
The deal.II Library, Version 9.6

Pasquale Claudio Africa1, Daniel Arndt2*, Wolfgang Bangerth3,4, Bruno
Blais5, Marc Fehling6, Rene Gassmöller7, Timo Heister8, Luca Heltai9,

Sebastian Kinnewig10, Martin Kronbichler11,12, Matthias Maier13, Peter
Munch12,14, Magdalena Schreter-Fleischhacker15, Jan Philipp Thiele16,

Bruno Turcksin2*, David Wells17, and Vladimir Yushutin8, 18

1SISSA International School for Advanced Studies, mathLab, Via Bonomea, 265, 34136,
Trieste, Italy. pafrica@sissa.it

2Computational Coupled Physics Group, Computational Sciences and Engineering
Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., TN 37831, USA.

arndtd/turcksinbr@ornl.gov
3Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874,

USA. bangerth@colostate.edu
4Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA.

5Chemical Engineering High-performance Analysis, Optimization and Simulation
(CHAOS) laboratory, Department of Chemical Engineering, Polytechnique Montréal, PO

Box 6079, Stn Centre-Ville, Montréal, Québec, Canada, H3C 3A7.
bruno.blais@polymtl.ca

6Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles
University, Sokolovská 49/83, 186 75 Prague 8, Czech Republic.

marc.fehling@matfyz.cuni.cz
7GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany

8School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC,
29634, USA. heister@clemson.edu

9University of Pisa, Italy.
10Institute for Applied Mathematics, Scientific Computing, Leibniz University Hannover,

Welfengarten 1, 30167 Hannover, Germany kinnewig@ifam.uni-hannover.de
11Faculty of Mathematics, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum,

Germany. martin.kronbichler@rub.de
12Institute of Mathematics, University of Augsburg, Universitätsstr. 12a, 86159 Augsburg,

Germany.
13Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX

77845, USA. maier@math.tamu.edu
14Uppsala University, Sweden. peter.munch@it.uu.se

15Institute for Computational Mechanics, Technical University of Munich,
Boltzmannstraße 15, 85748 Garching, Germany. magdalena.schreter@tum.de

16Weierstrass Institute for Applied Analysis and Stochastics,
Leibniz Institute in Forschungsverbund Berlin e.V. thiele@wias-berlin.de

17Department of Mathematics, University of North Carolina, Chapel Hill, NC 27516, USA.
drwells@email.unc.edu

18Department of Mathematics, University of Tennessee at Knoxville, Knoxville TN
37996-1320, USA. vyushuti@utk.edu

∗ This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with
the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department of Energy will provide public

2

Abstract: This paper provides an overview of the new features of the finite element library
deal.II, version 9.6.

1 Overview

deal.II version 9.6.0 was released August 11, 2024. This paper provides an overview of the
new features of this release and serves as a citable reference for the deal.II software library
version 9.6. deal.II is an object-oriented finite element library used around the world in the
development of finite element solvers. It is available for free under the terms of the GNU Lesser
General Public License (LGPL). The deal.II project is in the process of relicensing the library
under the terms of the Apache License 2.0 with LLVM Exception. Downloads are available at
https://www.dealii.org/ and https://github.com/dealii/dealii.

The major changes of this release are:

– Substantial performance improvements to the matrix-free and multigrid infrastructure (Sec-
tion 2.1).

– Additions to the non-matching infrastructure (see Section 2.2). In particular, the new class
FERemoteEvaluation provides support for evaluating finite element shape functions and
solutions on parts of the domain stored by other MPI processes.

– Much work has gone into writing wrappers for Trilinos’ Tpetra stack of linear algebra
classes. Tpetra is Trilinos’ Kokkos-based replacement for the now-deprecated Epetra
stack. See Section 2.3 for more on this.

– Tool classes TaskResult and Lazy that provide ways to compute values on a separate thread
or only when first accessed (Section 2.4).

– There are five new tutorial programs, on checkpointing simulations (step-83), integrating
time-dependent solvers with external time stepping libraries (step-86, using PETSc’s TS
library), advanced point evaluation techniques (step-87), non-matching grids (step-89),
and trace-based methods for PDEs on embedded surfaces (step-90). See Section 2.5 for
more details.

– In Section 2.6 we summarize the motivation and approach behind our relicensing effort to
make deal.II available under the terms of the the Apache License 2.0 with LLVM Exception.

While all of these major changes are discussed in detail in Section 2, there are a number of other
noteworthy changes in the current deal.II release, which we briefly outline in the remainder of
this section:

– deal.II now requires and makes use of the C++17 language standard.

– We have continued to make progress in supporting simplex and mixed meshes – mesh
types that deal.II has traditionally not supported at all. Specifically, the current release
uses better strategies for refinement of tetrahedra that result in better-shaped child cells. It
also contains support for cubic finite elements on simplices.

– The FE_NedelecSZ class that contains our implementation of the Nédélec element using the
orientation scheme of [68] now supports the computation of hanging node constraints for
locally refined, hexahedral meshes. That is, the implementation of hanging node constraints
now correctly addresses the sign-conflict that arises for hp quadrilateral and hexahedral
Nédélec elements; see [45] for details. The other implementation of Nédélec elements, in

access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

https://www.dealii.org/
https://github.com/dealii/dealii

3

the FE_Nedelec class, already implements hanging node constraints; therefore, there is no
longer a difference for the user between the two classes as far as constraints are concerned.
However, the special case where, in 3D, more than four cells with different refinement levels
share a common edge is not covered yet.

