Reference documentation for deal.II version 9.6.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
grid_out.cc
Go to the documentation of this file.
1// ------------------------------------------------------------------------
2//
3// SPDX-License-Identifier: LGPL-2.1-or-later
4// Copyright (C) 1999 - 2024 by the deal.II authors
5//
6// This file is part of the deal.II library.
7//
8// Part of the source code is dual licensed under Apache-2.0 WITH
9// LLVM-exception OR LGPL-2.1-or-later. Detailed license information
10// governing the source code and code contributions can be found in
11// LICENSE.md and CONTRIBUTING.md at the top level directory of deal.II.
12//
13// ------------------------------------------------------------------------
14
18#include <deal.II/base/point.h>
21
23
24#include <deal.II/fe/mapping.h>
25
27#include <deal.II/grid/tria.h>
30
32
33#include <boost/archive/binary_oarchive.hpp>
34
35#ifdef DEAL_II_GMSH_WITH_API
36# include <gmsh.h>
37#endif
38
39#include <algorithm>
40#include <cmath>
41#include <cstring>
42#include <ctime>
43#include <fstream>
44#include <iomanip>
45#include <list>
46#include <set>
47
49
50
51namespace GridOutFlags
52{
53 DX::DX(const bool write_cells,
54 const bool write_faces,
55 const bool write_diameter,
56 const bool write_measure,
57 const bool write_all_faces)
58 : write_cells(write_cells)
59 , write_faces(write_faces)
60 , write_diameter(write_diameter)
61 , write_measure(write_measure)
62 , write_all_faces(write_all_faces)
63 {}
64
65 void
67 {
68 param.declare_entry("Write cells",
69 "true",
71 "Write the mesh connectivity as DX grid cells");
72 param.declare_entry("Write faces",
73 "false",
75 "Write faces of cells. These may be boundary faces "
76 "or all faces between mesh cells, according to "
77 "\"Write all faces\"");
78 param.declare_entry("Write diameter",
79 "false",
81 "If cells are written, additionally write their"
82 " diameter as data for visualization");
83 param.declare_entry("Write measure",
84 "false",
86 "Write the volume of each cell as data");
87 param.declare_entry("Write all faces",
88 "true",
90 "Write all faces, not only boundary");
91 }
92
93 void
95 {
96 write_cells = param.get_bool("Write cells");
97 write_faces = param.get_bool("Write faces");
98 write_diameter = param.get_bool("Write diameter");
99 write_measure = param.get_bool("Write measure");
100 write_all_faces = param.get_bool("Write all faces");
101 }
102
103
104 Msh::Msh(const bool write_faces, const bool write_lines)
105 : write_faces(write_faces)
106 , write_lines(write_lines)
107 {}
108
109 void
111 {
112 param.declare_entry("Write faces", "false", Patterns::Bool());
113 param.declare_entry("Write lines", "false", Patterns::Bool());
114 }
115
116
117 void
119 {
120 write_faces = param.get_bool("Write faces");
121 write_lines = param.get_bool("Write lines");
122 }
123
124
125 Ucd::Ucd(const bool write_preamble,
126 const bool write_faces,
127 const bool write_lines)
128 : write_preamble(write_preamble)
129 , write_faces(write_faces)
130 , write_lines(write_lines)
131 {}
132
133
134
135 void
137 {
138 param.declare_entry("Write preamble", "true", Patterns::Bool());
139 param.declare_entry("Write faces", "false", Patterns::Bool());
140 param.declare_entry("Write lines", "false", Patterns::Bool());
141 }
142
143
144 void
146 {
147 write_preamble = param.get_bool("Write preamble");
148 write_faces = param.get_bool("Write faces");
149 write_lines = param.get_bool("Write lines");
150 }
151
152
153
154 Gnuplot::Gnuplot(const bool write_cell_numbers,
155 const unsigned int n_extra_curved_line_points,
156 const bool curved_inner_cells,
157 const bool write_additional_boundary_lines)
158 : write_cell_numbers(write_cell_numbers)
159 , n_extra_curved_line_points(n_extra_curved_line_points)
160 , curved_inner_cells(curved_inner_cells)
161 , write_additional_boundary_lines(write_additional_boundary_lines)
162 {}
163
164
165
166 void
168 {
169 param.declare_entry("Cell number", "false", Patterns::Bool());
170 param.declare_entry("Boundary points", "2", Patterns::Integer());
171 }
172
173
174 void
176 {
177 write_cell_numbers = param.get_bool("Cell number");
178 n_extra_curved_line_points = param.get_integer("Boundary points");
179 }
180
181
183 const unsigned int size,
184 const double line_width,
185 const bool color_lines_on_user_flag,
186 const unsigned int n_boundary_face_points,
187 const bool color_lines_level)
188 : size_type(size_type)
189 , size(size)
190 , line_width(line_width)
191 , color_lines_on_user_flag(color_lines_on_user_flag)
192 , n_boundary_face_points(n_boundary_face_points)
193 , color_lines_level(color_lines_level)
194 {}
195
196
197 void
199 {
200 param.declare_entry("Size by",
201 "width",
202 Patterns::Selection("width|height"),
203 "Depending on this parameter, either the "
204 "width or height "
205 "of the eps is scaled to \"Size\"");
206 param.declare_entry("Size",
207 "300",
209 "Size of the output in points");
210 param.declare_entry("Line width",
211 "0.5",
213 "Width of the lines drawn in points");
214 param.declare_entry("Color by flag",
215 "false",
217 "Draw lines with user flag set in different color");
218 param.declare_entry("Boundary points",
219 "2",
221 "Number of points on boundary edges. "
222 "Increase this beyond 2 to see curved boundaries.");
223 param.declare_entry("Color by level",
224 "false",
226 "Draw different colors according to grid level.");
227 }
228
229
230 void
232 {
233 if (param.get("Size by") == std::string("width"))
234 size_type = width;
235 else if (param.get("Size by") == std::string("height"))
236 size_type = height;
237 size = param.get_integer("Size");
238 line_width = param.get_double("Line width");
239 color_lines_on_user_flag = param.get_bool("Color by flag");
240 n_boundary_face_points = param.get_integer("Boundary points");
241 color_lines_level = param.get_bool("Color by level");
242 }
243
244
245
246 Eps<1>::Eps(const SizeType size_type,
247 const unsigned int size,
248 const double line_width,
249 const bool color_lines_on_user_flag,
250 const unsigned int n_boundary_face_points)
251 : EpsFlagsBase(size_type,
252 size,
253 line_width,
254 color_lines_on_user_flag,
255 n_boundary_face_points)
256 {}
257
258
259 void
262
263
264 void
269
270
271
272 Eps<2>::Eps(const SizeType size_type,
273 const unsigned int size,
274 const double line_width,
275 const bool color_lines_on_user_flag,
276 const unsigned int n_boundary_face_points,
277 const bool write_cell_numbers,
278 const bool write_cell_number_level,
279 const bool write_vertex_numbers,
280 const bool color_lines_level)
281 : EpsFlagsBase(size_type,
282 size,
283 line_width,
284 color_lines_on_user_flag,
285 n_boundary_face_points,
286 color_lines_level)
287 , write_cell_numbers(write_cell_numbers)
288 , write_cell_number_level(write_cell_number_level)
289 , write_vertex_numbers(write_vertex_numbers)
290 {}
291
292
293 void
295 {
296 param.declare_entry("Cell number",
297 "false",
299 "(2d only) Write cell numbers"
300 " into the centers of cells");
301 param.declare_entry("Level number",
302 "false",
304 "(2d only) if \"Cell number\" is true, write "
305 "numbers in the form level.number");
306 param.declare_entry("Vertex number",
307 "false",
309 "Write numbers for each vertex");
310 }
311
312
313 void
315 {
317 write_cell_numbers = param.get_bool("Cell number");
318 write_cell_number_level = param.get_bool("Level number");
319 write_vertex_numbers = param.get_bool("Vertex number");
320 }
321
322
323
324 Eps<3>::Eps(const SizeType size_type,
325 const unsigned int size,
326 const double line_width,
327 const bool color_lines_on_user_flag,
328 const unsigned int n_boundary_face_points,
329 const double azimut_angle,
330 const double turn_angle)
331 : EpsFlagsBase(size_type,
332 size,
333 line_width,
334 color_lines_on_user_flag,
335 n_boundary_face_points)
336 , azimut_angle(azimut_angle)
337 , turn_angle(turn_angle)
338 {}
339
340
341 void
343 {
344 param.declare_entry("Azimuth",
345 "30",
347 "Azimuth of the viw point, that is, the angle "
348 "in the plane from the x-axis.");
349 param.declare_entry("Elevation",
350 "30",
352 "Elevation of the view point above the xy-plane.");
353 }
354
355
356 void
358 {
360 azimut_angle = 90 - param.get_double("Elevation");
361 turn_angle = param.get_double("Azimuth");
362 }
363
364
365
367 : draw_boundary(true)
368 , color_by(material_id)
369 , level_depth(true)
370 , n_boundary_face_points(0)
371 , scaling(1., 1.)
372 , fill_style(20)
373 , line_style(0)
374 , line_thickness(1)
375 , boundary_style(0)
376 , boundary_thickness(3)
377 {}
378
379
380 void
382 {
383 param.declare_entry("Boundary", "true", Patterns::Bool());
384 param.declare_entry("Level color", "false", Patterns::Bool());
385 param.declare_entry("Level depth", "true", Patterns::Bool());
386 // TODO: Unify this number with other output formats
387 param.declare_entry("Boundary points", "0", Patterns::Integer());
388 param.declare_entry("Fill style", "20", Patterns::Integer());
389 param.declare_entry("Line style", "0", Patterns::Integer());
390 param.declare_entry("Line width", "1", Patterns::Integer());
391 param.declare_entry("Boundary style", "0", Patterns::Integer());
392 param.declare_entry("Boundary width", "3", Patterns::Integer());
393 }
394
395
396 void
398 {
399 draw_boundary = param.get_bool("Boundary");
400 level_depth = param.get_bool("Level depth");
401 n_boundary_face_points = param.get_integer("Boundary points");
402 fill_style = param.get_integer("Fill style");
403 line_style = param.get_integer("Line style");
404 line_thickness = param.get_integer("Line width");
405 boundary_style = param.get_integer("Boundary style");
406 boundary_thickness = param.get_integer("Boundary width");
407 }
408
409 Svg::Svg(const unsigned int line_thickness,
410 const unsigned int boundary_line_thickness,
411 bool margin,
412 const Background background,
413 const int azimuth_angle,
414 const int polar_angle,
415 const Coloring coloring,
416 const bool convert_level_number_to_height,
417 const bool label_level_number,
418 const bool label_cell_index,
419 const bool label_material_id,
420 const bool label_subdomain_id,
421 const bool draw_colorbar,
422 const bool draw_legend,
423 const bool label_boundary_id)
424 : height(1000)
425 , width(0)
426 , line_thickness(line_thickness)
427 , boundary_line_thickness(boundary_line_thickness)
428 , margin(margin)
429 , background(background)
430 , azimuth_angle(azimuth_angle)
431 , polar_angle(polar_angle)
432 , coloring(coloring)
433 , convert_level_number_to_height(convert_level_number_to_height)
434 , level_height_factor(0.3f)
435 , cell_font_scaling(1.f)
436 , label_level_number(label_level_number)
437 , label_cell_index(label_cell_index)
438 , label_material_id(label_material_id)
439 , label_subdomain_id(label_subdomain_id)
440 , label_level_subdomain_id(false)
441 , label_boundary_id(label_boundary_id)
442 , draw_colorbar(draw_colorbar)
443 , draw_legend(draw_legend)
444 {}
445
447 : draw_bounding_box(false) // box
448 {}
449
450 void
452 {
453 param.declare_entry("Draw bounding box", "false", Patterns::Bool());
454 }
455
456 void
458 {
459 draw_bounding_box = param.get_bool("Draw bounding box");
460 }
461} // end namespace GridOutFlags
462
463
464
466 : default_format(none)
467{}
468
469
470void
472{
473 dx_flags = flags;
474}
475
476
477
478void
480{
481 msh_flags = flags;
482}
483
484
485void
487{
488 ucd_flags = flags;
489}
490
491
492
493void
495{
496 gnuplot_flags = flags;
497}
498
499
500
501void
503{
504 eps_flags_1 = flags;
505}
506
507
508
509void
511{
512 eps_flags_2 = flags;
513}
514
515
516
517void
519{
520 eps_flags_3 = flags;
521}
522
523
524
525void
527{
528 xfig_flags = flags;
529}
530
531
532void
534{
535 svg_flags = flags;
536}
537
538
539void
541{
542 mathgl_flags = flags;
543}
544
545void
547{
548 vtk_flags = flags;
549}
550
551void
553{
554 vtu_flags = flags;
555}
556
557std::string
559{
560 switch (output_format)
561 {
562 case none:
563 return "";
564 case dx:
565 return ".dx";
566 case gnuplot:
567 return ".gnuplot";
568 case ucd:
569 return ".inp";
570 case eps:
571 return ".eps";
572 case xfig:
573 return ".fig";
574 case msh:
575 return ".msh";
576 case svg:
577 return ".svg";
578 case mathgl:
579 return ".mathgl";
580 case vtk:
581 return ".vtk";
582 case vtu:
583 return ".vtu";
584 default:
586 return "";
587 }
588}
589
590
591
592std::string
597
598
599
601GridOut::parse_output_format(const std::string &format_name)
602{
603 if (format_name == "none" || format_name == "false")
604 return none;
605
606 if (format_name == "dx")
607 return dx;
608
609 if (format_name == "ucd")
610 return ucd;
611
612 if (format_name == "gnuplot")
613 return gnuplot;
614
615 if (format_name == "eps")
616 return eps;
617
618 if (format_name == "xfig")
619 return xfig;
620
621 if (format_name == "msh")
622 return msh;
623
624 if (format_name == "svg")
625 return svg;
626
627 if (format_name == "mathgl")
628 return mathgl;
629
630 if (format_name == "vtk")
631 return vtk;
632
633 if (format_name == "vtu")
634 return vtu;
635
637 // return something weird
638 return OutputFormat(-1);
639}
640
641
642
643std::string
645{
646 return "none|dx|gnuplot|eps|ucd|xfig|msh|svg|mathgl|vtk|vtu";
647}
648
649
650void
696
697
698
699void
701{
702 default_format = parse_output_format(param.get("Format"));
703
704 param.enter_subsection("DX");
706 param.leave_subsection();
707
708 param.enter_subsection("Msh");
710 param.leave_subsection();
711
712 param.enter_subsection("Ucd");
714 param.leave_subsection();
715
716 param.enter_subsection("Gnuplot");
718 param.leave_subsection();
719
720 param.enter_subsection("Eps");
724 param.leave_subsection();
725
726 param.enter_subsection("XFig");
728 param.leave_subsection();
729
730 param.enter_subsection("MathGL");
732 param.leave_subsection();
733
734 param.enter_subsection("Vtk");
736 param.leave_subsection();
737
738 param.enter_subsection("Vtu");
740 param.leave_subsection();
741}
742
743
744
745std::size_t
747{
748 return (sizeof(dx_flags) + sizeof(msh_flags) + sizeof(ucd_flags) +
749 sizeof(gnuplot_flags) + sizeof(eps_flags_1) + sizeof(eps_flags_2) +
750 sizeof(eps_flags_3) + sizeof(xfig_flags) + sizeof(svg_flags) +
