_points; ++q)
eval.submit_gradient (eval.get_gradient(q), q);// equation

eval.integrate_scatter (false, true, // integrate, sum factoriz
v); // sum into result vector

}
}
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CPU versus GPU code

I CPU code most mature
I Basic support on GPUs available (work by Karl Ljungkvist, Bruno Turcksin, Daniel Arndt,

Peter Munch)
I CPU and GPU use different implementations but provide similar interfaces
I GPU code reduces implementation to operation at quadrature point by functor with

CUDA threads to parallelize over quadrature points:

template <int dim, int fe_degree>
__device__ void LaplaceOperatorQuad<dim, fe_degree>::

operator()(CUDAWrappers::FEEvaluation<dim, fe_degree> *eval,
const unsigned int q) const

{
// test expression gradient(u) by nabla phi,
// i.e., (nabla phi_i, nabla u)_K
eval->submit_gradient(eval->get_gradient());

}

I step-64 tutorial program
I Could implement similar interface for CPU code: hide loop over q, iterator for index
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Using matrix-free algorithms in practice

I Explicit time integration only needs action of a right hand side / residual
I For well-conditioned matrices (mass, Helmholtz with nice parameters): conjugate

gradient solver
I Many established preconditioners such as ILU, Gauss–Seidel, AMG, . . . not directly

available in matrix-free context
I I have used AMG by using matrix-free operator evaluation for mat-vec and matrix for

hierarchy generation
I Matrix-free operator evaluation requires specific preconditioners

I Active research topic
I Most work in terms of multigrid methods
I Previously: variants of Jacobi smoothers
I Future: block smoothers via fast diagonalization method / approximate Kronecker inverses
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Explicit time integration: the step-67 tutorial program

Fast integration infrastructure via MatrixFree and FEEvaluation straight-forwardly
applicable to explicit time integration
I New tutorial program in 9.2 release
I Solves the Euler equations with a high-order discontinuous

Galerkin scheme
I Attention mostly on wave-like phenomena because plain DG cannot

deal with shocks
I Demonstrates matrix-free facilities for

I systems of equations,
I inverse mass matrix in DG, and
I overlap of vector operations within MatrixFree::cell loop by

tracking dependencies→ hides memory access cost behind
computations

I Performance for degree p = 5 in 3D: 1252 million DoFs/s on 40 cores
I Throughput around 3× higher per core than other reported DG results (e.g. Flexi project)
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step-67 cell integrator

Cell term (∇v ,F (wh))K : similar code as in Laplace case

void EulerOperator<dim, degree, n_points_1d>::local_apply_cell(...) const
{

// evaluator for 'dim + 2' components
FEEvaluation<dim, degree, n_points_1d, dim + 2, Number> eval(matrix_free);

for (unsigned int cell = cell_range.first; cell < cell_range.second; ++cell)
{
eval.reinit(cell);
eval.gather_evaluate(src, true, false);
for (unsigned int q = 0; q < eval.n_q_points; ++q)
{

// weak form: (nabla v, euler_flux(w(x_q)))
const auto w_q = eval.get_value(q);
eval.submit_gradient(euler_flux<dim>(w_q), q);

}
eval.integrate_scatter(false, true, dst);

}
}
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step-67 inner face integrator

Interface term
〈
v ,n ·F ∗(w−h ,w

+
h )
〉

F : two evaluators from both elements adjacent to a face

void EulerOperator<dim, degree, n_points_1d>::local_apply_inner_face(...) const {
FEFaceEvaluation<dim, degree, n_points_1d, dim + 2, Number> eval_m(mf, true);
FEFaceEvaluation<dim, degree, n_points_1d, dim + 2, Number> eval_p(mf, false);

for (unsigned int face = face_range.first; face < face_range.second; ++face)
{
eval_p.reinit(face); eval_p.gather_evaluate(src, true, false);
eval_m.reinit(face); eval_m.gather_evaluate(src, true, false);
for (unsigned int q = 0; q < eval_m.n_q_points; ++q)
{

// implement all point-wise work in separate function 'numerical_flux'
const auto numerical_flux =

euler_numerical_flux<dim>(eval_m.get_value(q), eval_p.get_value(q),
eval_m.get_normal_vector(q));

eval_m.submit_value(-numerical_flux, q);
eval_p.submit_value(numerical_flux, q);

}
eval_p.integrate_scatter(true, false, dst);
eval_m.integrate_scatter(true, false, dst);

} }
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Conjugate gradient solver, diagonal precondition: CEED benchmarks

I Benchmark problem BP5 of US
exascale discretization initiative CEED

I 3D Poisson, deformed geometry,
continuous elements

I conjugate gradient + diagonal
preconditioner, GLL quadrature

I 1 node of dual-socket Intel Skylake
I Matrix-vector product no longer

dominant
I Vector operations take significant time

when operated from RAM

https://ceed.exascaleproject.org/bps/
Fischer, Min, Rathnayake, Dutta, Kolev, Dobrev, Camier, Kronbichler,
Warburton, Świrydowicz, and Brown: Scalability of High-Performance PDE
Solvers, Int. J. High Perf. Comput. Appl., 2020
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Solution: Fuse vector operations with mat-vec

