
Handling non-matching methods
between independent distributed grids:

step-70

Luca Heltai1, Bruno Blais2

1International School for Advanced Studies
2Polytechnique Montréal

26 May 2020 – deal.II Online Workshops

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 1 / 31



Outline

1 Introduction
Motivations
Everything reduces to point evaluation
We need a way to track points: particles

2 Fluid structure interaction
Matching solids points into fluid cells
Insert global particles
Keeping track of ownership (LAC)

3 Putting it all together: Step-70
Nitsche method
A classical experiment
Results: impellers in 2 and 3 dimensions

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 2 / 31



Plan

1 Introduction
Motivations
Everything reduces to point evaluation
We need a way to track points: particles

2 Fluid structure interaction
Matching solids points into fluid cells
Insert global particles
Keeping track of ownership (LAC)

3 Putting it all together: Step-70
Nitsche method
A classical experiment
Results: impellers in 2 and 3 dimensions

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 3 / 31



Mixing

4 Critical industrial application

8 Often a severe bottleneck that
leads to waste

8 Costly and difficult to
investigate experimentally

8 Not trivial so simulate

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 4 / 31



Simulation of mixing

Rotation of the geometry prevents the use of ALE techniques. Requires
the use of specialized techniques:

8 Change of reference frame: Severe limitations on the geometry

8 Sliding mesh: Requires coupling the boundaries of two grids

4 Non-matching methods: immersed boundaries, fictious domains, etc.

Non-matching methods can also be used
for a much broader range of applications:

4 Fluid-Structure interaction

4 Overlaping geometries (e.g.
Planetary mixers)

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 5 / 31



Graphical summary of non-matching methods

= + −

4 Different properties on different domains

4 Independent discretizations (FEM, BEM, FV, FD, etc.)

4 Different physics on different domains (i.e., fluids and solids)

4 Possibly different intrinsic scales

8 We need a numerically efficient way to transfer information between
the domains

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 6 / 31



We need a way to track points: particles

Particles are an ideal tool to keep track of the motion of our embedded
domain:

4 They can readily move from processor to processor and can be
exchanged using some-to-some communications.

4 They already contain a very efficient mechanism to detect in which
cell they lie and what is their reference location.

4 An arbitrary amount of properties can be attached to them.

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 7 / 31



Quadrature (or support) points to particles

Ω

1 GridGenerator::generate_from_name_and_arguments(

2 fluid_tria , par.name_of_fluid_grid ,

par.arguments_for_fluid_grid);

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 8 / 31



Quadrature (or support) points to particles

Ω

Ωimp

1 GridGenerator::generate_from_name_and_arguments(

2 solid_tria , par.par_name_of_solid_grid ,

par.arguments_for_solid_grid);

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 9 / 31



Quadrature (or support) points to particles

Ω

Ωimp

1 QGauss<dim> quadrature(fluid_fe->degree + 1);

2 for (const auto &cell :

solid_dh.active_cell_iterators ())

3 if (cell->is_locally_owned ())

4 for (unsigned int q = 0; q < points.size(); ++q)

5 quadrature_points_vec.emplace_back(points[q]);

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 10 / 31



Quadrature (or support) points to particles

Ω

1 solid_particle_handler.

2 insert_global_particles(quadrature_points_vec ,

3 global_fluid_bounding_boxes ,

4 properties);

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 11 / 31



Plan

1 Introduction
Motivations
Everything reduces to point evaluation
We need a way to track points: particles

2 Fluid structure interaction
Matching solids points into fluid cells
Insert global particles
Keeping track of ownership (LAC)

3 Putting it all together: Step-70
Nitsche method
A classical experiment
Results: impellers in 2 and 3 dimensions

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 12 / 31



Insert global particles in distributed environments

Generating the particles of the em-
bedded domain is quite challeng-
ing in parallel distributed environ-
ments:

8 The two domains do not
match

8 The points of the embedded
domain can lie in a cell
which belongs to another
processor

Requires a global insertion mechanism to create particles from an :

1 std::vector<Points<dim>>

where each processor owns such a (possibly non-empty) vector.

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 13 / 31



Insert global particles

1 particle_handler.

2 insert_global_particles(points_vector ,

3 global_fluid_bounding_boxes ,

4 particle_properties);

4 The vector containing the location of the particles created by the
processor. These particle do not need be located in a cell in that
processor.