751 sizeof(mathgl_flags) + sizeof(vtk_flags) + sizeof(vtu_flags));
752}
753
754
755
756template <>
757void
758GridOut::write_dx(const Triangulation<1> &, std::ostream &) const
759{
761}
762
763template <>
764void
765GridOut::write_dx(const Triangulation<1, 2> &, std::ostream &) const
766{
768}
769
770template <>
771void
772GridOut::write_dx(const Triangulation<1, 3> &, std::ostream &) const
773{
775}
776
777
778
779template <int dim, int spacedim>
780void
782 std::ostream &out) const
783{
784 // TODO:[GK] allow for boundary faces only
786 AssertThrow(out.fail() == false, ExcIO());
787 // Copied and adapted from write_ucd
788 const std::vector<Point<spacedim>> &vertices = tria.get_vertices();
789 const std::vector<bool> &vertex_used = tria.get_used_vertices();
790
791 const unsigned int n_vertices = tria.n_used_vertices();
792
793 // vertices are implicitly numbered from 0 to
794 // n_vertices-1. we have to renumber the
795 // vertices, because otherwise we would end
796 // up with wrong results, if there are unused
797 // vertices
798 std::vector<unsigned int> renumber(vertices.size());
799 // fill this vector with new vertex numbers
800 // ranging from 0 to n_vertices-1
801 unsigned int new_number = 0;
802 for (unsigned int i = 0; i < vertices.size(); ++i)
803 if (vertex_used[i])
804 renumber[i] = new_number++;
805 Assert(new_number == n_vertices, ExcInternalError());
806
807 // write the vertices
808 out << "object \"vertices\" class array type float rank 1 shape " << dim
809 << " items " << n_vertices << " data follows" << '\n';
810
811 for (unsigned int i = 0; i < vertices.size(); ++i)
812 if (vertex_used[i])
813 out << '\t' << vertices[i] << '\n';
814
815 // write cells or faces
816 const bool write_cells = dx_flags.write_cells;
817 const bool write_faces = (dim > 1) ? dx_flags.write_faces : false;
818
819 const unsigned int n_cells = tria.n_active_cells();
820 const unsigned int n_faces =
822
823 const unsigned int n_vertices_per_cell = GeometryInfo<dim>::vertices_per_cell;
824 const unsigned int n_vertices_per_face = GeometryInfo<dim>::vertices_per_face;
825
826 if (write_cells)
827 {
828 out << "object \"cells\" class array type int rank 1 shape "
829 << n_vertices_per_cell << " items " << n_cells << " data follows"
830 << '\n';
831
832 for (const auto &cell : tria.active_cell_iterators())
833 {
834 for (const unsigned int v : GeometryInfo<dim>::vertex_indices())
835 out
836 << '\t'
837 << renumber[cell->vertex_index(GeometryInfo<dim>::dx_to_deal[v])];
838 out << '\n';
839 }
840 out << "attribute \"element type\" string \"";
841 if (dim == 1)
842 out << "lines";
843 if (dim == 2)
844 out << "quads";
845 if (dim == 3)
846 out << "cubes";
847 out << "\"" << '\n'
848 << "attribute \"ref\" string \"positions\"" << '\n'
849 << '\n';
850
851 // Additional cell information
852
853 out << "object \"material\" class array type int rank 0 items " << n_cells
854 << " data follows" << '\n';
855 for (const auto &cell : tria.active_cell_iterators())
856 out << ' ' << cell->material_id();
857 out << '\n' << "attribute \"dep\" string \"connections\"" << '\n' << '\n';
858
859 out << "object \"level\" class array type int rank 0 items " << n_cells
860 << " data follows" << '\n';
861 for (const auto &cell : tria.active_cell_iterators())
862 out << ' ' << cell->level();
863 out << '\n' << "attribute \"dep\" string \"connections\"" << '\n' << '\n';
864
866 {
867 out << "object \"measure\" class array type float rank 0 items "
868 << n_cells << " data follows" << '\n';
869 for (const auto &cell : tria.active_cell_iterators())
870 out << '\t' << cell->measure();
871 out << '\n'
872 << "attribute \"dep\" string \"connections\"" << '\n'
873 << '\n';
874 }
875
877 {
878 out << "object \"diameter\" class array type float rank 0 items "
879 << n_cells << " data follows" << '\n';
880 for (const auto &cell : tria.active_cell_iterators())
881 out << '\t' << cell->diameter();
882 out << '\n'
883 << "attribute \"dep\" string \"connections\"" << '\n'
884 << '\n';
885 }
886 }
887
888 if (write_faces)
889 {
890 out << "object \"faces\" class array type int rank 1 shape "
891 << n_vertices_per_face << " items " << n_faces << " data follows"
892 << '\n';
893
894 for (const auto &cell : tria.active_cell_iterators())
895 {
896 for (const unsigned int f : cell->face_indices())
897 {
899 cell->face(f);
900
901 for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_face;
902 ++v)
903 out << '\t'
904 << renumber[face->vertex_index(
906 out << '\n';
907 }
908 }
909 out << "attribute \"element type\" string \"";
910 if (dim == 2)
911 out << "lines";
912 if (dim == 3)
913 out << "quads";
914 out << "\"" << '\n'
915 << "attribute \"ref\" string \"positions\"" << '\n'
916 << '\n';
917
918
919 // Additional face information
920
921 out << "object \"boundary\" class array type int rank 0 items " << n_faces
922 << " data follows" << '\n';
923 for (const auto &cell : tria.active_cell_iterators())
924 {
925 // Little trick to get -1 for the interior
926 for (const unsigned int f : GeometryInfo<dim>::face_indices())
927 {
928 out << ' '
929 << static_cast<std::make_signed_t<types::boundary_id>>(
930 cell->face(f)->boundary_id());
931 }
932 out << '\n';
933 }
934 out << "attribute \"dep\" string \"connections\"" << '\n' << '\n';
935
937 {
938 out << "object \"face measure\" class array type float rank 0 items "
939 << n_faces << " data follows" << '\n';
940 for (const auto &cell : tria.active_cell_iterators())
941 {
942 for (const unsigned int f : GeometryInfo<dim>::face_indices())
943 out << ' ' << cell->face(f)->measure();
944 out << '\n';
945 }
946 out << "attribute \"dep\" string \"connections\"" << '\n' << '\n';
947 }
948
950 {
951 out << "object \"face diameter\" class array type float rank 0 items "
952 << n_faces << " data follows" << '\n';
953 for (const auto &cell : tria.active_cell_iterators())
954 {
955 for (const unsigned int f : GeometryInfo<dim>::face_indices())
956 out << ' ' << cell->face(f)->diameter();
957 out << '\n';
958 }
959 out << "attribute \"dep\" string \"connections\"" << '\n' << '\n';
960 }
961 }
962
963
964 // Write additional face information
965
966 if (write_faces)
967 {
968 }
969 else
970 {
971 }
972
973 // The wrapper
974 out << "object \"deal data\" class field" << '\n'
975 << "component \"positions\" value \"vertices\"" << '\n'
976 << "component \"connections\" value \"cells\"" << '\n';
977
978 if (write_cells)
979 {
980 out << "object \"cell data\" class field" << '\n'
981 << "component \"positions\" value \"vertices\"" << '\n'
982 << "component \"connections\" value \"cells\"" << '\n';
983 out << "component \"material\" value \"material\"" << '\n';
984 out << "component \"level\" value \"level\"" << '\n';
986 out << "component \"measure\" value \"measure\"" << '\n';
988 out << "component \"diameter\" value \"diameter\"" << '\n';
989 }
990
991 if (write_faces)
992 {
993 out << "object \"face data\" class field" << '\n'
994 << "component \"positions\" value \"vertices\"" << '\n'
995 << "component \"connections\" value \"faces\"" << '\n';
996 out << "component \"boundary\" value \"boundary\"" << '\n';
998 out << "component \"measure\" value \"face measure\"" << '\n';
1000 out << "component \"diameter\" value \"face diameter\"" << '\n';
1001 }
1002
1003 out << '\n' << "object \"grid data\" class group" << '\n';
1004 if (write_cells)
1005 out << "member \"cells\" value \"cell data\"" << '\n';
1006 if (write_faces)
1007 out << "member \"faces\" value \"face data\"" << '\n';
1008 out << "end" << '\n';
1009
1010 // make sure everything now gets to
1011 // disk
1012 out.flush();
1013
1014 AssertThrow(out.fail() == false, ExcIO());
1015}
1016
1017
1018
1019template <int dim, int spacedim>
1020void
1022 std::ostream &out) const
1023{
1024 AssertThrow(out.fail() == false, ExcIO());
1025
1026 // get the positions of the
1027 // vertices and whether they are
1028 // used.
1029 const std::vector<Point<spacedim>> &vertices = tria.get_vertices();
1030 const std::vector<bool> &vertex_used = tria.get_used_vertices();
1031
1032 const unsigned int n_vertices = tria.n_used_vertices();
1033
1034 // Write Header
1035 // The file format is:
1036 /*
1037
1038
1039 @f$NOD
1040 number-of-nodes
1041 node-number x-coord y-coord z-coord
1042 ...
1043 @f$ENDNOD
1044 @f$ELM
1045 number-of-elements
1046 elm-number elm-type reg-phys reg-elem number-of-nodes node-number-list
1047 ...
1048 @f$ENDELM
1049 */
1050 out << "@f$NOD" << '\n' << n_vertices << '\n';
1051
1052 // actually write the vertices.
1053 // note that we shall number them
1054 // with first index 1 instead of 0
1055 for (unsigned int i = 0; i < vertices.size(); ++i)
1056 if (vertex_used[i])
1057 {
1058 out << i + 1 // vertex index
1059 << " " << vertices[i];
1060 for (unsigned int d = spacedim + 1; d <= 3; ++d)
1061 out << " 0"; // fill with zeroes
1062 out << '\n';
1063 }
1064
1065 // Write cells preamble
1066 out << "@f$ENDNOD" << '\n'
1067 << "@f$ELM" << '\n'
1068 << tria.n_active_cells() +
1069 ((msh_flags.write_faces ? n_boundary_faces(tria) : 0) +
1071 << '\n';
1072
1073 static constexpr std::array<unsigned int, 8> local_vertex_numbering = {
1074 {0, 1, 5, 4, 2, 3, 7, 6}};
1075
1076 // write cells. Enumerate cells
1077 // consecutively, starting with 1
1078 for (const auto &cell : tria.active_cell_iterators())
1079 {
1080 out << cell->active_cell_index() + 1 << ' '
1081 << cell->reference_cell().gmsh_element_type() << ' '
1082 << cell->material_id() << ' ' << cell->subdomain_id() << ' '
1083 << cell->n_vertices() << ' ';
1084
1085 // Vertex numbering follows UCD conventions.
1086
1087 for (const unsigned int vertex : cell->vertex_indices())
1088 {
1089 if (cell->reference_cell() == ReferenceCells::get_hypercube<dim>())
1090 out << cell->vertex_index(
1091 dim == 3 ? local_vertex_numbering[vertex] :
1093 1
1094 << ' ';
1095 else if (cell->reference_cell() == ReferenceCells::get_simplex<dim>())
1096 out << cell->vertex_index(vertex) + 1 << ' ';
1097 else
1099 }
1100 out << '\n';
1101 }
1102
1103 // write faces and lines with non-zero boundary indicator
1104 unsigned int next_element_index = tria.n_active_cells() + 1;
1106 {
1107 next_element_index = write_msh_faces(tria, next_element_index, out);
1108 }
1110 {
1111 next_element_index = write_msh_lines(tria, next_element_index, out);
1112 }
1113
1114 out << "@f$ENDELM\n";
1115
1116 // make sure everything now gets to
1117 // disk
1118 out.flush();
1119
1120 AssertThrow(out.fail() == false, ExcIO());
1121}
1122
1123
1124template <int dim, int spacedim>
1125void
1127 std::ostream &out) const
1128{
1129 AssertThrow(out.fail() == false, ExcIO());
1130
1131 // get the positions of the
1132 // vertices and whether they are
1133 // used.
1134 const std::vector<Point<spacedim>> &vertices = tria.get_vertices();
1135 const std::vector<bool> &vertex_used = tria.get_used_vertices();
1136
1137 const unsigned int n_vertices = tria.n_used_vertices();
1138
1139 // write preamble
1141 {
1142 // block this to have local
1143 // variables destroyed after
1144 // use
1145 std::time_t time1 = std::time(nullptr);
1146 std::tm *time = std::localtime(&time1);
1147 out
1148 << "# This file was generated by the deal.II library." << '\n'
1149 << "# Date = " << time->tm_year + 1900 << "/" << time->tm_mon + 1
1150 << "/" << time->tm_mday << '\n'
1151 << "# Time = " << time->tm_hour << ":" << std::setw(2) << time->tm_min
1152 << ":" << std::setw(2) << time->tm_sec << '\n'
1153 << "#" << '\n'
1154 << "# For a description of the UCD format see the AVS Developer's guide."
1155 << '\n'
1156 << "#" << '\n';
1157 }
1158
1159 // start with ucd data
1160 out << n_vertices << ' '
1161 << tria.n_active_cells() +
1162 ((ucd_flags.write_faces ? n_boundary_faces(tria) : 0) +
1164 << " 0 0 0" // no data
1165 << '\n';
1166
1167 // actually write the vertices.
1168 // note that we shall number them
1169 // with first index 1 instead of 0
1170 for (unsigned int i = 0; i < vertices.size(); ++i)
1171 if (vertex_used[i])
1172 {
1173 out << i + 1 // vertex index
1174 << " " << vertices[i];
1175 for (unsigned int d = spacedim + 1; d <= 3; ++d)
1176 out << " 0"; // fill with zeroes
1177 out << '\n';
1178 }
1179
1180 // write cells. Enumerate cells
1181 // consecutively, starting with 1
1182 for (const auto &cell : tria.active_cell_iterators())
1183 {
1184 out << cell->active_cell_index() + 1 << ' ' << cell->material_id() << ' ';
1185 switch (dim)
1186 {
1187 case 1:
1188 out << "line ";
1189 break;
1190 case 2:
1191 out << "quad ";
1192 break;
1193 case 3:
1194 out << "hex ";
1195 break;
1196 default:
1198 }
1199
1200 // it follows a list of the
1201 // vertices of each cell. in 1d
1202 // this is simply a list of the
1203 // two vertices, in 2d its counter
1204 // clockwise, as usual in this
1205 // library. in 3d, the same applies
1206 // (special thanks to AVS for
1207 // numbering their vertices in a
1208 // way compatible to deal.II!)
1209 //
1210 // technical reference:
1211 // AVS Developer's Guide, Release 4,
1212 // May, 1992, p. E6
1213 //
1214 // note: vertex numbers are 1-base
1215 for (const unsigned int vertex : GeometryInfo<dim>::vertex_indices())
1216 out << cell->vertex_index(GeometryInfo<dim>::ucd_to_deal[vertex]) + 1
1217 << ' ';
1218 out << '\n';
1219 }
1220
1221 // write faces and lines with non-zero boundary indicator
1222 unsigned int next_element_index = tria.n_active_cells() + 1;
1224 {
1225 next_element_index = write_ucd_faces(tria, next_element_index, out);
1226 }
1228 {
1229 next_element_index = write_ucd_lines(tria, next_element_index, out);
1230 }
1231
1232 // make sure everything now gets to
1233 // disk
1234 out.flush();
1235
1236 AssertThrow(out.fail() == false, ExcIO());
1237}
1238
1239
1240
1241template <int dim, int spacedim>
1242void
1244 std::ostream &,
1245 const Mapping<dim, spacedim> *) const
1246{
1248}
1249
1250
1251// TODO:[GK] Obey parameters
1252template <>
1253void
1255 std::ostream &out,
1256 const Mapping<2> * /*mapping*/) const
1257{
1258 const int dim = 2;
1259 const int spacedim = 2;
1260
1261 const unsigned int nv = GeometryInfo<dim>::vertices_per_cell;
1262
1263 // The following text was copied
1264 // from an existing XFig file.