– The AffineConstraints class stores and processes constraints on degrees of freedom in
deal.II. Such constraints can be of the (homogeneous) form x3 =

1
2 x14 +

1
2 x15 as is common

when using hanging node constraints (here, x3 could represent the value of the solution at a
hanging node, and x14 and x15 are the values of the two adjacent degrees of freedom on the
parent edge that contains the hanging node); or they can be of the (inhomogeneous) form
x12 = 42 as is common when using Dirichlet boundary conditions.

Since very early in the history of the library, the AffineConstraints class interface required
building such constraints in multiple steps: First, one declared a degree of freedom as
constrained; then one added the dependencies one after the other (e.g., by adding pairs
(1

2 , 14) and (1
2 , 15) in the hanging node example above); then one added inhomogeneities (by

setting it to 42 in the Dirichlet example above). This piecemeal approach is cumbersome and
prevents the library from performing certain error checking steps because a constraint is
not known to be completely built at any given point. The new add_constraint() function
now allows defining a constraint in one step.

– We refactored the systems for managing relative line and face orientations to significantly
improve consistency across several library modules, including finite element classes, period-
icity, and the p4est interface. deal.II has supported using unstructured three-dimensional
meshes for a long time. Features like discontinuous Galerkin methods and higher-order
elements require that lines and faces of adjacent elements are consistently oriented. For ex-
ample, consider a line containing two degrees of freedom, which, in reference coordinates,
are located at x1 =

1
3 and x2 =

2
3 . If the line is read from left-to-right then we get points (x1, x2)

whereas if it is read from right-to-left we get (x2, x1). deal.II guarantees that this order will
be consistent across all cells sharing that line by storing a flag indicating whether (relative to
the vertex enumeration on the present cell) that particular line is in the standard or reversed
orientation. Faces in 3d are treated in a similar way. The only significant difference between
lines and 3d faces is that, instead of two possible relative orientations, triangular faces have
six and quadrilateral faces have eight possible orientations.

Historically, different places within the library implemented their own ad-hoc orientation
logic, data encodings, and default values. We cleaned up this subsystem and instead of using
three different booleans (orientation, rotation, and flip), bitsets, or several other encodings,
we now use a single unsigned char which we named the combined orientation. Since the
representation in some library interfaces has changed, most of the old interfaces have been
deprecated and a few (such as the low-level interface to periodic boundary conditions) had
to be incompatibly altered or removed.

– The SolverGMRES class now offers a third orthogonalization method, the classical Gram–
Schmidt method with delayed orthogonalization [16]. Furthermore, the solver now specifies
the maximal basis size of the Arnoldi basis, rather than the number of auxiliary vectors.
Some changes have also been made to the GMRES and F-GMRES implementations, making
them use the same underlying kernels as much as possible.

– The new class FE_Hermite implements a Hermite interpolation basis of maximum regularity.
These bases are always of odd polynomial degree p and have regularity r = (p − 1)/2.

The changelog – listing more than 180 features and bugfixes – contains a complete record of all
changes; see [51].

https://dealii.org/developer/doxygen/deal.II/changes_between_9_5_2_and_9_6_0.html

4

2 Major changes to the library

This release of deal.II contains a number of large and significant changes, which we will discuss
in this section.

2.1 Updates to the multigrid and matrix-free algorithms

We updated a number of significant parts of the multigrid and matrix-free infrastructure in
deal.II. These changes include:

– Our own implementation of the std::experimental::simd class proposed for inclusion
into the C++ standard, called VectorizedArray, now also supports Arm Neon. Arm Neon
is an architecture extension of the ARMv7, ARMv8 and ARMv9 architecture families, used,
e.g., for the Arm Cortex-A and Arm Cortex-R series of processors or in the Apple 64-bit
silicon series (A7–A18, M1–M4 as of 2024). With these instructions, 2 doubles or 4 floats
can be processed in one go. Since the matrix-free infrastructure works directly with the
VectorizedArray abstraction as data structure, it automatically benefits from this new
implementation.

– The application of the Piola transformation for values and gradients of H(div)-conforming
Raviart–Thomas elements on non-Cartesian cells has been rewritten for better performance.
Together with additional changes in the sum-factorization algorithms, which became more
similar to the kernels described in [47], the matrix-free operator evaluation is now 3–5 times
faster in these cases.

– Furthermore, we improved the internal data structures of the tensor-product evaluators
as well as the evaluators for simplex elements. This speeds up the operator evaluation in
several scenarios, especially for simplices (around two times higher throughput for operator
evaluation) and multi-component systems. The restructuring that led to these optimizations
also reduced the compile times and the size of the generated code slightly.

– In addition, we performed substantial improvements to the global-coarsening multigrid in-
frastructure: MGTransferMF (previously: MGTransferGlobalCoarsening) and MGTwoLevel-
Transfer. They now allow performing local smoothing, which is a key step towards
unifying all transfer operators in deal.II. Finally, MGTwoLevelTransfer can now be set up
with an existing MatrixFree object in the case of p-multigrid, reducing the setup costs and
memory consumption significantly.

2.2 Advances in non-matching support

In the non-matching infrastructure of deal.II, we made the following improvements:

– The performance of the non-nested multigrid infrastructure (MGTwoLevelTransferNon-
Nested) has been improved significantly by avoiding redundant copy operations. Fur-
thermore, support for simplex-shaped cells and multiple-component elements has been
added.

