Loading [MathJax]/extensions/TeX/AMSsymbols.js
 Reference documentation for deal.II version 9.6.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
MatrixFreeTools Namespace Reference

Namespaces

namespace  internal
 

Classes

class  ElementActivationAndDeactivationMatrixFree
 

Functions

template<int dim, typename AdditionalData >
void categorize_by_boundary_ids (const Triangulation< dim > &tria, AdditionalData &additional_data)
 
template<int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename VectorType >
void compute_diagonal (const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, VectorType &diagonal_global, const std::function< void(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> &cell_operation, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 
template<typename CLASS , int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename VectorType >
void compute_diagonal (const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, VectorType &diagonal_global, void(CLASS::*cell_operation)(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const, const CLASS *owning_class, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 
template<int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename VectorType >
void compute_diagonal (const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, VectorType &diagonal_global, const std::function< void(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> &cell_operation, const std::function< void(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &, FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> &face_operation, const std::function< void(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> &boundary_operation, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 
template<typename CLASS , int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename VectorType >
void compute_diagonal (const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, VectorType &diagonal_global, void(CLASS::*cell_operation)(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const, void(CLASS::*face_operation)(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &, FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const, void(CLASS::*boundary_operation)(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const, const CLASS *owning_class, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 
template<int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename MatrixType >
void compute_matrix (const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, const AffineConstraints< Number > &constraints, MatrixType &matrix, const std::function< void(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> &cell_operation, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 
template<typename CLASS , int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename MatrixType >
void compute_matrix (const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, const AffineConstraints< Number > &constraints, MatrixType &matrix, void(CLASS::*cell_operation)(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const, const CLASS *owning_class, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 
template<int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename MatrixType >
void compute_matrix (const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, const AffineConstraints< Number > &constraints, MatrixType &matrix, const std::function< void(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> &cell_operation, const std::function< void(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &, FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> &face_operation, const std::function< void(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> &boundary_operation, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 
template<typename CLASS , int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename MatrixType >
void compute_matrix (const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, const AffineConstraints< Number > &constraints, MatrixType &matrix, void(CLASS::*cell_operation)(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const, void(CLASS::*face_operation)(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &, FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const, void(CLASS::*boundary_operation)(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const, const CLASS *owning_class, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 

Detailed Description

A namespace for utility functions in the context of matrix-free operator evaluation.

Function Documentation

◆ categorize_by_boundary_ids()

template<int dim, typename AdditionalData >
void MatrixFreeTools::categorize_by_boundary_ids ( const Triangulation< dim > & tria,
AdditionalData & additional_data )

Modify additional_data so that cells are categorized according to their boundary IDs, making face integrals in the case of cell-centric loop simpler.

◆ compute_diagonal() [1/4]

template<int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename VectorType >
void MatrixFreeTools::compute_diagonal ( const MatrixFree< dim, Number, VectorizedArrayType > & matrix_free,
VectorType & diagonal_global,
const std::function< void(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> & cell_operation,
const unsigned int dof_no = 0,
const unsigned int quad_no = 0,
const unsigned int first_selected_component = 0 )

Compute the diagonal of a linear operator (diagonal_global), given matrix_free and the local cell integral operation cell_operation. The vector is initialized to the right size in the function.

The parameters dof_no, quad_no, and first_selected_component are passed to the constructor of the FEEvaluation that is internally set up.

◆ compute_diagonal() [2/4]

template<typename CLASS , int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename VectorType >
void MatrixFreeTools::compute_diagonal ( const MatrixFree< dim, Number, VectorizedArrayType > & matrix_free,
VectorType & diagonal_global,
void(CLASS::* cell_operation )(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const,
const CLASS * owning_class,
const unsigned int dof_no = 0,
const unsigned int quad_no = 0,
const unsigned int first_selected_component = 0 )

Same as above but with a class and a function pointer.