1265 out << "#FIG 3.2\nLandscape\nCenter\nInches" << std::endl
1266 << "A4\n100.00\nSingle"
1267 << std::endl
1268 // Background is transparent
1269 << "-3" << std::endl
1270 << "# generated by deal.II GridOut class" << std::endl
1271 << "# reduce first number to scale up image" << std::endl
1272 << "1200 2" << std::endl;
1273 // Write custom palette
1274 // grey
1275 unsigned int colno = 32;
1276 out << "0 " << colno++ << " #ff0000" << std::endl;
1277 out << "0 " << colno++ << " #ff8000" << std::endl;
1278 out << "0 " << colno++ << " #ffd000" << std::endl;
1279 out << "0 " << colno++ << " #ffff00" << std::endl;
1280 out << "0 " << colno++ << " #c0ff00" << std::endl;
1281 out << "0 " << colno++ << " #80ff00" << std::endl;
1282 out << "0 " << colno++ << " #00f000" << std::endl;
1283 out << "0 " << colno++ << " #00f0c0" << std::endl;
1284 out << "0 " << colno++ << " #00f0ff" << std::endl;
1285 out << "0 " << colno++ << " #00c0ff" << std::endl;
1286 out << "0 " << colno++ << " #0080ff" << std::endl;
1287 out << "0 " << colno++ << " #0040ff" << std::endl;
1288 out << "0 " << colno++ << " #0000c0" << std::endl;
1289 out << "0 " << colno++ << " #5000ff" << std::endl;
1290 out << "0 " << colno++ << " #8000ff" << std::endl;
1291 out << "0 " << colno++ << " #b000ff" << std::endl;
1292 out << "0 " << colno++ << " #ff00ff" << std::endl;
1293 out << "0 " << colno++ << " #ff80ff" << std::endl;
1294 // grey
1295 for (unsigned int i = 0; i < 8; ++i)
1296 out << "0 " << colno++ << " #" << std::hex << 32 * i + 31 << 32 * i + 31
1297 << 32 * i + 31 << std::dec << std::endl;
1298 // green
1299 for (unsigned int i = 1; i < 16; ++i)
1300 out << "0 " << colno++ << " #00" << std::hex << 16 * i + 15 << std::dec
1301 << "00" << std::endl;
1302 // yellow
1303 for (unsigned int i = 1; i < 16; ++i)
1304 out << "0 " << colno++ << " #" << std::hex << 16 * i + 15 << 16 * i + 15
1305 << std::dec << "00" << std::endl;
1306 // red
1307 for (unsigned int i = 1; i < 16; ++i)
1308 out << "0 " << colno++ << " #" << std::hex << 16 * i + 15 << std::dec
1309 << "0000" << std::endl;
1310 // purple
1311 for (unsigned int i = 1; i < 16; ++i)
1312 out << "0 " << colno++ << " #" << std::hex << 16 * i + 15 << "00"
1313 << 16 * i + 15 << std::dec << std::endl;
1314 // blue
1315 for (unsigned int i = 1; i < 16; ++i)
1316 out << "0 " << colno++ << " #0000" << std::hex << 16 * i + 15 << std::dec
1317 << std::endl;
1318 // cyan
1319 for (unsigned int i = 1; i < 16; ++i)
1320 out << "0 " << colno++ << " #00" << std::hex << 16 * i + 15 << 16 * i + 15
1321 << std::dec << std::endl;
1322
1323 // We write all cells and cells on
1324 // coarser levels are behind cells
1325 // on finer levels. Level 0
1326 // corresponds to a depth of 900,
1327 // each level subtracting 1
1328 for (const auto &cell : tria.cell_iterators())
1329 {
1330 // If depth is not encoded, write finest level only
1331 if (!xfig_flags.level_depth && !cell->is_active())
1332 continue;
1333 // Code for polygon
1334 out << "2 3 " << xfig_flags.line_style << ' '
1336 // with black line
1337 << " 0 ";
1338 // Fill color
1339 switch (xfig_flags.color_by)
1340 {
1341 // TODO[GK]: Simplify after deprecation period is over
1343 out << cell->material_id() + 32;
1344 break;
1346 out << cell->level() + 8;
1347 break;
1349 out << cell->subdomain_id() + 32;
1350 break;
1352 out << cell->level_subdomain_id() + 32;
1353 break;
1354 default:
1356 }
1357
1358 // Depth, unused, fill
1359 out << ' '
1360 << (xfig_flags.level_depth ? (900 - cell->level()) :
1361 (900 + cell->material_id()))
1362 << " 0 " << xfig_flags.fill_style
1363 << " 0.0 "
1364 // some style parameters
1365 << " 0 0 -1 0 0 "
1366 // number of points
1367 << nv + 1 << std::endl;
1368
1369 // For each point, write scaled
1370 // and shifted coordinates
1371 // multiplied by 1200
1372 // (dots/inch)
1373 for (unsigned int k = 0; k <= nv; ++k)
1374 {
1375 const Point<dim> &p =
1376 cell->vertex(GeometryInfo<dim>::ucd_to_deal[k % nv]);
1377 for (unsigned int d = 0; d < static_cast<unsigned int>(dim); ++d)
1378 {
1379 int val = static_cast<int>(1200 * xfig_flags.scaling[d] *
1380 (p[d] - xfig_flags.offset[d]));
1381 out << '\t' << ((d == 0) ? val : -val);
1382 }
1383 out << std::endl;
1384 }
1385 // Now write boundary edges
1386 static const unsigned int face_reorder[4] = {2, 1, 3, 0};
1388 for (const unsigned int f : face_reorder)
1389 {
1391 const types::boundary_id bi = face->boundary_id();
1393 {
1394 // Code for polyline
1395 out << "2 1 "
1396 // with line style and thickness
1397 << xfig_flags.boundary_style << ' '
1398 << xfig_flags.boundary_thickness << ' ' << 1 + bi;
1399 // Fill color
1400 out << " -1 ";
1401 // Depth 100 less than cells
1402 out << (xfig_flags.level_depth ? (800 - cell->level()) :
1403 800 + bi)
1404 // unused, no fill
1405 << " 0 -1 0.0 "
1406 // some style parameters
1407 << " 0 0 -1 0 0 "
1408 // number of points
1410
1411 // For each point, write scaled
1412 // and shifted coordinates
1413 // multiplied by 1200
1414 // (dots/inch)
1415
1416 for (unsigned int k = 0;
1417 k < GeometryInfo<dim>::vertices_per_face;
1418 ++k)
1419 {
1420 const Point<dim> &p = face->vertex(k % nv);
1421 for (unsigned int d = 0; d < static_cast<unsigned int>(dim);
1422 ++d)
1423 {
1424 int val =
1425 static_cast<int>(1200 * xfig_flags.scaling[d] *
1426 (p[d] - xfig_flags.offset[d]));
1427 out << '\t' << ((d == 0) ? val : -val);
1428 }
1429 out << std::endl;
1430 }
1431 }
1432 }
1433 }
1434
1435 // make sure everything now gets to
1436 // disk
1437 out.flush();
1438
1439 AssertThrow(out.fail() == false, ExcIO());
1440}
1441
1442
1443
1444#ifdef DEAL_II_GMSH_WITH_API
1445template <int dim, int spacedim>
1446void
1448 const std::string &filename) const
1449{
1450 // mesh Type renumbering
1451 const std::array<int, 8> dealii_to_gmsh_type = {{15, 1, 2, 3, 4, 7, 6, 5}};
1452
1453 // Vertex renumbering, by dealii type
1454 const std::array<std::vector<unsigned int>, 8> dealii_to_gmsh = {
1455 {{0},
1456 {{0, 1}},
1457 {{0, 1, 2}},
1458 {{0, 1, 3, 2}},
1459 {{0, 1, 2, 3}},
1460 {{0, 1, 3, 2, 4}},
1461 {{0, 1, 2, 3, 4, 5}},
1462 {{0, 1, 3, 2, 4, 5, 7, 6}}}};
1463
1464 // Extract all vertices (nodes in gmsh terminology), and store their three
1465 // dimensional coordinates (regardless of dim).
1466 const auto &vertices = tria.get_vertices();
1467 std::vector<double> coords(3 * vertices.size());
1468 std::vector<std::size_t> nodes(vertices.size());
1469
1470 // Each node has a strictly positive tag. We assign simply its index+1.
1471 std::size_t i = 0;
1472 for (const auto &p : vertices)
1473 {
1474 for (unsigned int d = 0; d < spacedim; ++d)
1475 coords[i * 3 + d] = p[d];
1476 nodes[i] = i + 1;
1477 ++i;
1478 }
1479
1480 // Construct one entity tag per boundary and manifold id pair.
1481 // We need to be smart here, in order to save some disk space. All cells need
1482 // to be written, but only faces and lines that have non default boundary ids
1483 // and/or manifold ids. We collect them into pairs, and for each unique pair,
1484 // we create a gmsh entity where we store the elements. Pre-count all the
1485 // entities, and make sure we know which pair refers to what entity and
1486 // vice-versa.
1487 using IdPair = std::pair<types::material_id, types::manifold_id>;
1488 std::map<IdPair, int> id_pair_to_entity_tag;
1489 std::vector<IdPair> all_pairs;
1490 {
1491 std::set<IdPair> set_of_pairs;
1492 for (const auto &cell : tria.active_cell_iterators())
1493 {
1494 set_of_pairs.insert({cell->material_id(), cell->manifold_id()});
1495 for (const auto &f : cell->face_iterators())
1496 if (f->manifold_id() != numbers::flat_manifold_id ||
1497 (f->boundary_id() != 0 &&
1498 f->boundary_id() != numbers::internal_face_boundary_id))
1499 set_of_pairs.insert({f->boundary_id(), f->manifold_id()});
1500 if (dim > 2)
1501 for (const auto l : cell->line_indices())
1502 {
1503 const auto &f = cell->line(l);
1504 if (f->manifold_id() != numbers::flat_manifold_id ||
1505 (f->boundary_id() != 0 &&
1506 f->boundary_id() != numbers::internal_face_boundary_id))
1507 set_of_pairs.insert({f->boundary_id(), f->manifold_id()});
1508 }
1509 }
1510 all_pairs = {set_of_pairs.begin(), set_of_pairs.end()};
1511
1512 int entity = 1;
1513 for (const auto &p : set_of_pairs)
1514 id_pair_to_entity_tag[p] = entity++;
1515 }
1516
1517 const auto n_entity_tags = id_pair_to_entity_tag.size();
1518
1519 // All elements in the mesh, by entity tag, and by dealii type.
1520 std::vector<std::vector<std::vector<std::size_t>>> element_ids(
1521 n_entity_tags, std::vector<std::vector<std::size_t>>(8));
1522 std::vector<std::vector<std::vector<std::size_t>>> element_nodes(
1523 n_entity_tags, std::vector<std::vector<std::size_t>>(8));
1524
1525 // One element id counter for all dimensions.
1526 std::size_t element_id = 1;
1527
1528 const auto add_element = [&](const auto &element, const int &entity_tag) {
1529 const auto type = element->reference_cell();
1530
1531 Assert(entity_tag > 0, ExcInternalError());
1532 // Add all vertex ids. Make sure we renumber to gmsh, and we add 1 to the
1533 // global index.
1534 for (const auto v : element->vertex_indices())
1535 element_nodes[entity_tag - 1][type].emplace_back(
1536 element->vertex_index(dealii_to_gmsh[type][v]) + 1);
1537
1538 // Save the element id.
1539 element_ids[entity_tag - 1][type].emplace_back(element_id);
1540 ++element_id;
1541 };
1542
1543 // Will create a separate gmsh entity, only if it's a cell, or if the
1544 // boundary and/or the manifold ids are not the default ones.
1545 // In the meanwhile, also store each pair of dimension and entity tag that was
1546 // requested.
1547 std::set<std::pair<int, int>> dim_entity_tag;
1548
1549 auto maybe_add_element =
1550 [&](const auto &element,
1551 const types::boundary_id &boundary_or_material_id) {
1552 const auto struct_dim = element->structure_dimension;
1553 const auto manifold_id = element->manifold_id();
1554
1555 // Exclude default boundary/manifold id or invalid/flag
1556 const bool non_default_boundary_or_material_id =
1557 (boundary_or_material_id != 0 &&
1558 boundary_or_material_id != numbers::internal_face_boundary_id);
1559 const bool non_default_manifold =
1560 manifold_id != numbers::flat_manifold_id;
1561 if (struct_dim == dim || non_default_boundary_or_material_id ||
1562 non_default_manifold)
1563 {
1564 const auto entity_tag =
1565 id_pair_to_entity_tag[{boundary_or_material_id, manifold_id}];
1566 add_element(element, entity_tag);
1567 dim_entity_tag.insert({struct_dim, entity_tag});
1568 }
1569 };
1570
1571 // Loop recursively over all cells, faces, and possibly lines.
1572 for (const auto &cell : tria.active_cell_iterators())
1573 {
1574 maybe_add_element(cell, cell->material_id());
1575 for (const auto &face : cell->face_iterators())
1576 maybe_add_element(face, face->boundary_id());
1577 if (dim > 2)
1578 for (const auto l : cell->line_indices())
1579 maybe_add_element(cell->line(l), cell->line(l)->boundary_id());
1580 }
1581
1582 // Now that we collected everything, plug them into gmsh
1583 gmsh::initialize();
1584 gmsh::option::setNumber("General.Verbosity", 0);
1585 gmsh::model::add("Grid generated in deal.II");
1586 for (const auto &p : dim_entity_tag)
1587 {
1588 gmsh::model::addDiscreteEntity(p.first, p.second);
1589 gmsh::model::mesh::addNodes(p.first, p.second, nodes, coords);
1590 }
1591
1592 for (unsigned int entity_tag = 0; entity_tag < n_entity_tags; ++entity_tag)
1593 for (unsigned int t = 1; t < 8; ++t)
1594 {
1595 const auto all_element_ids = element_ids[entity_tag][t];
1596 const auto all_element_nodes = element_nodes[entity_tag][t];
1597 const auto gmsh_t = dealii_to_gmsh_type[t];
1598 if (all_element_ids.size() > 0)
1599 gmsh::model::mesh::addElementsByType(entity_tag + 1,
1600 gmsh_t,
1601 all_element_ids,
1602 all_element_nodes);
1603 }
1604
1605 // Now for each individual pair of dim and entry, add a physical group, if
1606 // necessary
1607 for (const auto &it : dim_entity_tag)
1608 {
1609 const auto &d = it.first;
1610 const auto &entity_tag = it.second;
1611 const auto &boundary_id = all_pairs[entity_tag - 1].first;
1612 const auto &manifold_id = all_pairs[entity_tag - 1].second;
1613
1614 std::string physical_name;
1615 if (d == dim && boundary_id != 0)
1616 physical_name += "MaterialID:" + Utilities::int_to_string(
1617 static_cast<int>(boundary_id));
1618 else if (d < dim && boundary_id != 0)
1619 physical_name +=
1620 "BoundaryID:" +
1621 (boundary_id == numbers::internal_face_boundary_id ?
1622 "-1" :
1623 Utilities::int_to_string(static_cast<int>(boundary_id)));
1624
1625 std::string sep = physical_name != "" ? ", " : "";
1626 if (manifold_id != numbers::flat_manifold_id)
1627 physical_name +=
1628 sep + "ManifoldID:" +
1629 Utilities::int_to_string(static_cast<int>(manifold_id));
1630 const auto physical_tag =
1631 gmsh::model::addPhysicalGroup(d, {entity_tag}, -1);
1632 if (physical_name != "")
1633 gmsh::model::setPhysicalName(d, physical_tag, physical_name);
1634 }
1635
1636
1637 gmsh::write(filename);
1638 gmsh::clear();
1639 gmsh::finalize();
1640}
1641#endif
1642
1643
1644
1645namespace
1646{
1657 Point<2>
1658 svg_project_point(const Point<3> &point,
1659 const Point<3> &camera_position,
1660 const Tensor<1, 3> &camera_direction,
1661 const Tensor<1, 3> &camera_horizontal,
1662 const float camera_focus)
1663 {
1664 const Tensor<1, 3> camera_vertical =
1665 cross_product_3d(camera_horizontal, camera_direction);
1666
1667 const float phi =
1668 camera_focus / ((point - camera_position) * camera_direction);
1669
1670 const Point<3> projection =
1671 camera_position + phi * (point - camera_position);
1672
1673 return {(projection - camera_position - camera_focus * camera_direction) *
1674 camera_horizontal,
1675 (projection - camera_position - camera_focus * camera_direction) *
1676 camera_vertical};
1677 }
1678} // namespace
1679
1680
1681
1682template <int dim, int spacedim>
1683void
1685 std::ostream & /*out*/) const
1686{
1687 Assert(false,
1688 ExcMessage("Mesh output in SVG format is not implemented for anything "
1689 "other than two-dimensional meshes in two-dimensional "
1690 "space. That's because three-dimensional meshes are best "
1691 "viewed in programs that allow changing the viewpoint, "
1692 "but SVG format does not allow this: It is an inherently "
1693 "2d format, and for three-dimensional meshes would "
1694 "require choosing one, fixed viewpoint."
1695 "\n\n"
1696 "You probably want to output your mesh in a format such "
1697 "as VTK, VTU, or gnuplot."));
1698}
1699
1700
1701void
1702GridOut::write_svg(const Triangulation<2, 2> &tria, std::ostream &out) const
1703{
1704 unsigned int n = 0;
1705
1706 unsigned int min_level, max_level;
1707
1708 // Svg files require an underlying drawing grid. The size of this
1709 // grid is provided in the parameters height and width. Each of them
1710 // may be zero, such that it is computed from the other. Obviously,
1711 // both of them zero does not produce reasonable output.
1712 unsigned int height = svg_flags.height;
1713 unsigned int width = svg_flags.width;
1714 Assert(height != 0 || width != 0,
1715 ExcMessage("You have to set at least one of width and height"));
1716
1717 unsigned int margin_in_percent = 0;
1719 margin_in_percent = 8;
1720
1721 // initial font size for cell labels
1722 unsigned int cell_label_font_size;
1723
1724 // get date and time
1725 // time_t time_stamp;
1726 // tm *now;
1727 // time_stamp = time(0);
1728 // now = localtime(&time_stamp);
1729
1730 float camera_focus;
1731
1732 Point<3> point;
1733 Point<2> projection_decomposition;
1734
1735 float x_max_perspective, x_min_perspective;
1736 float y_max_perspective, y_min_perspective;
1737
1738 float x_dimension_perspective, y_dimension_perspective;
1739
1740
1741 // auxiliary variables for the bounding box and the range of cell levels
1742 double x_min = tria.begin()->vertex(0)[0];
1743 double x_max = x_min;
1744 double y_min = tria.begin()->vertex(0)[1];
1745 double y_max = y_min;
1746
1747 double x_dimension, y_dimension;
1748
1749 min_level = max_level = tria.begin()->level();
1750
1751 // auxiliary set for the materials being used
1752 std::set<unsigned int> materials;
1753
1754 // auxiliary set for the levels being used
1755 std::set<unsigned int> levels;
1756
1757 // auxiliary set for the subdomains being used
1758 std::set<unsigned int> subdomains;
1759
1760 // auxiliary set for the level subdomains being used
1761 std::set<int> level_subdomains;
1762
1763 // We use an active cell iterator to determine the
1764 // bounding box of the given triangulation and check
1765 // the cells for material id, level number, subdomain id
1766 // (, and level subdomain id).