– Several minor performance improvements in deal.II’s evaluator class on sets of un-
structured points, FEPointEvaluation, have been made. The changes are particularly
useful for evaluating several quantities on the same set of points, which is enabled by
NonMatching::MappingInfo.

5

– We added the new class FERemoteEvaluation. This is a class to access data in a distributed
matrix-free loop for non-matching discretizations. Interfaces are named in analogy to
FEEvaluation, in order to seamlessly switch the local evaluator functionality at quadrature
points of a computation. The key component is the underlying MPI communication infras-
tructure, which is performed via RemotePointEvaluation. Tutorial step-89has been added
to present its usage in the context of the application to acoustic conservation equations [35].

– The FECouplingValues class provides a powerful tool for computing integrals of functions
that contain finite element fields defined on different objects, for example if these fields live
on separate grids or have different topological dimensions (e.g., cells, faces, edges). This is
particularly useful in the following scenarios:

– Non-local differential operators: Evaluating fractional Laplacian or boundary element
methods.

– Non-matching discretizations: Integrating data between two independent discretiza-
tion schemes that overlap in some areas.

– Bulk-surface coupling: Combining data from a bulk discretization and a surface dis-
cretization.

The new class enables the combination of degrees of freedom indices, shape functions, and
quadrature points from two existing FEValuesBase objects. The way this combination is
performed is controlled by user-provided DoFCouplingType and QuadratureCouplingType
objects, which define how the degrees of freedom and quadrature points are combined.

The flexibility offered by these coupling types allows users to:

– Rearrange quadrature points in a tensor product structure for double integration.

– Reorder quadrature points to easily access shape function values and gradients from
two different finite element spaces located on the same point.

– Identify and integrate over a reordered subset of the quadrature points.

2.3 Interface to the Trilinos Tpetra stack

deal.II’s parallel linear algebra facilities (apart from matrix-free capabilities) are largely built on
wrappers around functionality provided by the PETSc and Trilinos libraries.

Historically, Trilinos has implemented distributed linear algebra classes for vectors and (sparse)
matrices in its Epetra package that uses MPI as its only source of parallelism. Building on that,
there are multiple interconnected Trilinos packages, e.g. for (non-)linear solvers and precondi-
tioners, commonly referred to as the “Epetra stack”. For sake of brevity we will also refer to the
whole stack as Epetra in the following. deal.II’s interfaces to Trilinos have traditionally been
implemented to use it.

However, several years ago, Trilinos also introduced the newer Tpetra (“templated” Petra)
package that provides additional shared memory parallelism and GPU capabilities, referred to
as MPI+X, by building on Kokkos. In recent years, new features have only been implemented in
Tpetra as it is slated to replaceEpetra, and the latter is indeed now deprecated with removal slated
for 2025. As a consequence, we will eventually have to switch all of our Trilinos interfaces to
Tpetra; the same is true for the need to switch to Tpetra-based sub-packages (the “Tpetra stack”)
that are intended to replace existing Trilinos sub-packages (for example, Ifpack2 instead of
Ifpack).

In the current release, we have put substantial work into this switch, as outlined below. As this
is not yet finished, it is important to note that all these features are optional and their individual
availability depends on the installed Trilinos packages. As an example, a deal.II build will
pass with a Trilinos installation without Ifpack2, but its preconditioners will not be included.

6

In the following list, we omit the common namespace prefix LinearAlgebra:: on all mentioned
TpetraWrappers symbols for readability:

– The TpetraWrappers::Vector class has been overhauled to also allow specifying a memory
space, and the TpetraWrappers::BlockVector class has been added.

– TpetraWrappers::SparseMatrix and TpetraWrappers::SparsityPattern have been im-
plemented mirroring the functionality of the TrilinosWrappers::SparseMatrix
and TrilinosWrappers::SparsityPattern classes.

– Various incomplete factorization and relaxation preconditioners (from Ifpack2) have been
wrapped, mirroring the existing classes in LinearAlgbera::TrilinosWrappers as closely
as possible.

– Two new preconditioner variants TpetraWrappers::PreconditionL1Jacobi and
TpetraWrappers::PreconditionL1GaussSeidel, based on [10], have been added.

– TpetraWrappers::SolverDirectKLU2 is now available as a direct solver.

Some functionality in these wrapper classes is still missing, most noticeably wrappers for the
algebraic-multigrid preconditioner MueLu and the iterative solvers from Belos. However, the
wrapped Ifpack2 preconditioners can already be used with the iterative solvers of deal.II. To
do this you will need to explicitly specify the vector type parameter, e.g.
SolverCG<LinearAlgebra::TpetraWrappers::Vector<double, MemorySpace::Default> >

The solver and preconditioner classes mentioned above provide reasonable parameter subsets
through AdditionalData objects, just as the existing Epetra wrappers. Additionally, there are
new generic classesTpetraWrappers::SolverDirect andTpetraWrappers::PreconditionIfpack
which expose the internal interface through a Teuchos::ParameterList and thereby offering the
full set of parameters for more experienced Trilinos users. This also allows the use of precondi-
tioners or solvers not (yet) wrapped, e.g. SuperLU_dist or MUMPS.

The design goal was to introduce as few changes as possible for the user to allow for an easy
transition to the TpetraWrappers classes. However, based on the difference between Epetra and
Tpetra, the following changes were necessary:

– The constructor for the class TrilinosWrappers::MPI::Vector only required the IndexSet
locally_owned, which describes the set of indices locally owned by the current rank. How-
ever, if one wants to create a vector that has read or write access to non-locally owned indices,
the constructor of the TpetraWrappers::Vector requires the IndexSet locally_owned, the
IndexSet locally_relevant, and a boolean flag, whether to initialize the vector in the
read-only or the write-only state. This interface is in fact close to the one of deal.II’s own
parallel vector class.