1 std::vector<Points<dim> > points_vector

4 An (nproc) size vector containing a vector of bounding boxes

1 std::vector<std::vector<BoundingBox<spacedim>>>

global_bounding boxes

4 A vector of vectors of particle properties

1 std::vector<std::vector<double> >

particle_properties

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 14 / 31



boost::rtree of Bounding boxes surrounding cells

A boost::rtree of bounding boxes allows the identification of the cells in
which the particles lie in O(nparticles log(mboxes)) time.

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 15 / 31



boost::rtree of Bounding boxes in parallel

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 16 / 31



Bounding boxes
Generating the bounding boxes is relatively easy.

1 std::vector<BoundingBox<spacedim>> all_boxes;

2 all_boxes.reserve(fluid_tria.n_locally_owned_active_cells ());

3 for (const auto cell : fluid_tria.active_cell_iterators ())

4 if (cell->is_locally_owned ())

5 all_boxes.emplace_back(cell->bounding_box ());

6
7 const auto tree = pack_rtree(all_boxes);

8 const auto local_boxes =

9 extract_rtree_level(tree ,

par.fluid_rtree_extraction_level);

10
11 global_fluid_bounding_boxes =

12 Utilities::MPI::all_gather(mpi_communicator ,

local_boxes);

and bounding boxes can now even be written and visualized!

1 BoundingBoxDataOut<dim> data_out;

2 data_out.build_patches(my_bounding_box);

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 17 / 31



Insert global particles

Finally, the key steps in the global particle insertion:

Gather the number of particles to be added for each processors
(all gather)

Identify on which cell and on which processor the particle are located
(distributed compute point location)

Gather the properties of the particles from the original owner of the
points

Generate the particles with their properties and unique id

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 18 / 31



Outcome: Flexible particle insertion mechanisms

4 Insertion at DOF support points

4 Insertion at the quadrature points of a triangulation

As long as you have a triangulation, you can now use it to insert particles.

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 19 / 31



Keeping track of ownership: Linear algebra coupling

p00 p01 p10 p11 . . .︸ ︷︷ ︸
locally owned

p20 p21 p30 p31 . . .︸ ︷︷ ︸
ghost elements

p1

p0

p3

p2

pn0 pn1 . . .︸ ︷︷ ︸
elsewhere

We keep around two IndexSet objects, to identify locally owned
particles coordinates (blue dots) . . .

. . . and locally relevant particle coordinates (brown dots), i.e.,
coordinates of particles that fall within the current fluid domain,
owned by someone else

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 20 / 31



Initializing ownership

Either based on where particles end up in the first step:

1 locally_owned_tracer_particle_coordinates =

2 tracer_particle_handler.locally_relevant_ids ().tensor_product(

3 complete_index_set(spacedim));

. . . or based on solid ownership (as in the previous image). Then at each
step, keep track of locally relevant ones in the same way:

1 locally_relevant_tracer_particle_coordinates =

2 tracer_particle_handler.locally_relevant_ids ().tensor_product(

3 complete_index_set(spacedim));

And initialize a parallel MPI vector with it. . .

1 relevant_tracer_particle_displacements.reinit(

2 locally_owned_tracer_particle_coordinates ,

3 locally_relevant_tracer_particle_coordinates ,

4 mpi_communicator);

. . . that can be used as a base for the solid equations.

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 21 / 31



Updating velocities
Interpolating from fields to particles:

1 Particles::Utilities::interpolate_field_on_particles(

2 fluid_dh ,

3 tracer_particle_handler ,

4 locally_relevant_solution ,

5 tracer_particle_velocities ,

6 fluid_fe->component_mask(FEValuesExtractors::Vector(0)));

7
8 tracer_particle_velocities *= time_step;

. . . update the relevant IndexSet, and copy locally (read only!) the
velocities of all the particles that fall within the locally owned fluid domain
(MPI communication happens in the background):

1 relevant_tracer_particle_displacements =

tracer_particle_velocities;

. . . and transfer information back to the particles:

1 tracer_particle_handler.set_particle_positions(

2 relevant_tracer_particle_displacements);

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 22 / 31



Plan

1 Introduction
Motivations
Everything reduces to point evaluation
We need a way to track points: particles

2 Fluid structure interaction
Matching solids points into fluid cells
Insert global particles
Keeping track of ownership (LAC)