1767 for (const auto &cell : tria.cell_iterators())
1768 {
1769 for (unsigned int vertex_index = 0; vertex_index < cell->n_vertices();
1770 ++vertex_index)
1771 {
1772 if (cell->vertex(vertex_index)[0] < x_min)
1773 x_min = cell->vertex(vertex_index)[0];
1774 if (cell->vertex(vertex_index)[0] > x_max)
1775 x_max = cell->vertex(vertex_index)[0];
1776
1777 if (cell->vertex(vertex_index)[1] < y_min)
1778 y_min = cell->vertex(vertex_index)[1];
1779 if (cell->vertex(vertex_index)[1] > y_max)
1780 y_max = cell->vertex(vertex_index)[1];
1781 }
1782
1783 if (static_cast<unsigned int>(cell->level()) < min_level)
1784 min_level = cell->level();
1785 if (static_cast<unsigned int>(cell->level()) > max_level)
1786 max_level = cell->level();
1787
1788 materials.insert(cell->material_id());
1789 levels.insert(cell->level());
1790 if (cell->is_active())
1791 subdomains.insert(cell->subdomain_id() + 2);
1792 level_subdomains.insert(cell->level_subdomain_id() + 2);
1793 }
1794
1795 x_dimension = x_max - x_min;
1796 y_dimension = y_max - y_min;
1797
1798 // count the materials being used
1799 const unsigned int n_materials = materials.size();
1800
1801 // count the levels being used
1802 const unsigned int n_levels = levels.size();
1803
1804 // count the subdomains being used
1805 const unsigned int n_subdomains = subdomains.size();
1806
1807 // count the level subdomains being used
1808 const unsigned int n_level_subdomains = level_subdomains.size();
1809
1810 switch (svg_flags.coloring)
1811 {
1813 n = n_materials;
1814 break;
1816 n = n_levels;
1817 break;
1819 n = n_subdomains;
1820 break;
1822 n = n_level_subdomains;
1823 break;
1824 default:
1825 break;
1826 }
1827
1828 // set the camera position to top view, targeting at the origin
1829 // vectors and variables for the perspective view
1830 Point<3> camera_position;
1831 camera_position[0] = 0;
1832 camera_position[1] = 0;
1833 camera_position[2] = 2. * std::max(x_dimension, y_dimension);
1834
1835 Tensor<1, 3> camera_direction;
1836 camera_direction[0] = 0;
1837 camera_direction[1] = 0;
1838 camera_direction[2] = -1;
1839
1840 Tensor<1, 3> camera_horizontal;
1841 camera_horizontal[0] = 1;
1842 camera_horizontal[1] = 0;
1843 camera_horizontal[2] = 0;
1844
1845 camera_focus = .5 * std::max(x_dimension, y_dimension);
1846
1847 Point<3> camera_position_temp;
1848 Point<3> camera_direction_temp;
1849 Point<3> camera_horizontal_temp;
1850
1851 const double angle_factor = 3.14159265 / 180.;
1852
1853 // (I) rotate the camera to the chosen polar angle
1854 camera_position_temp[1] =
1855 std::cos(angle_factor * svg_flags.polar_angle) * camera_position[1] -
1856 std::sin(angle_factor * svg_flags.polar_angle) * camera_position[2];
1857 camera_position_temp[2] =
1858 std::sin(angle_factor * svg_flags.polar_angle) * camera_position[1] +
1859 std::cos(angle_factor * svg_flags.polar_angle) * camera_position[2];
1860
1861 camera_direction_temp[1] =
1862 std::cos(angle_factor * svg_flags.polar_angle) * camera_direction[1] -
1863 std::sin(angle_factor * svg_flags.polar_angle) * camera_direction[2];
1864 camera_direction_temp[2] =
1865 std::sin(angle_factor * svg_flags.polar_angle) * camera_direction[1] +
1866 std::cos(angle_factor * svg_flags.polar_angle) * camera_direction[2];
1867
1868 camera_horizontal_temp[1] =
1869 std::cos(angle_factor * svg_flags.polar_angle) * camera_horizontal[1] -
1870 std::sin(angle_factor * svg_flags.polar_angle) * camera_horizontal[2];
1871 camera_horizontal_temp[2] =
1872 std::sin(angle_factor * svg_flags.polar_angle) * camera_horizontal[1] +
1873 std::cos(angle_factor * svg_flags.polar_angle) * camera_horizontal[2];
1874
1875 camera_position[1] = camera_position_temp[1];
1876 camera_position[2] = camera_position_temp[2];
1877
1878 camera_direction[1] = camera_direction_temp[1];
1879 camera_direction[2] = camera_direction_temp[2];
1880
1881 camera_horizontal[1] = camera_horizontal_temp[1];
1882 camera_horizontal[2] = camera_horizontal_temp[2];
1883
1884 // (II) rotate the camera to the chosen azimuth angle
1885 camera_position_temp[0] =
1886 std::cos(angle_factor * svg_flags.azimuth_angle) * camera_position[0] -
1887 std::sin(angle_factor * svg_flags.azimuth_angle) * camera_position[1];
1888 camera_position_temp[1] =
1889 std::sin(angle_factor * svg_flags.azimuth_angle) * camera_position[0] +
1890 std::cos(angle_factor * svg_flags.azimuth_angle) * camera_position[1];
1891
1892 camera_direction_temp[0] =
1893 std::cos(angle_factor * svg_flags.azimuth_angle) * camera_direction[0] -
1894 std::sin(angle_factor * svg_flags.azimuth_angle) * camera_direction[1];
1895 camera_direction_temp[1] =
1896 std::sin(angle_factor * svg_flags.azimuth_angle) * camera_direction[0] +
1897 std::cos(angle_factor * svg_flags.azimuth_angle) * camera_direction[1];
1898
1899 camera_horizontal_temp[0] =
1900 std::cos(angle_factor * svg_flags.azimuth_angle) * camera_horizontal[0] -
1901 std::sin(angle_factor * svg_flags.azimuth_angle) * camera_horizontal[1];
1902 camera_horizontal_temp[1] =
1903 std::sin(angle_factor * svg_flags.azimuth_angle) * camera_horizontal[0] +
1904 std::cos(angle_factor * svg_flags.azimuth_angle) * camera_horizontal[1];
1905
1906 camera_position[0] = camera_position_temp[0];
1907 camera_position[1] = camera_position_temp[1];
1908
1909 camera_direction[0] = camera_direction_temp[0];
1910 camera_direction[1] = camera_direction_temp[1];
1911
1912 camera_horizontal[0] = camera_horizontal_temp[0];
1913 camera_horizontal[1] = camera_horizontal_temp[1];
1914
1915 // translate the camera to the given triangulation
1916 camera_position[0] = x_min + .5 * x_dimension;
1917 camera_position[1] = y_min + .5 * y_dimension;
1918
1919 camera_position[0] += 2. * std::max(x_dimension, y_dimension) *
1920 std::sin(angle_factor * svg_flags.polar_angle) *
1921 std::sin(angle_factor * svg_flags.azimuth_angle);
1922 camera_position[1] -= 2. * std::max(x_dimension, y_dimension) *
1923 std::sin(angle_factor * svg_flags.polar_angle) *
1924 std::cos(angle_factor * svg_flags.azimuth_angle);
1925
1926
1927 // determine the bounding box of the given triangulation on the projection
1928 // plane of the camera viewing system
1929 point[0] = tria.begin()->vertex(0)[0];
1930 point[1] = tria.begin()->vertex(0)[1];
1931 point[2] = 0;
1932
1933 float min_level_min_vertex_distance = 0;
1934
1936 {
1937 point[2] = svg_flags.level_height_factor *
1938 (static_cast<float>(tria.begin()->level()) /
1939 static_cast<float>(n_levels)) *
1940 std::max(x_dimension, y_dimension);
1941 }
1942
1943 projection_decomposition = svg_project_point(
1944 point, camera_position, camera_direction, camera_horizontal, camera_focus);
1945
1946 x_max_perspective = projection_decomposition[0];
1947 x_min_perspective = projection_decomposition[0];
1948
1949 y_max_perspective = projection_decomposition[1];
1950 y_min_perspective = projection_decomposition[1];
1951
1952 for (const auto &cell : tria.cell_iterators())
1953 {
1954 point[0] = cell->vertex(0)[0];
1955 point[1] = cell->vertex(0)[1];
1956 point[2] = 0;
1957
1959 {
1960 point[2] =
1962 (static_cast<float>(cell->level()) / static_cast<float>(n_levels)) *
1963 std::max(x_dimension, y_dimension);
1964 }
1965
1966 projection_decomposition = svg_project_point(point,
1967 camera_position,
1968 camera_direction,
1969 camera_horizontal,
1970 camera_focus);
1971
1972 if (x_max_perspective < projection_decomposition[0])
1973 x_max_perspective = projection_decomposition[0];
1974 if (x_min_perspective > projection_decomposition[0])
1975 x_min_perspective = projection_decomposition[0];
1976
1977 if (y_max_perspective < projection_decomposition[1])
1978 y_max_perspective = projection_decomposition[1];
1979 if (y_min_perspective > projection_decomposition[1])
1980 y_min_perspective = projection_decomposition[1];
1981
1982 point[0] = cell->vertex(1)[0];
1983 point[1] = cell->vertex(1)[1];
1984
1985 projection_decomposition = svg_project_point(point,
1986 camera_position,
1987 camera_direction,
1988 camera_horizontal,
1989 camera_focus);
1990
1991 if (x_max_perspective < projection_decomposition[0])
1992 x_max_perspective = projection_decomposition[0];
1993 if (x_min_perspective > projection_decomposition[0])
1994 x_min_perspective = projection_decomposition[0];
1995
1996 if (y_max_perspective < projection_decomposition[1])
1997 y_max_perspective = projection_decomposition[1];
1998 if (y_min_perspective > projection_decomposition[1])
1999 y_min_perspective = projection_decomposition[1];
2000
2001 point[0] = cell->vertex(2)[0];
2002 point[1] = cell->vertex(2)[1];
2003
2004 projection_decomposition = svg_project_point(point,
2005 camera_position,
2006 camera_direction,
2007 camera_horizontal,
2008 camera_focus);
2009
2010 if (x_max_perspective < projection_decomposition[0])
2011 x_max_perspective = projection_decomposition[0];
2012 if (x_min_perspective > projection_decomposition[0])
2013 x_min_perspective = projection_decomposition[0];
2014
2015 if (y_max_perspective < projection_decomposition[1])
2016 y_max_perspective = projection_decomposition[1];
2017 if (y_min_perspective > projection_decomposition[1])
2018 y_min_perspective = projection_decomposition[1];
2019
2020 if (cell->n_vertices() == 4) // in case of quadrilateral
2021 {
2022 point[0] = cell->vertex(3)[0];
2023 point[1] = cell->vertex(3)[1];
2024
2025 projection_decomposition = svg_project_point(point,
2026 camera_position,
2027 camera_direction,
2028 camera_horizontal,
2029 camera_focus);
2030
2031 if (x_max_perspective < projection_decomposition[0])
2032 x_max_perspective = projection_decomposition[0];
2033 if (x_min_perspective > projection_decomposition[0])
2034 x_min_perspective = projection_decomposition[0];
2035
2036 if (y_max_perspective < projection_decomposition[1])
2037 y_max_perspective = projection_decomposition[1];
2038 if (y_min_perspective > projection_decomposition[1])
2039 y_min_perspective = projection_decomposition[1];
2040 }
2041
2042 if (static_cast<unsigned int>(cell->level()) == min_level)
2043 min_level_min_vertex_distance = cell->minimum_vertex_distance();
2044 }
2045
2046 x_dimension_perspective = x_max_perspective - x_min_perspective;
2047 y_dimension_perspective = y_max_perspective - y_min_perspective;
2048
2049 // create the svg file with an internal style sheet
2050 if (width == 0)
2051 width = static_cast<unsigned int>(
2052 .5 + height * (x_dimension_perspective / y_dimension_perspective));
2053 else if (height == 0)
2054 height = static_cast<unsigned int>(
2055 .5 + width * (y_dimension_perspective / x_dimension_perspective));
2056 unsigned int additional_width = 0;
2057 // font size for date, time, legend, and colorbar
2058 unsigned int font_size =
2059 static_cast<unsigned int>(.5 + (height / 100.) * 1.75);
2060 cell_label_font_size = static_cast<unsigned int>(
2061 .5 + (height * .15 * svg_flags.cell_font_scaling *
2062 min_level_min_vertex_distance / std::min(x_dimension, y_dimension)));
2063
2064 if (svg_flags.draw_legend &&
2068 {
2069 additional_width = static_cast<unsigned int>(
2070 .5 + height * .4); // additional width for legend
2071 }
2072 else if (svg_flags.draw_colorbar && (svg_flags.coloring != 0u))
2073 {
2074 additional_width = static_cast<unsigned int>(
2075 .5 + height * .175); // additional width for colorbar
2076 }
2077
2078 // out << "<!-- deal.ii GridOut " << now->tm_mday << '/' << now->tm_mon + 1 <<
2079 // '/' << now->tm_year + 1900
2080 // << ' ' << now->tm_hour << ':';
2081 //
2082 // if (now->tm_min < 10) out << '0';
2083 //
2084 // out << now->tm_min << " -->" << '\n';
2085
2086 // basic svg header
2087 out << "<svg width=\"" << width + additional_width << "\" height=\"" << height
2088 << "\" xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\">" << '\n'
2089 << '\n';
2090
2091
2093 {
2094 out
2095 << " <linearGradient id=\"background_gradient\" gradientUnits=\"userSpaceOnUse\" x1=\"0\" y1=\"0\" x2=\"0\" y2=\""
2096 << height << "\">" << '\n'
2097 << " <stop offset=\"0\" style=\"stop-color:white\"/>" << '\n'
2098 << " <stop offset=\"1\" style=\"stop-color:lightsteelblue\"/>" << '\n'
2099 << " </linearGradient>" << '\n';
2100 }
2101
2102 out << '\n';
2103
2104 // header for the internal style sheet
2105 out << "<!-- internal style sheet -->" << '\n'
2106 << "<style type=\"text/css\"><![CDATA[" << '\n';
2107
2108 // set the background of the output graphic
2110 out << " rect.background{fill:url(#background_gradient)}" << '\n';
2112 out << " rect.background{fill:white}" << '\n';
2113 else
2114 out << " rect.background{fill:none}" << '\n';
2115
2116 // basic svg graphic element styles
2117 out << " rect{fill:none; stroke:rgb(25,25,25); stroke-width:"
2118 << svg_flags.line_thickness << '}' << '\n'
2119 << " text{font-family:Helvetica; text-anchor:middle; fill:rgb(25,25,25)}"
2120 << '\n'
2121 << " line{stroke:rgb(25,25,25); stroke-width:"
2122 << svg_flags.boundary_line_thickness << '}' << '\n'
2123 << " path{fill:none; stroke:rgb(25,25,25); stroke-width:"
2124 << svg_flags.line_thickness << '}' << '\n'
2125 << " circle{fill:white; stroke:black; stroke-width:2}" << '\n'
2126 << '\n';
2127
2128 // polygon styles with respect to the chosen cell coloring
2129 if (svg_flags.coloring != 0u)
2130 {
2131 unsigned int labeling_index = 0;
2132 auto materials_it = materials.begin();
2133 auto levels_it = levels.begin();
2134 auto subdomains_it = subdomains.begin();
2135 auto level_subdomains_it = level_subdomains.begin();
2136
2137 for (unsigned int index = 0; index < n; ++index)
2138 {
2139 double h;
2140
2141 if (n != 1)
2142 h = .6 - (index / (n - 1.)) * .6;
2143 else
2144 h = .6;
2145
2146 unsigned int r = 0;
2147 unsigned int g = 0;
2148 unsigned int b = 0;
2149
2150 unsigned int i = static_cast<unsigned int>(h * 6);
2151
2152 double f = h * 6 - i;
2153 double q = 1 - f;
2154 double t = f;
2155
2156 switch (i % 6)
2157 {
2158 case 0:
2159 r = 255, g = static_cast<unsigned int>(.5 + 255 * t);
2160 break;
2161 case 1:
2162 r = static_cast<unsigned int>(.5 + 255 * q), g = 255;
2163 break;
2164 case 2:
2165 g = 255, b = static_cast<unsigned int>(.5 + 255 * t);
2166 break;
2167 case 3:
2168 g = static_cast<unsigned int>(.5 + 255 * q), b = 255;
2169 break;
2170 case 4:
2171 r = static_cast<unsigned int>(.5 + 255 * t), b = 255;
2172 break;
2173 case 5:
2174 r = 255, b = static_cast<unsigned int>(.5 + 255 * q);
2175 break;
2176 default:
2177 break;
2178 }
2179
2180 switch (svg_flags.coloring)
2181 {
2183 labeling_index = *materials_it++;
2184 break;
2186 labeling_index = *levels_it++;
2187 break;
2189 labeling_index = *subdomains_it++;
2190 break;
2192 labeling_index = *level_subdomains_it++;
2193 break;
2194 default:
2195 break;
2196 }
2197
2198 out << " path.p" << labeling_index << "{fill:rgb(" << r << ',' << g
2199 << ',' << b << "); "
2200 << "stroke:rgb(25,25,25); stroke-width:"
2201 << svg_flags.line_thickness << '}' << '\n';
2202
2203 out << " path.ps" << labeling_index << "{fill:rgb("
2204 << static_cast<unsigned int>(.5 + .75 * r) << ','
2205 << static_cast<unsigned int>(.5 + .75 * g) << ','
2206 << static_cast<unsigned int>(.5 + .75 * b) << "); "
2207 << "stroke:rgb(20,20,20); stroke-width:"
2208 << svg_flags.line_thickness << '}' << '\n';