– A vector created without providing the IndexSet locally_relevant is purely local and
cannot access non-local indices. Such a vector cannot be copied to a vector that can access
non-local indices, as the IndexSet locally_relevant must be provided at creating the
vector object.

– Some parameters of existing solver and preconditioner are not available in the Tpetra
wrappers, such that the corresponding AdditionalData objects are not identical. Since
there are many preconditioners we will not list each individual change but instead refer to
our Doxygen documentation.

– The incomplete Cholesky (IC) factorization preconditioner is not available in Tpetra.

7

Another goal was increasing the interoperability of deal.II and Trilinos, allowing users familiar
with both to write ‘pure’ Trilinos code within their applications, e.g. to test or develop a new
feature. Therefore, the internal data is stored as it would be in a Trilinos application code (as
Teuchos::RCP) and can be accessed through member functions.

Finally, all TpetraWrappers classes take Number and MemorySpace template arguments, in order
to control the underlying scalar type and memory space. By default, memory is allocated on the
CPU, mirroring the behavior of the TrilinosWrappers, but choosing a different memory space
also allows Tpetra to utilize GPUs if Kokkos is configured with a GPU backend. Furthermore,
to fully leverage the GPU backend and unlock its full potential for users will require further
work. The support for different number types in vector and matrix classes also enables the
usage of automatic differentiation-based tools in Trilinos, such as NOX. To make the automatic
differentiation tools of Trilinos accessible through the Tpetra interface without requiring users
to have an in-depth understanding of Trilinos, additional wrappers for the corresponding
Trilinos packages will be added in future releases.

2.4 More support for advanced programming idioms

Over the years, deal.II has accumulated many classes and functions that support modern
programming idioms and make it easier to write code at higher levels of abstraction.

In the current release, we have added two classes to the list of tools of this kind:

– Lazy<T> is a class that supports the lazy computation and initialization of variables. Its
intended use is for member variables of classes that are sometimes needed, but perhaps
not for all uses of an object. For example, all finite element classes provide interpolation
and restriction matrices to support multigrid and other algorithms. One could (i) always
compute and store these matrices in the constructor of the class; or one could (ii) re-compute
these matrices every time they are requested. The first of these approaches costs memory
and compute time even though most places where one creates a finite element object will
not actually query these matrices; the second of these approaches is costly in places that
do query these matrices repeatedly because they are re-computed every time. Lazy<T>
provides a middle ground: It provides an abstraction for an object that is initialized upon
first use (that is, the first time the value is requested), and then stores the computed value
for cheap use later on.

(C++ provides functionality via std::async with launch policy std::launch::deferred
that can achieve similar outcomes. But this functionality is more difficult to use than Lazy<T>
because, among other reasons, the code generating the object has to be specified at the place
of construction of the object holding the result, rather than at the place of use; and because
the holder object – std::future – can only be asked once for its computed value.)

– TaskResult<T> is a class that represents the outcome of a task possibly evaluated on a
separate thread. It can be thought of as a “deferred” result of a computation in that one
wants to state “This job needs to be done, do it when convenient, and then put the result
of the operation into this variable”. Accessing the variable then waits for the operation to
complete, if it has not already. TaskResult<T> allows classes to efficiently compute member
variables in the background, assuming that they may not be needed right away but only
later on.

(Similar to above, the same effect as TaskResult<T> can be achieved using std::async, this
time using the launch policy std::launch::async. This approach suffers from the same
issue that one can only query the resulting object once. Moreover, std::async does not
integrate with the thread pool that underlies deal.II’s approach to parallel processing on
modern multi-core machines, whereas TaskResult<T> does.)

8

2.5 New and improved tutorials and code gallery programs

Many of the deal.II tutorial programs were revised in a variety of ways as part of this release:
Around 190 of the more than 1900 (non-merge) commits that went into this release touched the
tutorial. In addition, there are a number of new tutorial programs:

– step-83 demonstrates how one can implement checkpoint/restart functionality in deal.II-
based programs, using the Boost serialization functionality as a foundation. step-83 was
written by Pasquale Africa, Wolfgang Bangerth, and Bruno Blais using step-19 as its basis.

– step-86 is a program that solves the heat equation using PETSc’s TS (time stepping) frame-
work for the solution of ordinary differential equations. Written by Wolfgang Bangerth,
Luca Heltai, and Stefano Zampini (King Abdullah University of Science and Technology),
it illustrates how PDE solvers for time-dependent problems can be integrated with existing
ODE solver packages to use advanced ODE solver concepts (such as higher-order time inte-
gration methods and adaptive time step control), all without sacrificing the things that have
traditionally led code authors toward writing their own time stepping routines (like wanting
to change the mesh every once in a while, or having to deal with boundary conditions).

– step-87 [61] was contributed by Magdalena Schreter-Fleischhacker and Peter Munch. It
presents the advanced point-evaluation functionalities of deal.II, which are useful for
evaluating finite element solutions at arbitrary points on meshes that can be distributed
among processes. The presented mini-examples are motivated by the application to two-
phase flow simulations and demonstrate, for example, the evaluation of solution quantities
at a surface mesh embedded in a background mesh, as needed in the case in front-tracking.