I Solution: Data locality
I Vector operations of CG before/after touching

DoFs in mat-vec via MatrixFree::cell loop

I Overlap arithmetic intensive phase of mat-vec
with memory-intensive vector operation
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Achieved throughput 34M DoFs:
I Volta: 2560 MDoFs/s
I Intel Skylake 2×24C baseline:

1010 MDoFs/s
I Skylake optimized: 2420 MDoFs/s

Arithmetic:
I Volta: 586 GFlop/s
I Skylake optimized: 702 GFlop/s

Memory:
I Volta: 699 GB/s
I Skylake optimized: 191 GB/s

Note: Skylake (opt) and Volta run vastly
different implementations! CPU code
considerably more complex!
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Geometric multigrid in deal.II

I Level smoothers crucial ingredient
I Select methods where fast operator

evaluation (matrix-free) is core component
I Point-diagonal (Jacobi) or block-diagonal with

tensor product inversion
I Chebyshev iteration around these methods to

improve efficiency: class
PreconditionChebyshev

I In deal.II: flexible geometric multigrid
infrastructure like h-MG, p-MG (→ planned),
adaptive meshes

Clevenger, Heister, Kanschat, Kronbichler, A Flexible, Parallel, Adaptive Geometric Multigrid
method for FEM, arXiv:1904.03317, 2019
Fehn, Munch, Wall, Kronbichler, Hybrid multigrid methods for high-order discontinuous
Galerkin discretizations, JCP, 2020

Sample view of
active mesh on
3 processors

level `= 2level `= 1level `= 0
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Multigrid node-level comparison: CPU vs Xeon Phi vs GPU

GMG with full multigrid cycle, Chebyshev (5,6) smoother, continuous Q4 elements
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Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SISC 40:A3423–48, 2018
Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC, 6(1):2/1–2/29, 2019

One matrix-vector product
with SpMV for statically con-
densed finite elements with
Q4 elements, 17m DoF, 79
million DoF/s on Broadwell

Matrix-free solves a linear
system faster than one
SpMV!

Sparse matrix inefficient,
non-HPC format for p ≥ 3!
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Scalability of multigrid: discontinuous elements

I Discontinuous elements
FE DGQHermite<3>(5)

I Conjugate gradient solver
preconditioned by ch multigrid
I DG: Chebyshev (6,6) iteration

around block-Jacobi (fast
diagonalization)

I FEM: Chebyshev (6,6) around
point Jacobi

I Multigrid V-cycle in single
precision

I 2 CG iterations (tolerance 10−3)
I Intel Xeon Platinum 8174, 48

cores per node, up to 6336
nodes (full SuperMUC-NG)
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Arithmetic performance 1.9 trillion DoFs:
5.8 PFlop/s (5.5 PFlop/s in SP, 0.27 PFlop/s in DP)
180 GB/s per node (STREAM: 210 GB/s)
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Comparison of matrix-free GMG, matrix-based GMG, and AMG
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I Adaptively refined mesh in 3D for Fishera
corner hyper L

I Continuous Q2 elements
I Experiment: Timo Heister, Conrad

Clevenger, step-50 tutorial program
I Matrix-free (MF) solves 8 times as many

unknowns in same time as matrix-based
AMG and GMG solvers

I Matrix-based (MB) GMG solver slows
down for many cores because
Trilinos/Epetra mat-vec includes barrier
on all levels
I Involves cores that have dropped out on

coarse levels→ slowdown
I Our own parallel vector in MF scales

much better: only point-to-point
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Bringing it all together – a CFD application

3D Taylor–Green vortex at Re =
1600: iso-contours of q-criterion
(value 0.1) colored by velocity
magnitude

t=0

t=10

t=20

Opportunities with tuned implementation: We are one order of magni-
tude faster in normalized run time than all results from Wang et al. (2013)

• Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-
resolved turbulent incompressible flows, Int J Numer Meth Fluids 88:32–54, 2018 + recent updates
• Wang et al., High-order CFD methods: current status and perspective, Int J Numer Meth Fluids 72:811–845, 2013
• www.flexi-project.org
• Huismann, Stiller, Fröhlich, Scaling to the stars – a linearly scaling elliptic solver for p-multigrid, J Comput Phys, 2019
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Recent focus: Improve scaling of initialization routines

Previous optimizations: Solver stage
At large scale, setup routines were expensive: example with Q5 elements on 1024 nodes /
49k MPI ranks
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Summary and next steps

I Matrix-free algorithms from deal.II among leading high-order FEM algorithms, especially
on Intel/AMD CPUs

I More work to be done for GPUs
I Support for systems of equations, DG, no. integration points 6= no. of shape functions
I Collaboration with libCEED?

I Evaluate geometry on the fly to reduce memory access
I Work on support for Raviart–Thomas and Nédélec elements
I Bring fused vector operations for CG and Chebyshev into deal.II via specialized

matrix-free operators
I Reduce cost of memory-heavy ghost exchange by MPI-3 shared memory concepts→

plan for new vector class LA::SharedMPI::Vector (Peter Munch)
I Improve data locality on CPU codes by new cell-centric loops for DG (Peter Munch)

I All face integrals around an element done together with element integral
I Support for ARM SVE in VectorizedArray: I’m in contact with Japanese partners to

soon work on Fujitsu’s A64FX processor
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