2209
2210 out << " rect.r" << labeling_index << "{fill:rgb(" << r << ',' << g
2211 << ',' << b << "); "
2212 << "stroke:rgb(25,25,25); stroke-width:"
2213 << svg_flags.line_thickness << '}' << '\n';
2214
2215 ++labeling_index;
2216 }
2217 }
2218
2219 out << "]]></style>" << '\n' << '\n';
2220
2221 // background rectangle
2222 out << " <rect class=\"background\" width=\"" << width << "\" height=\""
2223 << height << "\"/>" << '\n';
2224
2226 {
2227 unsigned int x_offset = 0;
2228
2229 if (svg_flags.margin)
2230 x_offset = static_cast<unsigned int>(.5 + (height / 100.) *
2231 (margin_in_percent / 2.));
2232 else
2233 x_offset = static_cast<unsigned int>(.5 + height * .025);
2234
2235 out
2236 << " <text x=\"" << x_offset << "\" y=\""
2237 << static_cast<unsigned int>(.5 + height * .0525) << '\"'
2238 << " style=\"font-weight:100; fill:lightsteelblue; text-anchor:start; font-family:Courier; font-size:"
2239 << static_cast<unsigned int>(.5 + height * .045) << "px\">"
2240 << "deal.II"
2241 << "</text>" << '\n';
2242
2243 // out << " <text x=\"" << x_offset + static_cast<unsigned int>(.5 +
2244 // height * .045 * 4.75) << "\" y=\"" << static_cast<unsigned int>(.5 +
2245 // height * .0525) << '\"'
2246 // << " style=\"fill:lightsteelblue; text-anchor:start; font-size:" <<
2247 // font_size << "\">"
2248 // << now->tm_mday << '/' << now->tm_mon + 1 << '/' << now->tm_year +
2249 // 1900
2250 // << " - " << now->tm_hour << ':';
2251 //
2252 // if(now->tm_min < 10) out << '0';
2253 //
2254 // out << now->tm_min
2255 // << "</text>"<< '\n' << '\n';
2256 }
2257
2258 // draw the cells, starting out from the minimal level (in order to guaranty a
2259 // correct perspective view)
2260 out << " <!-- cells -->" << '\n';
2261
2262 for (unsigned int level_index = min_level; level_index <= max_level;
2263 level_index++)
2264 {
2265 for (const auto &cell : tria.cell_iterators_on_level(level_index))
2266 {
2267 if (!svg_flags.convert_level_number_to_height && !cell->is_active())
2268 continue;
2269
2270 // draw the current cell
2271 out << " <path";
2272
2273 if (svg_flags.coloring != 0u)
2274 {
2275 out << " class=\"p";
2276
2277 if (!cell->is_active() &&
2279 out << 's';
2280
2281 switch (svg_flags.coloring)
2282 {
2284 out << cell->material_id();
2285 break;
2287 out << static_cast<unsigned int>(cell->level());
2288 break;
2290 if (cell->is_active())
2291 out << cell->subdomain_id() + 2;
2292 else
2293 out << 'X';
2294 break;
2296 out << cell->level_subdomain_id() + 2;
2297 break;
2298 default:
2299 break;
2300 }
2301
2302 out << '\"';
2303 }
2304
2305 out << " d=\"M ";
2306
2307 point[0] = cell->vertex(0)[0];
2308 point[1] = cell->vertex(0)[1];
2309 point[2] = 0;
2310
2312 {
2313 point[2] = svg_flags.level_height_factor *
2314 (static_cast<float>(cell->level()) /
2315 static_cast<float>(n_levels)) *
2316 std::max(x_dimension, y_dimension);
2317 }
2318
2319 projection_decomposition = svg_project_point(point,
2320 camera_position,
2321 camera_direction,
2322 camera_horizontal,
2323 camera_focus);
2324
2325 out << static_cast<unsigned int>(
2326 .5 +
2327 ((projection_decomposition[0] - x_min_perspective) /
2328 x_dimension_perspective) *
2329 (width - (width / 100.) * 2. * margin_in_percent) +
2330 ((width / 100.) * margin_in_percent))
2331 << ' '
2332 << static_cast<unsigned int>(
2333 .5 + height - (height / 100.) * margin_in_percent -
2334 ((projection_decomposition[1] - y_min_perspective) /
2335 y_dimension_perspective) *
2336 (height - (height / 100.) * 2. * margin_in_percent));
2337
2338 out << " L ";
2339
2340 point[0] = cell->vertex(1)[0];
2341 point[1] = cell->vertex(1)[1];
2342
2343 projection_decomposition = svg_project_point(point,
2344 camera_position,
2345 camera_direction,
2346 camera_horizontal,
2347 camera_focus);
2348
2349 out << static_cast<unsigned int>(
2350 .5 +
2351 ((projection_decomposition[0] - x_min_perspective) /
2352 x_dimension_perspective) *
2353 (width - (width / 100.) * 2. * margin_in_percent) +
2354 ((width / 100.) * margin_in_percent))
2355 << ' '
2356 << static_cast<unsigned int>(
2357 .5 + height - (height / 100.) * margin_in_percent -
2358 ((projection_decomposition[1] - y_min_perspective) /
2359 y_dimension_perspective) *
2360 (height - (height / 100.) * 2. * margin_in_percent));
2361
2362 out << " L ";
2363
2364 if (cell->n_vertices() == 4) // in case of quadrilateral
2365 {
2366 point[0] = cell->vertex(3)[0];
2367 point[1] = cell->vertex(3)[1];
2368
2369 projection_decomposition = svg_project_point(point,
2370 camera_position,
2371 camera_direction,
2372 camera_horizontal,
2373 camera_focus);
2374
2375 out << static_cast<unsigned int>(
2376 .5 +
2377 ((projection_decomposition[0] - x_min_perspective) /
2378 x_dimension_perspective) *
2379 (width - (width / 100.) * 2. * margin_in_percent) +
2380 ((width / 100.) * margin_in_percent))
2381 << ' '
2382 << static_cast<unsigned int>(
2383 .5 + height - (height / 100.) * margin_in_percent -
2384 ((projection_decomposition[1] - y_min_perspective) /
2385 y_dimension_perspective) *
2386 (height - (height / 100.) * 2. * margin_in_percent));
2387
2388 out << " L ";
2389 }
2390
2391 point[0] = cell->vertex(2)[0];
2392 point[1] = cell->vertex(2)[1];
2393
2394 projection_decomposition = svg_project_point(point,
2395 camera_position,
2396 camera_direction,
2397 camera_horizontal,
2398 camera_focus);
2399
2400 out << static_cast<unsigned int>(
2401 .5 +
2402 ((projection_decomposition[0] - x_min_perspective) /
2403 x_dimension_perspective) *
2404 (width - (width / 100.) * 2. * margin_in_percent) +
2405 ((width / 100.) * margin_in_percent))
2406 << ' '
2407 << static_cast<unsigned int>(
2408 .5 + height - (height / 100.) * margin_in_percent -
2409 ((projection_decomposition[1] - y_min_perspective) /
2410 y_dimension_perspective) *
2411 (height - (height / 100.) * 2. * margin_in_percent));
2412
2413 out << " L ";
2414
2415 point[0] = cell->vertex(0)[0];
2416 point[1] = cell->vertex(0)[1];
2417
2418 projection_decomposition = svg_project_point(point,
2419 camera_position,
2420 camera_direction,
2421 camera_horizontal,
2422 camera_focus);
2423
2424 out << static_cast<unsigned int>(
2425 .5 +
2426 ((projection_decomposition[0] - x_min_perspective) /
2427 x_dimension_perspective) *
2428 (width - (width / 100.) * 2. * margin_in_percent) +
2429 ((width / 100.) * margin_in_percent))
2430 << ' '
2431 << static_cast<unsigned int>(
2432 .5 + height - (height / 100.) * margin_in_percent -
2433 ((projection_decomposition[1] - y_min_perspective) /
2434 y_dimension_perspective) *
2435 (height - (height / 100.) * 2. * margin_in_percent));
2436
2437 out << "\"/>" << '\n';
2438
2439 // label the current cell
2443 {
2444 point[0] = cell->center()[0];
2445 point[1] = cell->center()[1];
2446 point[2] = 0;
2447
2449 {
2450 point[2] = svg_flags.level_height_factor *
2451 (static_cast<float>(cell->level()) /
2452 static_cast<float>(n_levels)) *
2453 std::max(x_dimension, y_dimension);
2454 }
2455
2456 const double distance_to_camera =
2457 std::hypot(point[0] - camera_position[0],
2458 point[1] - camera_position[1],
2459 point[2] - camera_position[2]);
2460 const double distance_factor =
2461 distance_to_camera / (2. * std::max(x_dimension, y_dimension));
2462
2463 projection_decomposition = svg_project_point(point,
2464 camera_position,
2465 camera_direction,
2466 camera_horizontal,
2467 camera_focus);
2468
2469 const unsigned int font_size_this_cell =
2470 static_cast<unsigned int>(
2471 .5 +
2472 cell_label_font_size *
2473 std::pow(.5, cell->level() - 4. + 3.5 * distance_factor));
2474
2475 out << " <text"
2476 << " x=\""
2477 << static_cast<unsigned int>(
2478 .5 +
2479 ((projection_decomposition[0] - x_min_perspective) /
2480 x_dimension_perspective) *
2481 (width - (width / 100.) * 2. * margin_in_percent) +
2482 ((width / 100.) * margin_in_percent))
2483 << "\" y=\""
2484 << static_cast<unsigned int>(
2485 .5 + height - (height / 100.) * margin_in_percent -
2486 ((projection_decomposition[1] - y_min_perspective) /
2487 y_dimension_perspective) *
2488 (height - (height / 100.) * 2. * margin_in_percent) +
2489 0.5 * font_size_this_cell)
2490 << "\" style=\"font-size:" << font_size_this_cell << "px\">";
2491
2493 {
2494 out << cell->level();
2495 }
2496
2498 {
2500 out << '.';
2501 out << cell->index();
2502 }
2503
2505 {
2508 out << ',';
2509 out << static_cast<std::make_signed_t<types::material_id>>(
2510 cell->material_id());
2511 }
2512
2514 {
2517 out << ',';
2518 if (cell->is_active())
2519 out << static_cast<std::make_signed_t<types::subdomain_id>>(
2520 cell->subdomain_id());
2521 else
2522 out << 'X';
2523 }
2524
2526 {
2531 out << ',';
2532 out << static_cast<std::make_signed_t<types::subdomain_id>>(
2533 cell->level_subdomain_id());
2534 }
2535
2536 out << "</text>" << '\n';
2537 }
2538
2539 // if the current cell lies at the boundary of the triangulation, draw
2540 // the additional boundary line
2542 {
2543 for (auto faceIndex : cell->face_indices())
2544 {
2545 if (cell->at_boundary(faceIndex))
2546 {
2547 point[0] = cell->face(faceIndex)->vertex(0)[0];
2548 point[1] = cell->face(faceIndex)->vertex(0)[1];
2549 point[2] = 0;
2550
2552 {
2553 point[2] = svg_flags.level_height_factor *
2554 (static_cast<float>(cell->level()) /
2555 static_cast<float>(n_levels)) *
2556 std::max(x_dimension, y_dimension);
2557 }
2558
2559 projection_decomposition =
2560 svg_project_point(point,
2561 camera_position,
2562 camera_direction,
2563 camera_horizontal,
2564 camera_focus);
2565
2566 out << " <line x1=\""
2567 << static_cast<unsigned int>(
2568 .5 +
2569 ((projection_decomposition[0] -
2570 x_min_perspective) /
2571 x_dimension_perspective) *
2572 (width -
2573 (width / 100.) * 2. * margin_in_percent) +
2574 ((width / 100.) * margin_in_percent))
2575 << "\" y1=\""
2576 << static_cast<unsigned int>(
2577 .5 + height -
2578 (height / 100.) * margin_in_percent -
2579 ((projection_decomposition[1] -
2580 y_min_perspective) /
2581 y_dimension_perspective) *
2582 (height -
2583 (height / 100.) * 2. * margin_in_percent));
2584
2585 point[0] = cell->face(faceIndex)->vertex(1)[0];
2586 point[1] = cell->face(faceIndex)->vertex(1)[1];
2587 point[2] = 0;
2588
2590 {
2591 point[2] = svg_flags.level_height_factor *
2592 (static_cast<float>(cell->level()) /
2593 static_cast<float>(n_levels)) *
2594 std::max(x_dimension, y_dimension);
2595 }
2596
2597 projection_decomposition =
2598 svg_project_point(point,
2599 camera_position,
2600 camera_direction,
2601 camera_horizontal,
2602 camera_focus);
2603
2604 out << "\" x2=\""
2605 << static_cast<unsigned int>(
2606 .5 +
2607 ((projection_decomposition[0] -
2608 x_min_perspective) /
2609 x_dimension_perspective) *
2610 (width -
2611 (width / 100.) * 2. * margin_in_percent) +
2612 ((width / 100.) * margin_in_percent))
2613 << "\" y2=\""
2614 << static_cast<unsigned int>(
2615 .5 + height -
2616 (height / 100.) * margin_in_percent -
2617 ((projection_decomposition[1] -
2618 y_min_perspective) /
2619 y_dimension_perspective) *
2620 (height -
2621 (height / 100.) * 2. * margin_in_percent))
2622 << "\"/>" << '\n';
2623
2624
2626 {
2627 const double distance_to_camera =
2628 std::hypot(point[0] - camera_position[0],
2629 point[1] - camera_position[1],
2630 point[2] - camera_position[2]);
2631 const double distance_factor =
2632 distance_to_camera /
2633 (2. * std::max(x_dimension, y_dimension));
2634
2635 const unsigned int font_size_this_edge =
2636 static_cast<unsigned int>(
2637 .5 + .5 * cell_label_font_size *
2638 std::pow(.5,
2639 cell->level() - 4. +
2640 3.5 * distance_factor));
2641
2642 point[0] = cell->face(faceIndex)->center()[0];
2643 point[1] = cell->face(faceIndex)->center()[1];
2644 point[2] = 0;
2645
2647 {
2648 point[2] = svg_flags.level_height_factor *
2649 (static_cast<float>(cell->level()) /
2650 static_cast<float>(n_levels)) *
2651 std::max(x_dimension, y_dimension);
2652 }
2653
2654 projection_decomposition =
2655 svg_project_point(point,
2656 camera_position,
2657 camera_direction,
2658 camera_horizontal,
2659 camera_focus);
2660
2661 const unsigned int xc = static_cast<unsigned int>(
2662 .5 +
2663 ((projection_decomposition[0] - x_min_perspective) /
2664 x_dimension_perspective) *
2665 (width -
2666 (width / 100.) * 2. * margin_in_percent) +
2667 ((width / 100.) * margin_in_percent));
2668 const unsigned int yc = static_cast<unsigned int>(
2669 .5 + height - (height / 100.) * margin_in_percent -
2670 ((projection_decomposition[1] - y_min_perspective) /
2671 y_dimension_perspective) *
2672 (height -
2673 (height / 100.) * 2. * margin_in_percent));
2674
2675 out << " <circle cx=\"" << xc << "\" cy=\"" << yc
2676 << "\" r=\"" << font_size_this_edge << "\" />"
2677 << '\n';
2678
2679 out << " <text x=\"" << xc << "\" y=\"" << yc
2680 << "\" style=\"font-size:" << font_size_this_edge
2681 << "px\" dominant-baseline=\"middle\">"
2682 << static_cast<int>(
2683 cell->face(faceIndex)->boundary_id())
2684 << "</text>" << '\n';
2685 }
2686 }
2687 }
2688 }
2689 }
2690 }
2691
2692
2693
2694 // draw the legend
2696 out << '\n' << " <!-- legend -->" << '\n';
2697
2698 additional_width = 0;
2699 if (!svg_flags.margin)
2700 additional_width = static_cast<unsigned int>(.5 + (height / 100.) * 2.5);
2701
2702 // explanation of the cell labeling
2703 if (svg_flags.draw_legend &&
2707 {
2708 unsigned int line_offset = 0;
2709 out << " <rect x=\"" << width + additional_width << "\" y=\""
2710 << static_cast<unsigned int>(.5 + (height / 100.) * margin_in_percent)
2711 << "\" width=\""
2712 << static_cast<unsigned int>(.5 + (height / 100.) *
2713 (40. - margin_in_percent))
2714 << "\" height=\"" << static_cast<unsigned int>(.5 + height * .215)
2715 << "\"/>" << '\n';
2716
2717 out << " <text x=\""
2718 << width + additional_width +
2719 static_cast<unsigned int>(.5 + (height / 100.) * 1.25)
2720 << "\" y=\""
2721 << static_cast<unsigned int>(.5 +
2722 (height / 100.) * margin_in_percent +
2723 (++line_offset) * 1.5 * font_size)
2724 << "\" style=\"text-anchor:start; font-weight:bold; font-size:"
2725 << font_size << "px\">"
2726 << "cell label"
2727 << "</text>" << '\n';
2728
2730 {
2731 out << " <text x=\""
2732 << width + additional_width +
2733 static_cast<unsigned int>(.5 + (height / 100.) * 2.)
2734 << "\" y=\""
2735 << static_cast<unsigned int>(.5 +
2736 (height / 100.) * margin_in_percent +
2737 (++line_offset) * 1.5 * font_size)
2738 << "\" style=\"text-anchor:start; font-style:oblique; font-size:"
2739 << font_size << "px\">"
2740 << "cell_level";
2741
2745 out << '.';
2746
2747 out << "</text>" << '\n';
2748 }
2749
2751 {
2752 out << " <text x=\""
2753 << width + additional_width +
2754 static_cast<unsigned int>(.5 + (height / 100.) * 2.)
2755 << "\" y=\""
2756 << static_cast<unsigned int>(.5 +
2757 (height / 100.) * margin_in_percent +
2758 (++line_offset) * 1.5 * font_size)
2759 << "\" style=\"text-anchor:start; font-style:oblique; font-size:"
2760 << font_size << "px\">"
2761 << "cell_index";
2762
2765 out << ',';
2766
2767 out << "</text>" << '\n';
2768 }
2769
2771 {
2772 out << " <text x=\""
2773 << width + additional_width +
2774 static_cast<unsigned int>(.5 + (height / 100.) * 2.)