– step-89 was contributed by Johannes Heinz (TU Wien), Maximilian Bergbauer (Technical
University of Munich), Marco Feder (SISSA), and Peter Munch. It shows how to apply
non-matching and/or Chimera methods within matrix-free loops in deal.II.

– step-90 was contributed by Vladimir Yushutin and Timo Heister. It implements the trace
finite element method (TraceFEM). TraceFEM solves PDEs posed on a, possibly evolv-
ing, (dim − 1)-dimensional surface Γ employing a fixed uniform background mesh of a
dim-dimensional domain in which the surface is embedded. Such surface PDEs arise in
problems involving material films with complex properties and in other situations in which
a non-trivial condition is imposed on either a stationary or a moving interface. The pro-
gram considers a steady, complex, non-trivial surface and the prototypical Laplace-Beltrami
equation which is a counterpart of the Poisson problem on flat domains.

In addition, there are three new programs in the code gallery (a collection of user-contributed
programs that often solve more complicated problems than tutorial programs, and that are
intended as starting points for further research rather than as teaching tools):

– “Crystal growth phase field model”, contributed by Umair Hussain;

– “Nonlinear heat transfer problem”, contributed by Narasimhan Swaminathan;

– “Traveling-wave solutions of a qualitative model for combustion waves”, contributed by Shamil
Magomedov.

Furthermore, we added an example to the libCEED library [20]: https://github.com/CEED/
libCEED/tree/main/examples/deal.II. libCEED is a library that provides matrix-free eval-
uation routines for different hardware. The example shows how to interface the deal.II data
structures with the libCEED ones and solves the BP1-BP6 benchmarks (scalar/vector Laplace/mass
matrix with regular integration and over-integration).

https://github.com/CEED/libCEED/tree/main/examples/deal.II
https://github.com/CEED/libCEED/tree/main/examples/deal.II

9

2.6 Relicensing to Apache License 2.0 with LLVM exception

The deal.II project is in the process of relicensing the library under the terms of the Apache
License 2.0 with LLVM Exception [6, 52]. To this end we require all new code contributions to be
dual licensed under the current license (GNU Lesser General Public License v2.1 [50]) and the
new license (Apache-2.0 with LLVM-exception).

We have chosen to pursue a relicensing effort for deal.II because of some long standing problems
with the LGPL v2.1 license. Most notably, despite our clear intent that the strong copyleft principle
should only apply to deal.II source code and not user projects (which should be free to choose
their own license freely) this is not necessarily the case for LGPL v2.1 due to the language used
in the library. This makes potential industry partners that evaluate the use of deal.II for their
own projects nervous. Secondly, our previous choice to use an open source license with strong
copyleft was motivated by our hope that we receive back code contributions from third parties.
In practice, however, our observation over the last 10 years is that our choice of license has not
helped achieve this goal: Copyleft only applies when a derived software is sold or published. But
almost all of our code contributions are voluntary and come from individual contributors with
an academic background, where these considerations do not apply.

We have thus decided to switch away from the LGPL v2.1 license towards a more permissible
license. We settled on the Apache License 2.0 with LLVM-exception in large parts because it is (a) a
permissible open source license with patent clause, (b) considered to be a verbose, well-written
license, and (c) has been recently chosen by other large open source projects, notably LLVM and
Kokkos. Our hope going forward is that the new license makes it easier for industry partners to
use the library.

As a first step we now require all new code contributions to be dual licensed under the old
and new licenses. As a second step we are in the process of contacting the more than 200 past
contributors with copyrighted contributions to the library. As of September 2024 roughly 80% of
the commits and 80% of the 1.88 million source lines of code have been relicensed.

2.7 Incompatible changes

The 9.6 release includes around 40 incompatible changes; see [51]. Many of these incompatibilities
change internal interfaces that are not usually used in external applications. That said, the
following are worth mentioning since they are more broadly visible:

– deal.II now requires compilers to support C++17, and has started to extensively use
C++17 features.

– The CUDAWrappers namespace and its contents – notably things that enable the usage of
cuSPARSE algorithms – have been deprecated and will be removed in the next release.
Kokkos is now used for device-specific optimizations.

3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
this library.

There are various ways to reference deal.II. To acknowledge the use of the current version of the
library, please reference the present document. For up-to-date information and a bibtex entry
see

https://www.dealii.org/publications.html

https://dealii.org/developer/doxygen/deal.II/changes_between_9_5_2_and_9_6_0.html
https://www.dealii.org/publications.html

10

The original deal.II paper containing an overview of its architecture is [14], and a more recent
publication documenting deal.II’s design decisions is available as [8]. If you rely on specific
features of the library, please consider citing any of the following:

– For geometric multigrid: [43, 42, 22, 55];

– For distributed parallel computing: [13];

– For hp-adaptivity: [15, 28];

– For partition-of-unity (PUM) and finite ele-
ment enrichment methods: [26];

– For matrix-free and fast assembly techniques:
[46, 47];

– For computations on lower-dimensional
manifolds: [27];

– For curved geometry representations and
manifolds: [36];

– For integration with CAD files and tools:
[37];

– For boundary element computations: [32];

– For the LinearOperator and Packaged-
Operation facilities: [53, 54];

– For uses of the WorkStream interface: [67];

– For uses of the ParameterAcceptor con-
cept, the MeshWorker::ScratchData base
class, and the ParsedConvergenceTable
class: [60];

– For uses of the particle functionality in
deal.II: [30].

deal.II can interface with many other libraries:

– ADOL-C [33]

– ArborX [48]

– ARPACK [49]

– Assimp [62]

– BLAS and LAPACK [3]

– Boost [19]

– CGAL [64]

– cuSOLVER [23]

– cuSPARSE [24]

– Gmsh [31]

– GSL [29, 34]

– Ginkgo [4, 5]

– HDF5 [65]

– METIS [44]

– MUMPS [2, 1]

– muparser [56]

– OpenCASCADE [57]

– p4est [21]

– PETSc [11, 12]

– ROL [59]

– ScaLAPACK [17]

– SLEPc [38]

– SUNDIALS [40]

– SymEngine [63]

– Taskflow [41]

– TBB [58]

– Trilinos [39, 66]

– UMFPACK [25]

Please consider citing the appropriate references if you use interfaces to these libraries.