3 Putting it all together: Step-70
Nitsche method
A classical experiment
Results: impellers in 2 and 3 dimensions

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 23 / 31



Physics solved

In step-70, we solve the Stokes equations for a creeping flow (i.e. a flow
where Re→ 0) and a no-slip boundary condition is applied on a moving
embedded domain Γ associated with an impeller.
This leads to the following differential problem: given a sufficiently regular
function g on Γ, find the solution (u, p) to

−∆u +∇p = 0, (1)

−∇ · u = 0, (2)

u = g in Γ, (3)

u = 0 on ∂Ω. (4)

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 24 / 31



Imposing the motion of the impeller

Two scenarios occur when enforcing conditions on the embedded domain:

The geometrical dimension ‘dim‘ of the embedded domain Γ is the
same of the domain Ω (‘spacedim‘), In this case, the imposition of
the Dirichlet boundary boundary condition on Γ is done through a
volumetric penalization.

The embedded domain Γ has an intrinsic dimension ‘dim‘ which is
smaller than that of Ω (‘spacedim‘), thus its spacedim-dimensional
measure is zero; for example it is a curve embedded in a two
dimensional domain, or a surface embedded in a three-dimensional
domain. In this case, the boundary condition is imposed weakly on Γ
by applying the Nitsche method.

For both cases, a possible resulting formulation is:

(∇v,∇u)Ω − (div v, p)Ω − (q, div u)Ω + β(v,u)Γ = β(v, g)Γ.

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 25 / 31



Assembly of the Nitsche terms – Part I

Looping over all particles, cell-wise, and getting information from particles:

1 auto particle = solid_particle_handler.begin ();

2 while (particle != solid_particle_handler.end())

3 {

4 const auto &cell =

particle->get_surrounding_cell(fluid_tria);

5 const auto pic =

solid_particle_handler.particles_in_cell(cell);

6 Assert(pic.begin () == particle ,

ExcInternalError ());

7 for (const auto &p : pic)

8 {

9 const auto &ref_q =

p.get_reference_location ();

10 const auto &real_q = p.get_location ();

11 const auto &JxW = p.get_properties ()[0];

12 ...

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 26 / 31



Assembly of the Nitsche terms – Part II
Assemble the penalization matrix:

1 for (unsigned int i = 0; i < dofs_per_cell; ++i) {

2 const auto comp_i =

3 fluid_fe->system_to_component_index(i).first;

4 if (comp_i < spacedim) {

5 for (unsigned int j = 0; j < dofs_per_cell; ++j)

6 {

7 const auto comp_j =

8 fluid_fe->system_to_component_index(j).first;

9 if (comp_i == comp_j)

10 local_matrix(i, j) +=

11 penalty_parameter * par.penalty_term *

12 fluid_fe->shape_value(i, ref_q) *

13 fluid_fe->shape_value(j, ref_q) * JxW;

14 }

15 local_rhs(i) += penalty_parameter * par.penalty_term *

16 solid_velocity.value(real_q , comp_i) *

17 fluid_fe->shape_value(i, ref_q) * JxW;

18 }

19 }

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 27 / 31



The problems: Mixing in the creeping flow regime
4 Famous experiment by Sir G.I. Taylor using coloured dyes

4 Multiple similar experiments on Youtube

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 28 / 31



2D results

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 29 / 31



3D results

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 30 / 31



Conclusions

Step-70 demonstrates a large variety of concepts

4 Global insertion of particles

4 Linear algebra coupling between particles and DOFS

4 Non-matching methods

4 Post-processing of particles using the new Particles::DataOut

It opens up a large range of possibilities for the solution of:

4 Massively parallel immersed boundary problems

4 Fluid structure interaction

4 Chimera grids

4 and many others...

It also was a very fun collaborative work!

Luca Heltai1, Bruno Blais2 Step 70 26 May 2020 - deal.II (Zoom) 31 / 31


	Introduction
	Motivations
	Everything reduces to point evaluation
	We need a way to track points: particles

	Fluid structure interaction
	Matching solids points into fluid cells
	Insert global particles
	Keeping track of ownership (LAC)

	Putting it all together: Step-70
	Nitsche method
	A classical experiment
	Results: impellers in 2 and 3 dimensions