2775 << "\" y=\""
2776 << static_cast<unsigned int>(.5 +
2777 (height / 100.) * margin_in_percent +
2778 (++line_offset) * 1.5 * font_size)
2779 << "\" style=\"text-anchor:start; font-style:oblique; font-size:"
2780 << font_size << "px\">"
2781 << "material_id";
2782
2785 out << ',';
2786
2787 out << "</text>" << '\n';
2788 }
2789
2791 {
2792 out << " <text x= \""
2793 << width + additional_width +
2794 static_cast<unsigned int>(.5 + (height / 100.) * 2.)
2795 << "\" y=\""
2796 << static_cast<unsigned int>(.5 +
2797 (height / 100.) * margin_in_percent +
2798 (++line_offset) * 1.5 * font_size)
2799 << "\" style=\"text-anchor:start; font-style:oblique; font-size:"
2800 << font_size << "px\">"
2801 << "subdomain_id";
2802
2804 out << ',';
2805
2806 out << "</text>" << '\n';
2807 }
2808
2810 {
2811 out << " <text x= \""
2812 << width + additional_width +
2813 static_cast<unsigned int>(.5 + (height / 100.) * 2.)
2814 << "\" y=\""
2815 << static_cast<unsigned int>(.5 +
2816 (height / 100.) * margin_in_percent +
2817 (++line_offset) * 1.5 * font_size)
2818 << "\" style=\"text-anchor:start; font-style:oblique; font-size:"
2819 << font_size << "px\">"
2820 << "level_subdomain_id"
2821 << "</text>" << '\n';
2822 }
2823
2825 {
2826 out << " <text x=\""
2827 << width + additional_width +
2828 static_cast<unsigned int>(.5 + (height / 100.) * 1.25)
2829 << "\" y=\""
2830 << static_cast<unsigned int>(.5 +
2831 (height / 100.) * margin_in_percent +
2832 (++line_offset) * 1.5 * font_size)
2833 << "\" style=\"text-anchor:start; font-weight:bold; font-size:"
2834 << font_size << "px\">"
2835 << "edge label"
2836 << "</text>" << '\n';
2837
2838 out << " <text x= \""
2839 << width + additional_width +
2840 static_cast<unsigned int>(.5 + (height / 100.) * 2.)
2841 << "\" y=\""
2842 << static_cast<unsigned int>(.5 +
2843 (height / 100.) * margin_in_percent +
2844 (++line_offset) * 1.5 * font_size)
2845 << "\" style=\"text-anchor:start; font-style:oblique; font-size:"
2846 << font_size << "px\">"
2847 << "boundary_id"
2848 << "</text>" << '\n';
2849 }
2850 }
2851
2852 // show azimuth angle and polar angle as text below the explanation of the
2853 // cell labeling
2855 {
2856 out << " <text x=\"" << width + additional_width << "\" y=\""
2857 << static_cast<unsigned int>(
2858 .5 + (height / 100.) * margin_in_percent + 13.75 * font_size)
2859 << "\" style=\"text-anchor:start; font-size:" << font_size << "px\">"
2860 << "azimuth: " << svg_flags.azimuth_angle
2861 << "°, polar: " << svg_flags.polar_angle << "°</text>" << '\n';
2862 }
2863
2864
2865 // draw the colorbar
2867 {
2868 out << '\n' << " <!-- colorbar -->" << '\n';
2869
2870 out << " <text x=\"" << width + additional_width << "\" y=\""
2871 << static_cast<unsigned int>(
2872 .5 + (height / 100.) * (margin_in_percent + 29.) -
2873 (font_size / 1.25))
2874 << "\" style=\"text-anchor:start; font-weight:bold; font-size:"
2875 << font_size << "px\">";
2876
2877 switch (svg_flags.coloring)
2878 {
2879 case 1:
2880 out << "material_id";
2881 break;
2882 case 2:
2883 out << "level_number";
2884 break;
2885 case 3:
2886 out << "subdomain_id";
2887 break;
2888 case 4:
2889 out << "level_subdomain_id";
2890 break;
2891 default:
2892 break;
2893 }
2894
2895 out << "</text>" << '\n';
2896
2897 unsigned int element_height = static_cast<unsigned int>(
2898 ((height / 100.) * (71. - 2. * margin_in_percent)) / n);
2899 unsigned int element_width =
2900 static_cast<unsigned int>(.5 + (height / 100.) * 2.5);
2901
2902 int labeling_index = 0;
2903 auto materials_it = materials.begin();
2904 auto levels_it = levels.begin();
2905 auto subdomains_it = subdomains.begin();
2906 auto level_subdomains_it = level_subdomains.begin();
2907
2908 for (unsigned int index = 0; index < n; ++index)
2909 {
2910 switch (svg_flags.coloring)
2911 {
2913 labeling_index = *materials_it++;
2914 break;
2916 labeling_index = *levels_it++;
2917 break;
2919 labeling_index = *subdomains_it++;
2920 break;
2922 labeling_index = *level_subdomains_it++;
2923 break;
2924 default:
2925 break;
2926 }
2927
2928 out << " <rect class=\"r" << labeling_index << "\" x=\""
2929 << width + additional_width << "\" y=\""
2930 << static_cast<unsigned int>(.5 + (height / 100.) *
2931 (margin_in_percent + 29)) +
2932 (n - index - 1) * element_height
2933 << "\" width=\"" << element_width << "\" height=\""
2934 << element_height << "\"/>" << '\n';
2935
2936 out << " <text x=\""
2937 << width + additional_width + 1.5 * element_width << "\" y=\""
2938 << static_cast<unsigned int>(.5 + (height / 100.) *
2939 (margin_in_percent + 29)) +
2940 (n - index - 1 + .5) * element_height +
2941 static_cast<unsigned int>(.5 + font_size * .35)
2942 << "\""
2943 << " style=\"text-anchor:start; font-size:"
2944 << static_cast<unsigned int>(.5 + font_size) << "px";
2945
2946 if (index == 0 || index == n - 1)
2947 out << "; font-weight:bold";
2948
2949 out << "\">" << labeling_index;
2950
2951 if (index == n - 1)
2952 out << " max";
2953 if (index == 0)
2954 out << " min";
2955
2956 out << "</text>" << '\n';
2957
2958 ++labeling_index;
2959 }
2960 }
2961
2962
2963 // finalize the svg file
2964 out << '\n' << "</svg>";
2965 out.flush();
2966}
2967
2968
2969
2970template <>
2971void
2972GridOut::write_mathgl(const Triangulation<1> &, std::ostream &) const
2973{
2974 // 1d specialization not done yet
2976}
2977
2978
2979
2980template <int dim, int spacedim>
2981void
2983 std::ostream &out) const
2984{
2985 AssertThrow(out.fail() == false, ExcIO());
2986
2987 // (i) write header
2988 {
2989 // block this to have local variables destroyed after use
2990 const std::time_t time1 = std::time(nullptr);
2991 const std::tm *time = std::localtime(&time1);
2992
2993 out
2994 << "\n#"
2995 << "\n# This file was generated by the deal.II library."
2996 << "\n# Date = " << time->tm_year + 1900 << "/" << std::setfill('0')
2997 << std::setw(2) << time->tm_mon + 1 << "/" << std::setfill('0')
2998 << std::setw(2) << time->tm_mday << "\n# Time = " << std::setfill('0')
2999 << std::setw(2) << time->tm_hour << ":" << std::setfill('0')
3000 << std::setw(2) << time->tm_min << ":" << std::setfill('0')
3001 << std::setw(2) << time->tm_sec << "\n#"
3002 << "\n# For a description of the MathGL script format see the MathGL manual. "
3003 << "\n#"
3004 << "\n# Note: This file is understood by MathGL v2.1 and higher only, and can "
3005 << "\n# be quickly viewed in a graphical environment using \'mglview\'. "
3006 << "\n#" << '\n';
3007 }
3008
3009 // define a helper to keep loops approximately dim-independent
3010 // since MathGL labels axes as x, y, z
3011 const std::string axes = "xyz";
3012
3013 // (ii) write preamble and graphing tweaks
3014 out << "\n#"
3015 << "\n# Preamble."
3016 << "\n#" << '\n';
3017
3019 out << "\nbox";
3020
3021 // deal with dimension dependent preamble; eg. default sizes and
3022 // views for MathGL (cf. gnuplot).
3023 switch (dim)
3024 {
3025 case 2:
3026 out << "\nsetsize 800 800";
3027 out << "\nrotate 0 0";
3028 break;
3029 case 3:
3030 out << "\nsetsize 800 800";
3031 out << "\nrotate 60 40";
3032 break;
3033 default:
3035 }
3036 out << '\n';
3037
3038 // (iii) write vertex ordering
3039 out << "\n#"
3040 << "\n# Vertex ordering."
3041 << "\n# list <vertex order> <vertex indices>"
3042 << "\n#" << '\n';
3043
3044 // todo: This denotes the natural ordering of vertices, but it needs
3045 // to check this is really always true for a given grid (it's not
3046 // true in @ref step_1 "step-1" grid-2 for instance).
3047 switch (dim)
3048 {
3049 case 2:
3050 out << "\nlist f 0 1 2 3" << '\n';
3051 break;
3052 case 3:
3053 out
3054 << "\nlist f 0 2 4 6 | 1 3 5 7 | 0 4 1 5 | 2 6 3 7 | 0 1 2 3 | 4 5 6 7"
3055 << '\n';
3056 break;
3057 default:
3059 }
3060
3061 // (iv) write a list of vertices of cells
3062 out << "\n#"
3063 << "\n# List of vertices."
3064 << "\n# list <id> <vertices>"
3065 << "\n#" << '\n';
3066
3067 // run over all active cells and write out a list of
3068 // xyz-coordinates that correspond to vertices
3069 // No global indices in deal.II, so we make one up here.
3070 for (const auto &cell : tria.active_cell_iterators())
3071 {
3072 for (unsigned int i = 0; i < dim; ++i)
3073 {
3074 // if (cell->direction_flag ()==true)
3075 // out << "\ntrue";
3076 // else
3077 // out << "\nfalse";
3078
3079 out << "\nlist " << axes[i] << cell->active_cell_index() << " ";
3080 for (const unsigned int j : GeometryInfo<dim>::vertex_indices())
3081 out << cell->vertex(j)[i] << " ";
3082 }
3083 out << '\n';
3084 }
3085
3086 // (v) write out cells to plot as quadplot objects
3087 out << "\n#"
3088 << "\n# List of cells to quadplot."
3089 << "\n# quadplot <vertex order> <id> <style>"
3090 << "\n#" << '\n';
3091 for (unsigned int i = 0; i < tria.n_active_cells(); ++i)
3092 {
3093 out << "\nquadplot f ";
3094 for (unsigned int j = 0; j < dim; ++j)
3095 out << axes[j] << i << " ";
3096 out << "\'k#\'";
3097 }
3098 out << '\n';
3099
3100 // (vi) write footer
3101 out << "\n#"
3102 << "\n#"
3103 << "\n#" << '\n';
3104
3105 // make sure everything now gets to the output stream
3106 out.flush();
3107 AssertThrow(out.fail() == false, ExcIO());
3108}
3109
3110
3111
3112namespace
3113{
3120 template <int dim, int spacedim, typename ITERATOR, typename END>
3121 void
3122 generate_triangulation_patches(
3123 std::vector<DataOutBase::Patch<dim, spacedim>> &patches,
3124 ITERATOR cell,
3125 END end)
3126 {
3127 // convert each of the active cells into a patch
3128 for (; cell != end; ++cell)
3129 {
3131 patch.reference_cell = cell->reference_cell();
3132 patch.n_subdivisions = 1;
3133 patch.data.reinit(5, cell->n_vertices());
3134
3135 for (const unsigned int v : cell->vertex_indices())
3136 {
3137 patch.vertices[v] = cell->vertex(v);
3138 patch.data(0, v) = cell->level();
3139 patch.data(1, v) =
3140 static_cast<std::make_signed_t<types::manifold_id>>(
3141 cell->manifold_id());
3142 patch.data(2, v) =
3143 static_cast<std::make_signed_t<types::material_id>>(
3144 cell->material_id());
3145 if (cell->is_active())
3146 patch.data(3, v) =
3147 static_cast<std::make_signed_t<types::subdomain_id>>(
3148 cell->subdomain_id());
3149 else
3150 patch.data(3, v) = -1;
3151 patch.data(4, v) =
3152 static_cast<std::make_signed_t<types::subdomain_id>>(
3153 cell->level_subdomain_id());
3154 }
3155 patches.push_back(patch);
3156 }
3157 }
3158
3159
3160
3161 std::vector<std::string>
3162 triangulation_patch_data_names()
3163 {
3164 std::vector<std::string> v(5);
3165 v[0] = "level";
3166 v[1] = "manifold";
3167 v[2] = "material";
3168 v[3] = "subdomain";
3169 v[4] = "level_subdomain";
3170 return v;
3171 }
3172
3176 std::vector<typename Triangulation<3, 3>::active_line_iterator>
3177 get_boundary_edge_iterators(const Triangulation<3, 3> &tria)
3178 {
3179 std::vector<typename Triangulation<3, 3>::active_line_iterator> res;
3180
3181 std::vector<bool> flags;
3182 tria.save_user_flags_line(flags);
3183 const_cast<Triangulation<3, 3> &>(tria).clear_user_flags_line();
3184
3185 for (auto face : tria.active_face_iterators())
3186 for (const auto l : face->line_indices())
3187 {
3188 const auto line = face->line(l);
3189 if (line->user_flag_set() || line->has_children())
3190 continue;
3191 else
3192 line->set_user_flag();
3193 if (line->at_boundary())
3194 res.emplace_back(line);
3195 }
3196 const_cast<Triangulation<3, 3> &>(tria).load_user_flags_line(flags);
3197 return res;
3198 }
3199
3200
3201
3205 template <int dim, int spacedim>
3206 std::vector<typename Triangulation<dim, spacedim>::active_line_iterator>
3207 get_boundary_edge_iterators(const Triangulation<dim, spacedim> &)
3208 {
3209 return {};
3210 }
3211
3212
3213
3218 std::vector<typename Triangulation<3, 3>::active_line_iterator>
3219 get_relevant_edge_iterators(const Triangulation<3, 3> &tria)
3220 {
3221 std::vector<typename Triangulation<3, 3>::active_line_iterator> res;
3222
3223 std::vector<bool> flags;
3224 tria.save_user_flags_line(flags);
3225 const_cast<Triangulation<3, 3> &>(tria).clear_user_flags_line();
3226
3227 for (auto face : tria.active_face_iterators())
3228 for (const auto l : face->line_indices())
3229 {
3230 const auto line = face->line(l);
3231 if (line->user_flag_set() || line->has_children())
3232 continue;
3233 else
3234 line->set_user_flag();
3235 if (line->manifold_id() != numbers::flat_manifold_id ||
3236 (line->boundary_id() != 0 &&
3237 line->boundary_id() != numbers::invalid_boundary_id))
3238 res.emplace_back(line);
3239 }
3240 const_cast<Triangulation<3, 3> &>(tria).load_user_flags_line(flags);
3241 return res;
3242 }
3243
3244
3248 template <int dim, int spacedim>
3249 std::vector<typename Triangulation<dim, spacedim>::active_line_iterator>
3250 get_relevant_edge_iterators(const Triangulation<dim, spacedim> &)
3251 {
3252 return {};
3253 }
3254
3255
3256
3260 template <int dim, int spacedim>
3261 std::vector<typename Triangulation<dim, spacedim>::active_face_iterator>
3262 get_boundary_face_iterators(const Triangulation<dim, spacedim> &tria)
3263 {
3264 std::vector<typename Triangulation<dim, spacedim>::active_face_iterator>
3265 res;
3266 if (dim == 1)
3267 return res;
3268 for (auto face : tria.active_face_iterators())
3269 {
3270 if (face->boundary_id() != numbers::invalid_boundary_id)
3271 res.push_back(face);
3272 }
3273 return res;
3274 }
3275
3276
3277
3282 template <int dim, int spacedim>
3283 std::vector<typename Triangulation<dim, spacedim>::active_face_iterator>
3284 get_relevant_face_iterators(const Triangulation<dim, spacedim> &tria)
3285 {
3286 std::vector<typename Triangulation<dim, spacedim>::active_face_iterator>
3287 res;
3288 if (dim == 1)
3289 return res;
3290 for (auto face : tria.active_face_iterators())
3291 {
3292 if (face->manifold_id() != numbers::flat_manifold_id ||
3293 (face->boundary_id() != 0 &&
3294 face->boundary_id() != numbers::invalid_boundary_id))
3295 res.push_back(face);
3296 }
3297 return res;
3298 }
3299} // namespace
3300
3301
3302
3303template <int dim, int spacedim>
3304void
3306 std::ostream &out) const
3307{
3308 AssertThrow(out.fail() == false, ExcIO());
3309
3310 // get the positions of the vertices
3311 const std::vector<Point<spacedim>> &vertices = tria.get_vertices();
3312
3313 const auto n_vertices = vertices.size();
3314
3315 out << "# vtk DataFile Version 3.0\n"
3316 << "Triangulation generated with deal.II\n"
3317 << "ASCII\n"
3318 << "DATASET UNSTRUCTURED_GRID\n"
3319 << "POINTS " << n_vertices << " double\n";
3320
3321 // actually write the vertices.