The two previous releases of deal.II can be cited as [9, 7].

4 Acknowledgments

deal.II is a worldwide project with dozens of contributors around the globe. Other than the
authors of this paper, the following people contributed code to this release:

11

Laryssa Abdala, Mathias Anselmann, Abbas Ballout, Maximilian Bergbauer, Julian
Brotz, Marco Feder, Niklas Fehn, Menno Fraters, Quang Hoang, Vladimir Ivannikov,
Tao Jin, Yimin Jin, Paras Kumar, Sébastien Loriot, Nils Much, Abdullah Mujahid,
Bob Myhill, Paul A. Patience, Luz Paz, Laura Prieto Saavedra, Sebastian Proell, Hen-
drik Ranocha, Johannes Resch, Andreas Ritthaler, Malik Scheifinger, David Schnei-
der, Richard Schussnig, Nils Schween, Kyle Schwiebert, Simranjeet Singh, Simon
Sticko, Dominik Still, Thierry Thomas, Vinayak Vijay, Ivy Weber, Simon Wiesheier,
Chengjiang Yin, Stefano Zampini.

Their contributions are much appreciated!

deal.II and its developers are financially supported through a variety of funding sources:

P. C. Africa was partially supported by the consortium iNEST (Interconnected North-East Inno-
vation Ecosystem), Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4 Componente
2, Investimento 1.5 - D.D. 1058 23/06/2022, ECS00000043, supported by the European Union’s
NextGenerationEU program.

D. Arndt and B. Turcksin: Research sponsored by the Laboratory Directed Research and Devel-
opment Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S.
Department of Energy.

W. Bangerth and M. Fehling were partially supported by Award OAC-1835673 as part of the
Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program.

W. Bangerth, T. Heister, and R. Gassmöller were partially supported by the Computational In-
frastructure for Geodynamics initiative (CIG), through the National Science Foundation (NSF)
under Award No. EAR-2149126 via The University of California – Davis.

W. Bangerth was also partially supported by Award EAR-1925595.

B. Blais was supported by the National Science and Engineering Research Council of Canada
(NSERC) through the RGPIN-2020-04510 Discovery Grant and the MMIAOW Canada Research
Level 2 in Computer-Assisted Design and Scale-up of Alternative Energy Vectors for Sustainable
Chemical Processes.

M. Fehling was also partially supported by the ERC-CZ grant LL2105 CONTACT, funded by the
Czech Ministry of Education, Youth and Sports.

R. Gassmöller was also partially supported by NSF Awards EAR-1925677 and EAR-2054605.

T. Heister and V. Yushutin were also partiallty supported by NSF Awards OAC-2015848 and
EAR-1925575.

T. Heister was also partially supported by NSF OAC-2410848.

L. Heltai was partially supported by the Italian Ministry of University and Research (MUR),
under the grant MUR PRIN 2022 No. 2022WKWZA8 “Immersed methods for multiscale and
multiphysics problems (IMMEDIATE)”.

S. Kinnewig was supported by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s
Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453)

M. Kronbichler and P. Munch were partially supported by the German Ministry of Education and
Research, project “PDExa: Optimized software methods for solving partial differential equations
on exascale supercomputers” and the Bayerisches Kompetenznetzwerk für Technisch-Wissen-
schaftliches Hoch- und Höchstleistungsrechnen (KONWIHR), project “Fast and scalable finite
element algorithms for coupled multiphysics problems and non-matching grids”.

M. Maier was partially supported by NSF Award DMS-2045636 and and by the Air Force Office
of Scientific Research under grant/contract number FA9550-23-1-0007.

12

P. Munch acknowledges the funding by the Swedish Research Council (VR) under grant 2021-
04620 and the strategic funding from the IT department of Uppsala University.

M. Schreter-Fleischhacker was supported by the Austrian Science Fund (FWF) Schrödinger Fel-
lowship (project number: J4577) and by the European Research Council through the ERC Starting
Grant ExcelAM (project number: 101117579).

D. Wells was supported by NSF Award OAC-1931516.

Clemson University is acknowledged for generous allotment of compute time on the Palmetto
cluster.

The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources that have contributed to the research results reported
within this paper. http://www.tacc.utexas.edu

This work used the Expanse HPC system at the San Diego Supercomputer Center (SDSC) at UC San
Diego through the CIG Science Gateway and Community Codes for the Geodynamics Commu-
nity MCA08X011 allocation from the Advanced Cyberinfrastructure Coordination Ecosystem:
Services & Support (ACCESS) program, which is supported by National Science Foundation
grants #2138259, #2138286, #2138307, #2137603, and #2138296. See [18].