◆ compute_diagonal() [3/4]

template<int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename VectorType >
void MatrixFreeTools::compute_diagonal ( const MatrixFree< dim, Number, VectorizedArrayType > & matrix_free,
VectorType & diagonal_global,
const std::function< void(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> & cell_operation,
const std::function< void(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &, FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> & face_operation,
const std::function< void(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> & boundary_operation,
const unsigned int dof_no = 0,
const unsigned int quad_no = 0,
const unsigned int first_selected_component = 0 )

Compute the diagonal of a linear operator (diagonal_global), given matrix_free and the local cell integral operation cell_operation, interior face integral operation face_operation, and boundary face integral operation boundary_operation. The vector is initialized to the right size in the function.

The parameters dof_no, quad_no, and first_selected_component are passed to the constructor of the FEEvaluation that is internally set up.

◆ compute_diagonal() [4/4]

template<typename CLASS , int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename VectorType >
void MatrixFreeTools::compute_diagonal ( const MatrixFree< dim, Number, VectorizedArrayType > & matrix_free,
VectorType & diagonal_global,
void(CLASS::* cell_operation )(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const,
void(CLASS::* face_operation )(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &, FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const,
void(CLASS::* boundary_operation )(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const,
const CLASS * owning_class,
const unsigned int dof_no = 0,
const unsigned int quad_no = 0,
const unsigned int first_selected_component = 0 )

Same as above but with a class and a function pointer.

◆ compute_matrix() [1/4]

template<int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename MatrixType >
void MatrixFreeTools::compute_matrix ( const MatrixFree< dim, Number, VectorizedArrayType > & matrix_free,
const AffineConstraints< Number > & constraints,
MatrixType & matrix,
const std::function< void(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> & cell_operation,
const unsigned int dof_no = 0,
const unsigned int quad_no = 0,
const unsigned int first_selected_component = 0 )

Compute the matrix representation of a linear operator (matrix), given matrix_free and the local cell integral operation cell_operation. Constrained entries on the diagonal are set to one.

The parameters dof_no, quad_no, and first_selected_component are passed to the constructor of the FEEvaluation that is internally set up.

◆ compute_matrix() [2/4]

template<typename CLASS , int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename MatrixType >
void MatrixFreeTools::compute_matrix ( const MatrixFree< dim, Number, VectorizedArrayType > & matrix_free,
const AffineConstraints< Number > & constraints,
MatrixType & matrix,
void(CLASS::* cell_operation )(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const,
const CLASS * owning_class,
const unsigned int dof_no = 0,
const unsigned int quad_no = 0,
const unsigned int first_selected_component = 0 )

Same as above but with a class and a function pointer.

◆ compute_matrix() [3/4]

template<int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename MatrixType >
void MatrixFreeTools::compute_matrix ( const MatrixFree< dim, Number, VectorizedArrayType > & matrix_free,
const AffineConstraints< Number > & constraints,
MatrixType & matrix,
const std::function< void(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> & cell_operation,
const std::function< void(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &, FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> & face_operation,
const std::function< void(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &)> & boundary_operation,
const unsigned int dof_no = 0,
const unsigned int quad_no = 0,
const unsigned int first_selected_component = 0 )

Compute the matrix representation of a linear operator (matrix), given matrix_free and the local cell integral operation cell_operation, interior face integral operation face_operation, and boundary face integal operation boundary_operation.

The parameters dof_no, quad_no, and first_selected_component are passed to the constructor of the FEEvaluation that is internally set up.

◆ compute_matrix() [4/4]

template<typename CLASS , int dim, int fe_degree, int n_q_points_1d, int n_components, typename Number , typename VectorizedArrayType , typename MatrixType >
void MatrixFreeTools::compute_matrix ( const MatrixFree< dim, Number, VectorizedArrayType > & matrix_free,
const AffineConstraints< Number > & constraints,
MatrixType & matrix,
void(CLASS::* cell_operation )(FEEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const,
void(CLASS::* face_operation )(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &, FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const,
void(CLASS::* boundary_operation )(FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components, Number, VectorizedArrayType > &) const,
const CLASS * owning_class,
const unsigned int dof_no = 0,
const unsigned int quad_no = 0,
const unsigned int first_selected_component = 0 )

Same as above but with a class and a function pointer.