3322 for (const auto &v : vertices)
3323 {
3324 out << v;
3325 for (unsigned int d = spacedim + 1; d <= 3; ++d)
3326 out << " 0"; // fill with zeroes
3327 out << '\n';
3328 }
3329
3330 const auto faces = vtk_flags.output_only_relevant ?
3331 get_relevant_face_iterators(tria) :
3332 get_boundary_face_iterators(tria);
3333 const auto edges = vtk_flags.output_only_relevant ?
3334 get_relevant_edge_iterators(tria) :
3335 get_boundary_edge_iterators(tria);
3336
3338 vtk_flags.output_cells || (dim >= 2 && vtk_flags.output_faces) ||
3339 (dim >= 3 && vtk_flags.output_edges),
3340 ExcMessage(
3341 "At least one of the flags (output_cells, output_faces, output_edges) has to be enabled!"));
3342
3343 // Write cells preamble
3344 const int n_cells = (vtk_flags.output_cells ? tria.n_active_cells() : 0) +
3345 (vtk_flags.output_faces ? faces.size() : 0) +
3346 (vtk_flags.output_edges ? edges.size() : 0);
3347
3348 // VTK now expects a number telling the total storage requirement to read all
3349 // cell connectivity information. The connectivity information is read cell by
3350 // cell, first specifying how many vertices are required to describe the cell,
3351 // and then specifying the index of every vertex. This means that for every
3352 // deal.II object type, we always need n_vertices + 1 integer per cell.
3353 // Compute the total number here.
3354 int cells_size = 0;
3355
3357 for (const auto &cell : tria.active_cell_iterators())
3358 cells_size += cell->n_vertices() + 1;
3359
3361 for (const auto &face : faces)
3362 cells_size += face->n_vertices() + 1;
3363
3365 for (const auto &edge : edges)
3366 cells_size += edge->n_vertices() + 1;
3367
3368 AssertThrow(cells_size > 0, ExcMessage("No cells given to be output!"));
3369
3370 out << "\nCELLS " << n_cells << ' ' << cells_size << '\n';
3371 /*
3372 * VTK cells:
3373 *
3374 * 1 VTK_VERTEX
3375 * 3 VTK_LINE
3376 * 5 VTK_TRIANGLE
3377 * 9 VTK_QUAD
3378 * 10 VTK_TETRA
3379 * 14 VTK_PYRAMID
3380 * 13 VTK_WEDGE
3381 * 12 VTK_HEXAHEDRON
3382 *
3383 * see also: https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
3384 */
3385 static const std::array<int, 8> deal_to_vtk_cell_type = {
3386 {1, 3, 5, 9, 10, 14, 13, 12}};
3387 static const std::array<unsigned int, 8> vtk_to_deal_hypercube = {
3388 {0, 1, 3, 2, 4, 5, 7, 6}};
3389
3390 // write cells.
3392 for (const auto &cell : tria.active_cell_iterators())
3393 {
3394 out << cell->n_vertices();
3395 for (const unsigned int i : cell->vertex_indices())
3396 {
3397 out << ' ';
3398 const auto reference_cell = cell->reference_cell();
3399
3400 if ((reference_cell == ReferenceCells::Vertex) ||
3401 (reference_cell == ReferenceCells::Line) ||
3402 (reference_cell == ReferenceCells::Quadrilateral) ||
3403 (reference_cell == ReferenceCells::Hexahedron))
3404 out << cell->vertex_index(vtk_to_deal_hypercube[i]);
3405 else if ((reference_cell == ReferenceCells::Triangle) ||
3406 (reference_cell == ReferenceCells::Tetrahedron) ||
3407 (reference_cell == ReferenceCells::Wedge))
3408 out << cell->vertex_index(i);
3409 else if (reference_cell == ReferenceCells::Pyramid)
3410 {
3411 static const std::array<unsigned int, 5> permutation_table{
3412 {0, 1, 3, 2, 4}};
3413 out << cell->vertex_index(permutation_table[i]);
3414 }
3415 else
3417 }
3418 out << '\n';
3419 }
3421 for (const auto &face : faces)
3422 {
3423 out << face->n_vertices();
3424 for (const unsigned int i : face->vertex_indices())
3425 {
3426 out << ' '
3427 << face->vertex_index(GeometryInfo<dim>::vertices_per_face ==
3428 face->n_vertices() ?
3429 vtk_to_deal_hypercube[i] :
3430 i);
3431 }
3432 out << '\n';
3433 }
3435 for (const auto &edge : edges)
3436 {
3437 out << 2;
3438 for (const unsigned int i : edge->vertex_indices())
3439 out << ' ' << edge->vertex_index(i);
3440 out << '\n';
3441 }
3442
3443 // write cell types
3444 out << "\nCELL_TYPES " << n_cells << '\n';
3446 {
3447 for (const auto &cell : tria.active_cell_iterators())
3448 out << deal_to_vtk_cell_type[static_cast<int>(cell->reference_cell())]
3449 << ' ';
3450 out << '\n';
3451 }
3453 {
3454 for (const auto &face : faces)
3455 out << deal_to_vtk_cell_type[static_cast<int>(face->reference_cell())]
3456 << ' ';
3457 out << '\n';
3458 }
3460 {
3461 for (const auto &edge : edges)
3462 out << deal_to_vtk_cell_type[static_cast<int>(edge->reference_cell())]
3463 << ' ';
3464 }
3465 out << "\n\nCELL_DATA " << n_cells << '\n'
3466 << "SCALARS MaterialID int 1\n"
3467 << "LOOKUP_TABLE default\n";
3468
3469 // Now material id and boundary id
3471 {
3472 for (const auto &cell : tria.active_cell_iterators())
3473 {
3474 out << static_cast<std::make_signed_t<types::material_id>>(
3475 cell->material_id())
3476 << ' ';
3477 }
3478 out << '\n';
3479 }
3481 {
3482 for (const auto &face : faces)
3483 {
3484 out << static_cast<std::make_signed_t<types::boundary_id>>(
3485 face->boundary_id())
3486 << ' ';
3487 }
3488 out << '\n';
3489 }
3491 {
3492 for (const auto &edge : edges)
3493 {
3494 out << static_cast<std::make_signed_t<types::boundary_id>>(
3495 edge->boundary_id())
3496 << ' ';
3497 }
3498 }
3499
3500 out << "\n\nSCALARS ManifoldID int 1\n"
3501 << "LOOKUP_TABLE default\n";
3502
3503 // Now manifold id
3505 {
3506 for (const auto &cell : tria.active_cell_iterators())
3507 {
3508 out << static_cast<std::make_signed_t<types::manifold_id>>(
3509 cell->manifold_id())
3510 << ' ';
3511 }
3512 out << '\n';
3513 }
3515 {
3516 for (const auto &face : faces)
3517 {
3518 out << static_cast<std::make_signed_t<types::manifold_id>>(
3519 face->manifold_id())
3520 << ' ';
3521 }
3522 out << '\n';
3523 }
3525 {
3526 for (const auto &edge : edges)
3527 {
3528 out << static_cast<std::make_signed_t<types::manifold_id>>(
3529 edge->manifold_id())
3530 << ' ';
3531 }
3532 out << '\n';
3533 }
3534
3535 out.flush();
3536
3537 AssertThrow(out.fail() == false, ExcIO());
3538}
3539
3540
3541
3542template <int dim, int spacedim>
3543void
3545 std::ostream &out) const
3546{
3547 AssertThrow(out.fail() == false, ExcIO());
3548
3549 // convert the cells of the triangulation into a set of patches
3550 // and then have them output. since there is no data attached to
3551 // the geometry, we also do not have to provide any names, identifying
3552 // information, etc.
3553 std::vector<DataOutBase::Patch<dim, spacedim>> patches;
3554 patches.reserve(tria.n_active_cells());
3555 generate_triangulation_patches(patches, tria.begin_active(), tria.end());
3556
3559 patches,
3560 triangulation_patch_data_names(),
3561 std::vector<
3562 std::tuple<unsigned int,
3563 unsigned int,
3564 std::string,
3566 vtu_flags,
3567 out);
3569 {
3570 out << " </UnstructuredGrid>\n";
3571 out << "<dealiiData encoding=\"base64\">";
3572 std::stringstream outstring;
3573 boost::archive::binary_oarchive ia(outstring);
3574 tria.save(ia, 0);
3575 const auto compressed = Utilities::compress(outstring.str());
3576 out << Utilities::encode_base64({compressed.begin(), compressed.end()});
3577 out << "\n</dealiiData>\n";
3578 out << "</VTKFile>\n";
3579 }
3580 else
3582
3583 out << std::flush;
3584 AssertThrow(out.fail() == false, ExcIO());
3585}
3586
3587
3588
3589template <int dim, int spacedim>
3590void
3592 const Triangulation<dim, spacedim> &tria,
3593 const std::string &filename_without_extension,
3594 const bool view_levels,
3595 const bool include_artificial) const
3596{
3597 std::vector<DataOutBase::Patch<dim, spacedim>> patches;
3598 const unsigned int n_datasets = 4;
3599 std::vector<std::string> data_names;
3600 data_names.emplace_back("level");
3601 data_names.emplace_back("subdomain");
3602 data_names.emplace_back("level_subdomain");
3603 data_names.emplace_back("proc_writing");
3604
3605 const auto reference_cells = tria.get_reference_cells();
3606
3607 AssertDimension(reference_cells.size(), 1);
3608
3609 const auto &reference_cell = reference_cells[0];
3610
3611 const unsigned int n_q_points = reference_cell.n_vertices();
3612
3613 for (const auto &cell : tria.cell_iterators())
3614 {
3615 if (!view_levels)
3616 {
3617 if (cell->has_children())
3618 continue;
3619 if (!include_artificial &&
3620 cell->subdomain_id() == numbers::artificial_subdomain_id)
3621 continue;
3622 }
3623 else if (!include_artificial)
3624 {
3625 if (cell->has_children() &&
3626 cell->level_subdomain_id() == numbers::artificial_subdomain_id)
3627 continue;
3628 else if (cell->is_active() &&
3629 cell->level_subdomain_id() ==
3631 cell->subdomain_id() == numbers::artificial_subdomain_id)
3632 continue;
3633 }
3634
3636 patch.data.reinit(n_datasets, n_q_points);
3637 patch.points_are_available = false;
3638 patch.reference_cell = reference_cell;
3639
3640 for (unsigned int vertex = 0; vertex < n_q_points; ++vertex)
3641 {
3642 patch.vertices[vertex] = cell->vertex(vertex);
3643 patch.data(0, vertex) = cell->level();
3644 if (cell->is_active())
3645 patch.data(1, vertex) = static_cast<double>(
3646 static_cast<std::make_signed_t<types::subdomain_id>>(
3647 cell->subdomain_id()));
3648 else
3649 patch.data(1, vertex) = -1.0;
3650 patch.data(2, vertex) = static_cast<double>(
3651 static_cast<std::make_signed_t<types::subdomain_id>>(
3652 cell->level_subdomain_id()));
3653 patch.data(3, vertex) = tria.locally_owned_subdomain();
3654 }
3655
3656 for (auto f : reference_cell.face_indices())
3658 patches.push_back(patch);
3659 }
3660
3661 // only create .pvtu file if running in parallel
3662 // if not, just create a .vtu file with no reference
3663 // to the processor number
3664 std::string new_file = filename_without_extension + ".vtu";
3666 dynamic_cast<const parallel::TriangulationBase<dim, spacedim> *>(&tria))
3667 {
3668 new_file = filename_without_extension + ".proc" +
3669 Utilities::int_to_string(tr->locally_owned_subdomain(), 4) +
3670 ".vtu";
3671
3672 // create .pvtu record
3673 if (tr->locally_owned_subdomain() == 0)
3674 {
3675 std::vector<std::string> filenames;
3676
3677 // .pvtu needs to reference the files without a relative path because
3678 // it will be written in the same directory. For this, remove any
3679 // paths from filename.
3680 std::size_t pos = filename_without_extension.find_last_of('/');
3681 if (pos == std::string::npos)
3682 pos = 0;
3683 else
3684 pos += 1;
3685 const unsigned int n_procs =
3686 Utilities::MPI::n_mpi_processes(tr->get_communicator());
3687 for (unsigned int i = 0; i < n_procs; ++i)
3688 filenames.push_back(filename_without_extension.substr(pos) +
3689 ".proc" + Utilities::int_to_string(i, 4) +
3690 ".vtu");
3691
3692 const std::string pvtu_filename =
3693 (filename_without_extension + ".pvtu");
3694 std::ofstream pvtu_output(pvtu_filename);
3695
3696 DataOut<dim, spacedim> data_out;
3697 data_out.attach_triangulation(*tr);
3698
3699 // We need a dummy vector with the names of the data values in the
3700 // .vtu files in order that the .pvtu contains reference these values
3701 const Vector<float> dummy_vector(tr->n_active_cells());
3702 data_out.add_data_vector(dummy_vector, "level");
3703 data_out.add_data_vector(dummy_vector, "subdomain");
3704 data_out.add_data_vector(dummy_vector, "level_subdomain");
3705 data_out.add_data_vector(dummy_vector, "proc_writing");
3706
3707 data_out.build_patches();
3708
3709 data_out.write_pvtu_record(pvtu_output, filenames);
3710 }
3711 }
3712
3713 std::ofstream out(new_file);
3714 std::vector<
3715 std::tuple<unsigned int,
3716 unsigned int,
3717 std::string,
3719 vector_data_ranges;
3721 patches, data_names, vector_data_ranges, vtu_flags, out);
3722}
3723
3724
3725
3726unsigned int
3728{
3729 return 0;
3730}
3731
3732unsigned int
3734{
3735 return 0;
3736}
3737
3738
3739unsigned int
3741{
3742 return 0;
3743}
3744
3745unsigned int
3747{
3748 return 0;
3749}
3750
3751unsigned int
3753{
3754 return 0;
3755}
3756
3757unsigned int
3759{
3760 return 0;
3761}
3762
3763unsigned int
3765{
3766 return 0;
3767}
3768
3769unsigned int
3771{
3772 return 0;
3773}
3774
3775
3776
3777template <int dim, int spacedim>
3778unsigned int
3780{
3782 unsigned int n_faces = 0;
3783
3784 for (const auto &face : tria.active_face_iterators())
3785 if ((face->at_boundary()) && (face->boundary_id() != 0))
3786 ++n_faces;
3787
3788 return n_faces;
3789}
3790
3791
3792
3793template <int dim, int spacedim>
3794unsigned int
3796{
3797 // save the user flags for lines so
3798 // we can use these flags to track
3799 // which ones we've already counted
3800 std::vector<bool> line_flags;
3801 const_cast<::Triangulation<dim, spacedim> &>(tria).save_user_flags_line(
3802 line_flags);
3803 const_cast<::Triangulation<dim, spacedim> &>(tria)
3804 .clear_user_flags_line();
3805
3806 unsigned int n_lines = 0;
3807
3808 for (const auto &cell : tria.active_cell_iterators())
3809 for (unsigned int l = 0; l < GeometryInfo<dim>::lines_per_cell; ++l)
3810 if (cell->line(l)->at_boundary() && (cell->line(l)->boundary_id() != 0) &&
3811 (cell->line(l)->user_flag_set() == false))
3812 {
3813 ++n_lines;
3814 cell->line(l)->set_user_flag();
3815 }
3816
3817 // at the end, restore the user
3818 // flags for the lines
3819 const_cast<::Triangulation<dim, spacedim> &>(tria).load_user_flags_line(
3820 line_flags);
3821
3822 return n_lines;
3823}
3824
3825
3826
3827unsigned int
3829 const unsigned int next_element_index,
3830 std::ostream &) const
3831{
3832 return next_element_index;
3833}
3834
3835
3836unsigned int
3838 const unsigned int next_element_index,
3839 std::ostream &) const
3840{
3841 return next_element_index;
3842}
3843
3844unsigned int
3846 const unsigned int next_element_index,
3847 std::ostream &) const
3848{
3849 return next_element_index;
3850}
3851
3852
3853unsigned int
3855 const unsigned int next_element_index,
3856 std::ostream &) const
3857{
3858 return next_element_index;
3859}
3860
3861unsigned int
3863 const unsigned int next_element_index,
3864 std::ostream &) const
3865{
3866 return next_element_index;
3867}
3868
3869
3870unsigned int
3872 const unsigned int next_element_index,
3873 std::ostream &) const
3874{
3875 return next_element_index;
3876}
3877
3878
3879unsigned int
3881 const unsigned int next_element_index,
3882 std::ostream &) const
3883{
3884 return next_element_index;
3885}
3886
3887unsigned int
3889 const unsigned int next_element_index,
3890 std::ostream &) const
3891{
3892 return next_element_index;
3893}
3894
3895
3896
3897template <int dim, int spacedim>
3898unsigned int
3900 const unsigned int next_element_index,
3901 std::ostream &out) const
3902{
3903 unsigned int current_element_index = next_element_index;
3904
3905 for (const auto &face : tria.active_face_iterators())
3906 if (face->at_boundary() && (face->boundary_id() != 0))
3907 {
3908 out << current_element_index << ' '
3909 << face->reference_cell().gmsh_element_type() << ' ';
3910 out << static_cast<unsigned int>(face->boundary_id()) << ' '
3911 << static_cast<unsigned int>(face->boundary_id()) << ' '
3912 << face->n_vertices();
3913 // note: vertex numbers are 1-base
3914 for (const unsigned int vertex : face->vertex_indices())
3915 {