References
[1] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Performance and scalability of the

block low-rank multifrontal factorization on multicore architectures. ACM Transactions on
Mathematical Software, 45(1):2/1–26, 2019.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applica-
tions, 23(1):15–41, 2001.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[4] H. Anzt, T. Cojean, Y.-C. Chen, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, and
Y.-H. Tsai. Ginkgo: A high performance numerical linear algebra library. Journal of Open
Source Software, 5(52):2260, 2020.

[5] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, Y. M. Tsai,
and E. S. Quintana-Ortí. Ginkgo: A modern linear operator algebra framework for high
performance computing. ACM Transactions on Mathematical Software, 48(1):2/1–33, 2022.

[6] Apache License 2.0. https://spdx.org/licenses/Apache-2.0.html.

[7] D. Arndt, W. Bangerth, M. Bergbauer, M. Feder, M. Fehling, J. Heinz, T. Heister, L. Heltai,
M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, B. Turcksin, D. Wells, and S. Zampini. The
deal.II library, version 9.5. Journal of Numerical Mathematics, 31(3):231–246, 2023.

[8] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P.
Pelteret, B. Turcksin, and D. Wells. The deal.II finite element library: Design, features, and
insights. Computers & Mathematics with Applications, 81:407–422, 2021.

[9] D. Arndt, W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, M. Kron-
bichler, M. Maier, P. Munch, J.-P. Pelteret, S. Sticko, B. Turcksin, and D. Wells. The deal.II
library, version 9.4. Journal of Numerical Mathematics, 30(3):231–246, 2022.

[10] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang. Multigrid smoothers for ultraparallel
computing. SIAM Journal on Scientific Computing, 33(5):2864–2887, 2011.

http://www.tacc.utexas.edu
https://spdx.org/licenses/Apache-2.0.html

13

[11] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. Con-
stantinescu, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet,
D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T.
Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini,
H. Zhang, H. Zhang, and J. Zhang. PETSc/TAO users manual. Technical Report ANL-21/39
- Revision 3.17, Argonne National Laboratory, 2022.

[12] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M.
Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet,
D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T.
Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini,
H. Zhang, H. Zhang, and J. Zhang. PETSc Web page. https://petsc.org/, 2022.

[13] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical
Software, 38(2):14/1–28, 2012.

[14] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general purpose object oriented
finite element library. ACM Transactions on Mathematical Software, 33(4):24–es, 2007.

[15] W. Bangerth and O. Kayser-Herold. Data structures and requirements for hp finite element
software. ACM Transactions on Mathematical Software, 36(1):4/1–31, 2009.

[16] D. Bielich, J. Langou, S. Thomas, K. Świrydowicz, I. Yamazaki, and E. G. Boman. Low-synch
Gram–Schmidt with delayed reorthogonalization for Krylov solvers. Parallel Computing,
112:102940, 2022.

[17] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[18] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J. Towns. ACCESS: Advancing Inno-
vation: NSF’s Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support.
In Practice and Experience in Advanced Research Computing, PEARC ’23. ACM, July 2023.

[19] Boost C++ Libraries. http://www.boost.org/.

[20] J. Brown, A. Abdelfattah, V. Barra, N. Beams, J.-S. Camier, V. Dobrev, Y. Dudouit, L. Ghaffari,
T. Kolev, D. Medina, et al. libceed: Fast algebra for high-order element-based discretizations.
Journal of Open Source Software, 6(63):2945, 2021.

[21] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011.

[22] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler. A flexible, parallel, adaptive
geometric multigrid method for FEM. ACM Transactions on Mathematical Software, 47(1):7/1–
27, 2021.

[23] cuSOLVER Library. https://docs.nvidia.com/cuda/cusolver/index.html.

[24] cuSPARSE Library. https://docs.nvidia.com/cuda/cusparse/index.html.

[25] T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method.
ACM Transactions on Mathematical Software, 30:196–199, 2004.

[26] D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann. Convergence study of the
h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum
mechanics. Advanced Modeling and Simulation in Engineering Sciences, 4(1):7, Dec 2017.

https://petsc.org/
http://www.boost.org/
https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusparse/index.html

14

[27] A. DeSimone, L. Heltai, and C. Manigrasso. Tools for the solution of PDEs defined on curved
manifolds with deal.II. Technical Report 42/2009/M, SISSA, 2009.

[28] M. Fehling and W. Bangerth. Algorithms for parallel generic hp-adaptive finite element
software. ACM Transactions on Mathematical Software, 49(3):25/1–26, 2023.

[29] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi. GNU Scientific
Library Reference Manual. Network Theory Ltd., 3rd edition, 2009.

[30] R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth. Flexible and scal-
able particle-in-cell methods with adaptive mesh refinement for geodynamic computations.
Geochemistry, Geophysics, Geosystems, 19(9):3596–3604, 2018.

[31] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in
pre-and post-processing facilities. International journal for numerical methods in engineering,
79(11):1309–1331, 2009.

[32] N. Giuliani, A. Mola, and L. Heltai. π-BEM: A flexible parallel implementation for adap-
tive, geometry aware, and high order boundary element methods. Advances in Engineering
Software, 121:39–58, July 2018.

[33] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: a package for the automatic
differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Software,
22(2):131–167, 1996.

[34] GSL: GNU Scientific Library. http://www.gnu.org/software/gsl.

[35] J. Heinz, P. Munch, and M. Kaltenbacher. High-order non-conforming discontinuous
Galerkin methods for the acoustic conservation equations. International Journal for Numerical
Methods in Engineering, 124(9):2034–2049, 2023.

[36] L. Heltai, W. Bangerth, M. Kronbichler, and A. Mola. Propagating geometry information to
finite element computations. ACM Transactions on Mathematical Software, 47(4):32/1–30, 2021.

[37] L. Heltai and A. Mola. Towards the Integration of CAD and FEM using open source libraries:
a Collection of deal.II Manifold Wrappers for the OpenCASCADE Library. Technical report,
SISSA, 2015.

[38] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Transactions on Mathematical Software, 31(3):351–362,
2005.

[39] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM
Transactions on Mathematical Software, 31:397–423, 2005.

[40] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM
Transactions on Mathematical Software, 31(3):363–396, 2005.

[41] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin. Taskflow: A lightweight parallel and hetero-
geneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems,
33(6):1303–1320, 2021.

[42] B. Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing for H1- and
Hcurl-conforming high order finite element methods. SIAM J. Sci. Comput., 33(4):2095–2114,
2011.

http://www.gnu.org/software/gsl

15

[43] G. Kanschat. Multi-level methods for discontinuous Galerkin FEM on locally refined meshes.
Comput. & Struct., 82(28):2437–2445, 2004.

[44] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[45] S. Kinnewig, T. Wick, and S. Beuchler. Algorithmic realization of the solution to the sign
conflict problem for hanging nodes on hp-hexahedral nédélec elements, 2024.

[46] M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element
operator application. Comput. Fluids, 63:135–147, 2012.

[47] M. Kronbichler and K. Kormann. Fast matrix-free evaluation of discontinuous Galerkin
finite element operators. ACM Transactions on Mathematical Software, 45(3):29/1–40, 2019.

[48] D. Lebrun-Grandié, A. Prokopenko, B. Turcksin, and S. R. Slattery. ArborX: A performance
portable geometric search library. ACM Transactions on Mathematical Software, 47(1):2/1–15,
2020.

[49] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia, 1998.

[50] GNU Lesser Public License v2.1 or later. https://spdx.org/licenses/LGPL-2.
1-or-later.htmll.

[51] List of changes for deal.II release 9.6. https://dealii.org/developer/doxygen/deal.
II/changes_between_9_5_2_and_9_6_0.html.

[52] LLVM Exception. https://spdx.org/licenses/LLVM-exception.html.

[53] M. Maier, M. Bardelloni, and L. Heltai. LinearOperator – a generic, high-level expression
syntax for linear algebra. Computers and Mathematics with Applications, 72(1):1–24, 2016.

[54] M. Maier, M. Bardelloni, and L. Heltai. LinearOperator Benchmarks, Version 1.0.0, 2016.

[55] P. Munch, T. Heister, L. Prieto Saavedra, and M. Kronbichler. Efficient distributed matrix-free
multigrid methods on locally refined meshes for FEM computations. ACM Transactions on
Parallel Computing, 10(1):3/1–38, 2023.

[56] muparser: Fast Math Parser Library. https://beltoforion.de/en/muparser.

[57] OpenCASCADE: Open CASCADE Technology, 3D modeling & numerical simulation. http:
//www.opencascade.org/.

[58] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[59] D. Ridzal and D. P. Kouri. Rapid optimization library. Technical report, Sandia National
Laboratories (SNL-NM), Albuquerque, NM (United States), 2014.

[60] A. Sartori, N. Giuliani, M. Bardelloni, and L. Heltai. deal2lkit: A toolkit library for high
performance programming in deal.II. SoftwareX, 7:318–327, 2018.

[61] M. Schreter-Fleischhacker and P. Munch. The deal.II tutorial step-87: evaluation of finite
element solutions at arbitrary points within a distributed mesh with application to two-phase
flow, oct 2023.

[62] T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch. Open
asset import library (assimp). https://github.com/assimp/assimp, 2021.

[63] SymEngine: fast symbolic manipulation library, written in C++. https://symengine.org/.

https://spdx.org/licenses/LGPL-2.1-or-later.htmll
https://spdx.org/licenses/LGPL-2.1-or-later.htmll
https://dealii.org/developer/doxygen/deal.II/changes_between_9_5_2_and_9_6_0.html
https://dealii.org/developer/doxygen/deal.II/changes_between_9_5_2_and_9_6_0.html
https://spdx.org/licenses/LLVM-exception.html
https://beltoforion.de/en/muparser
http://www.opencascade.org/
http://www.opencascade.org/
https://github.com/assimp/assimp
https://symengine.org/

16

[64] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.4.1 edition,
2022. https://doc.cgal.org/5.4.1/Manual/packages.html.

[65] The HDF Group. Hierarchical Data Format, version 5, 2022. http://www.hdfgroup.org/
HDF5/.

[66] The Trilinos Project Team. The Trilinos Project Website. https://trilinos.github.io/.

[67] B. Turcksin, M. Kronbichler, and W. Bangerth. WorkStream – a design pattern for multicore-
enabled finite element computations. ACM Transactions on Mathematical Software, 43(1):2/1–
29, 2016.

[68] S. Zaglmayr. High Order Finite Element Methods for Electromagnetic Field Computation. PhD
thesis, Johannes Kepler University, Linz, Austria, 2006.

https://doc.cgal.org/5.4.1/Manual/packages.html
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://trilinos.github.io/

	Overview
	Major changes to the library
	Updates to the multigrid and matrix-free algorithms
	Advances in non-matching support
	Interface to the Trilinos Tpetra stack
	More support for advanced programming idioms
	New and improved tutorials and code gallery programs
	Relicensing to Apache License 2.0 with LLVM exception
	Incompatible changes

	How to cite deal.II
	Acknowledgments