3916 if (face->reference_cell() == ReferenceCells::Quadrilateral)
3917 out << ' '
3918 << face->vertex_index(
3920 1;
3921 else if ((face->reference_cell() == ReferenceCells::Triangle) ||
3922 (face->reference_cell() == ReferenceCells::Line))
3923 out << ' ' << face->vertex_index(vertex) + 1;
3924 else
3926 }
3927 out << '\n';
3928
3929 ++current_element_index;
3930 }
3931 return current_element_index;
3932}
3933
3934
3935
3936template <int dim, int spacedim>
3937unsigned int
3939 const unsigned int next_element_index,
3940 std::ostream &out) const
3941{
3942 unsigned int current_element_index = next_element_index;
3943 // save the user flags for lines so
3944 // we can use these flags to track
3945 // which ones we've already taken
3946 // care of
3947 std::vector<bool> line_flags;
3948 const_cast<::Triangulation<dim, spacedim> &>(tria).save_user_flags_line(
3949 line_flags);
3950 const_cast<::Triangulation<dim, spacedim> &>(tria)
3951 .clear_user_flags_line();
3952
3953 for (const auto &cell : tria.active_cell_iterators())
3954 for (unsigned int l = 0; l < GeometryInfo<dim>::lines_per_cell; ++l)
3955 if (cell->line(l)->at_boundary() && (cell->line(l)->boundary_id() != 0) &&
3956 (cell->line(l)->user_flag_set() == false))
3957 {
3958 out << next_element_index << ' '
3960 out << static_cast<unsigned int>(cell->line(l)->boundary_id()) << ' '
3961 << static_cast<unsigned int>(cell->line(l)->boundary_id())
3962 << " 2 "; // two vertex indices to follow
3963 // note: vertex numbers are 1-base
3964 for (unsigned int vertex = 0; vertex < 2; ++vertex)
3965 out << ' '
3966 << cell->line(l)->vertex_index(
3968 1;
3969 out << '\n';
3970
3971 // move on to the next line
3972 // but mark the current one
3973 // as taken care of
3974 ++current_element_index;
3975 cell->line(l)->set_user_flag();
3976 }
3977
3978 // at the end, restore the user
3979 // flags for the lines
3980 const_cast<::Triangulation<dim, spacedim> &>(tria).load_user_flags_line(
3981 line_flags);
3982
3983 return current_element_index;
3984}
3985
3986
3987
3988unsigned int
3990 const unsigned int next_element_index,
3991 std::ostream &) const
3992{
3993 return next_element_index;
3994}
3995
3996unsigned int
3998 const unsigned int next_element_index,
3999 std::ostream &) const
4000{
4001 return next_element_index;
4002}
4003
4004unsigned int
4006 const unsigned int next_element_index,
4007 std::ostream &) const
4008{
4009 return next_element_index;
4010}
4011
4012unsigned int
4014 const unsigned int next_element_index,
4015 std::ostream &) const
4016{
4017 return next_element_index;
4018}
4019
4020unsigned int
4022 const unsigned int next_element_index,
4023 std::ostream &) const
4024{
4025 return next_element_index;
4026}
4027
4028
4029unsigned int
4031 const unsigned int next_element_index,
4032 std::ostream &) const
4033{
4034 return next_element_index;
4035}
4036
4037
4038unsigned int
4040 const unsigned int next_element_index,
4041 std::ostream &) const
4042{
4043 return next_element_index;
4044}
4045
4046unsigned int
4048 const unsigned int next_element_index,
4049 std::ostream &) const
4050{
4051 return next_element_index;
4052}
4053
4054
4055
4056template <int dim, int spacedim>
4057unsigned int
4059 const unsigned int next_element_index,
4060 std::ostream &out) const
4061{
4062 unsigned int current_element_index = next_element_index;
4064
4065 for (const auto &face : tria.active_face_iterators())
4066 if (face->at_boundary() && (face->boundary_id() != 0))
4067 {
4068 out << current_element_index << " "
4069 << static_cast<unsigned int>(face->boundary_id()) << " ";
4070 switch (dim)
4071 {
4072 case 2:
4073 out << "line ";
4074 break;
4075 case 3:
4076 out << "quad ";
4077 break;
4078 default:
4080 }
4081 // note: vertex numbers are 1-base
4082 for (unsigned int vertex = 0;
4083 vertex < GeometryInfo<dim>::vertices_per_face;
4084 ++vertex)
4085 out << face->vertex_index(
4087 1
4088 << ' ';
4089 out << '\n';
4090
4091 ++current_element_index;
4092 }
4093 return current_element_index;
4094}
4095
4096
4097
4098template <int dim, int spacedim>
4099unsigned int
4101 const unsigned int next_element_index,
4102 std::ostream &out) const
4103{
4104 unsigned int current_element_index = next_element_index;
4105 // save the user flags for lines so
4106 // we can use these flags to track
4107 // which ones we've already taken
4108 // care of
4109 std::vector<bool> line_flags;
4110 const_cast<::Triangulation<dim, spacedim> &>(tria).save_user_flags_line(
4111 line_flags);
4112 const_cast<::Triangulation<dim, spacedim> &>(tria)
4113 .clear_user_flags_line();
4114
4115 for (const auto &cell : tria.active_cell_iterators())
4116 for (unsigned int l = 0; l < GeometryInfo<dim>::lines_per_cell; ++l)
4117 if (cell->line(l)->at_boundary() && (cell->line(l)->boundary_id() != 0) &&
4118 (cell->line(l)->user_flag_set() == false))
4119 {
4120 out << current_element_index << " "
4121 << static_cast<unsigned int>(cell->line(l)->boundary_id())
4122 << " line ";
4123 // note: vertex numbers in ucd format are 1-base
4124 for (unsigned int vertex = 0; vertex < 2; ++vertex)
4125 out << cell->line(l)->vertex_index(
4127 1
4128 << ' ';
4129 out << '\n';
4130
4131 // move on to the next line
4132 // but mark the current one
4133 // as taken care of
4134 ++current_element_index;
4135 cell->line(l)->set_user_flag();
4136 }
4137
4138 // at the end, restore the user
4139 // flags for the lines
4140 const_cast<::Triangulation<dim, spacedim> &>(tria).load_user_flags_line(
4141 line_flags);
4142 return current_element_index;
4143}
4144
4145
4146
4147namespace internal
4148{
4149 namespace
4150 {
4159 template <int spacedim>
4160 void
4161 remove_colinear_points(std::vector<Point<spacedim>> &points)
4162 {
4163 while (points.size() > 2)
4164 {
4165 Tensor<1, spacedim> first_difference = points[1] - points[0];
4166 first_difference /= first_difference.norm();
4167 Tensor<1, spacedim> second_difference = points[2] - points[1];
4168 second_difference /= second_difference.norm();
4169 // If the three points are colinear then remove the middle one.
4170 if ((first_difference - second_difference).norm() < 1e-10)
4171 points.erase(points.begin() + 1);
4172 else
4173 break;
4174 }
4175 }
4176
4177
4178
4179 template <int spacedim>
4180 void
4181 write_gnuplot(const ::Triangulation<1, spacedim> &tria,
4182 std::ostream &out,
4183 const Mapping<1, spacedim> *,
4184 const GridOutFlags::Gnuplot &gnuplot_flags)
4185 {
4186 AssertThrow(out.fail() == false, ExcIO());
4187
4188 for (const auto &cell : tria.active_cell_iterators())
4189 {
4190 if (gnuplot_flags.write_cell_numbers)
4191 out << "# cell " << cell << '\n';
4192
4193 out << cell->vertex(0) << ' ' << cell->level() << ' '
4194 << cell->material_id() << '\n'
4195 << cell->vertex(1) << ' ' << cell->level() << ' '
4196 << cell->material_id() << '\n'
4197 << "\n\n";
4198 }
4199
4200 // make sure everything now gets to
4201 // disk
4202 out.flush();
4203
4204 AssertThrow(out.fail() == false, ExcIO());
4205 }
4206
4207
4208
4209 template <int spacedim>
4210 void
4211 write_gnuplot(const ::Triangulation<2, spacedim> &tria,
4212 std::ostream &out,
4213 const Mapping<2, spacedim> *mapping,
4214 const GridOutFlags::Gnuplot &gnuplot_flags)
4215 {
4216 AssertThrow(out.fail() == false, ExcIO());
4217
4218 const int dim = 2;
4219
4220 const unsigned int n_additional_points =
4221 gnuplot_flags.n_extra_curved_line_points;
4222 const unsigned int n_points = 2 + n_additional_points;
4223
4224 // If we need to plot curved lines then generate a quadrature formula to
4225 // place points via the mapping
4226 Quadrature<dim> q_projector;
4227 std::vector<Point<dim - 1>> boundary_points;
4228 if (mapping != nullptr)
4229 {
4230 boundary_points.resize(n_points);
4231 boundary_points[0][0] = 0;
4232 boundary_points[n_points - 1][0] = 1;
4233 for (unsigned int i = 1; i < n_points - 1; ++i)
4234 boundary_points[i][0] = 1. * i / (n_points - 1);
4235
4236 const std::vector<double> dummy_weights(n_points, 1. / n_points);
4237 const Quadrature<dim - 1> quadrature(boundary_points, dummy_weights);
4238
4241 }
4242
4243 static constexpr std::array<unsigned int, 8> local_vertex_numbering = {
4244 {0, 1, 5, 4, 2, 3, 7, 6}};
4245 for (const auto &cell : tria.active_cell_iterators())
4246 {
4247 if (gnuplot_flags.write_cell_numbers)
4248 out << "# cell " << cell << '\n';
4249
4250 if (mapping == nullptr ||
4251 (dim == spacedim ?
4252 (!cell->at_boundary() && !gnuplot_flags.curved_inner_cells) :
4253 // ignore checking for boundary or interior cells in the codim
4254 // 1 case: 'or false' is a no-op
4255 false))
4256 {
4257 // write out the four sides of this cell by putting the four
4258 // points (+ the initial point again) in a row and lifting the
4259 // drawing pencil at the end
4260 for (const unsigned int i : GeometryInfo<dim>::vertex_indices())
4261 out << cell->vertex(dim == 3 ?
4262 local_vertex_numbering[i] :
4263 GeometryInfo<dim>::ucd_to_deal[i])
4264 << ' ' << cell->level() << ' ' << cell->material_id()
4265 << '\n';
4266 out << cell->vertex(0) << ' ' << cell->level() << ' '
4267 << cell->material_id() << '\n'
4268 << '\n' // double new line for gnuplot 3d plots
4269 << '\n';
4270 }
4271 else
4272 // cell is at boundary and we are to treat curved boundaries. so
4273 // loop over all faces and draw them as small pieces of lines
4274 {
4275 for (const unsigned int face_no :
4276 GeometryInfo<dim>::face_indices())
4277 {
4278 const typename ::Triangulation<dim,
4279 spacedim>::face_iterator
4280 face = cell->face(face_no);
4281 if (dim != spacedim || face->at_boundary() ||
4282 gnuplot_flags.curved_inner_cells)
4283 {
4284 // Save the points on each face to a vector and then try
4285 // to remove colinear points that won't show up in the
4286 // generated plot.
4287 std::vector<Point<spacedim>> line_points;
4288 // compute offset of quadrature points within set of
4289 // projected points
4290 const auto offset =
4292 cell->reference_cell(),
4293 face_no,
4294 cell->combined_face_orientation(face_no),
4295 n_points);
4296 for (unsigned int i = 0; i < n_points; ++i)
4297 line_points.push_back(
4299 cell, q_projector.point(offset + i)));
4300 internal::remove_colinear_points(line_points);
4301
4302 for (const Point<spacedim> &point : line_points)
4303 out << point << ' ' << cell->level() << ' '
4304 << cell->material_id() << '\n';
4305
4306 out << '\n' << '\n';
4307 }
4308 else
4309 {
4310 // if, however, the face is not at the boundary and we
4311 // don't want to curve anything, then draw it as usual
4312 out << face->vertex(0) << ' ' << cell->level() << ' '
4313 << cell->material_id() << '\n'
4314 << face->vertex(1) << ' ' << cell->level() << ' '
4315 << cell->material_id() << '\n'
4316 << '\n'
4317 << '\n';
4318 }
4319 }
4320 }
4321 }
4322
4323 // make sure everything now gets to disk
4324 out.flush();
4325
4326 AssertThrow(out.fail() == false, ExcIO());
4327 }
4328
4329
4330
4331 template <int spacedim>
4332 void
4333 write_gnuplot(const ::Triangulation<3, spacedim> &tria,
4334 std::ostream &out,
4335 const Mapping<3, spacedim> *mapping,
4336 const GridOutFlags::Gnuplot &gnuplot_flags)
4337 {
4338 AssertThrow(out.fail() == false, ExcIO());
4339
4340 const int dim = 3;
4341
4342 const unsigned int n_additional_points =
4343 gnuplot_flags.n_extra_curved_line_points;
4344 const unsigned int n_points = 2 + n_additional_points;
4345
4346 // If we need to plot curved lines then generate a quadrature formula to
4347 // place points via the mapping
4348 std::unique_ptr<Quadrature<dim>> q_projector;
4349 std::vector<Point<1>> boundary_points;
4350 if (mapping != nullptr)
4351 {
4352 boundary_points.resize(n_points);
4353 boundary_points[0][0] = 0;
4354 boundary_points[n_points - 1][0] = 1;
4355 for (unsigned int i = 1; i < n_points - 1; ++i)
4356 boundary_points[i][0] = 1. * i / (n_points - 1);
4357
4358 const std::vector<double> dummy_weights(n_points, 1. / n_points);
4359 const Quadrature<1> quadrature1d(boundary_points, dummy_weights);
4360
4361 // tensor product of points, only one copy
4362 const QIterated<dim - 1> quadrature(quadrature1d, 1);
4363 q_projector = std::make_unique<Quadrature<dim>>(
4365 ReferenceCells::get_hypercube<dim>(), quadrature));
4366 }
4367
4368 for (const auto &cell : tria.active_cell_iterators())
4369 {
4370 if (gnuplot_flags.write_cell_numbers)
4371 out << "# cell " << cell << '\n';
4372
4373 if (mapping == nullptr || n_points == 2 ||
4374 (!cell->has_boundary_lines() &&
4375 !gnuplot_flags.curved_inner_cells))
4376 {
4377 if (cell->reference_cell() == ReferenceCells::Hexahedron)
4378 {
4379 // front face
4380 out << cell->vertex(0) << ' ' << cell->level() << ' '
4381 << cell->material_id() << '\n'
4382 << cell->vertex(1) << ' ' << cell->level() << ' '
4383 << cell->material_id() << '\n'
4384 << cell->vertex(5) << ' ' << cell->level() << ' '
4385 << cell->material_id() << '\n'
4386 << cell->vertex(4) << ' ' << cell->level() << ' '
4387 << cell->material_id() << '\n'
4388 << cell->vertex(0) << ' ' << cell->level() << ' '
4389 << cell->material_id() << '\n'
4390 << '\n';
4391 // back face
4392 out << cell->vertex(2) << ' ' << cell->level() << ' '
4393 << cell->material_id() << '\n'
4394 << cell->vertex(3) << ' ' << cell->level() << ' '
4395 << cell->material_id() << '\n'
4396 << cell->vertex(7) << ' ' << cell->level() << ' '
4397 << cell->material_id() << '\n'
4398 << cell->vertex(6) << ' ' << cell->level() << ' '
4399 << cell->material_id() << '\n'
4400 << cell->vertex(2) << ' ' << cell->level() << ' '
4401 << cell->material_id() << '\n'
4402 << '\n';
4403
4404 // now for the four connecting lines
4405 out << cell->vertex(0) << ' ' << cell->level() << ' '
4406 << cell->material_id() << '\n'
4407 << cell->vertex(2) << ' ' << cell->level() << ' '
4408 << cell->material_id() << '\n'
4409 << '\n';
4410 out << cell->vertex(1) << ' ' << cell->level() << ' '
4411 << cell->material_id() << '\n'
4412 << cell->vertex(3) << ' ' << cell->level() << ' '
4413 << cell->material_id() << '\n'
4414 << '\n';
4415 out << cell->vertex(5) << ' ' << cell->level() << ' '
4416 << cell->material_id() << '\n'
4417 << cell->vertex(7) << ' ' << cell->level() << ' '
4418 << cell->material_id() << '\n'
4419 << '\n';
4420 out << cell->vertex(4) << ' ' << cell->level() << ' '
4421 << cell->material_id() << '\n'
4422 << cell->vertex(6) << ' ' << cell->level() << ' '
4423 << cell->material_id() << '\n'
4424 << '\n';
4425 }
4426 else if (cell->reference_cell() == ReferenceCells::Tetrahedron)
4427 {
4428 // Draw the tetrahedron as a two collections of lines.
4429 for (const unsigned int v : {0, 1, 2, 0, 3, 2})
4430 {
4431 out << cell->vertex(v) << ' ' << cell->level() << ' '
4432 << cell->material_id() << '\n';
4433 }
4434 out << '\n'; // end of first line
4435
4436 for (const unsigned int v : {3, 1})
4437 {
4438 out << cell->vertex(v) << ' ' << cell->level() << ' '
4439 << cell->material_id() << '\n';
4440 }
4441 out << '\n'; // end of second line
4442 }
4443 else if (cell->reference_cell() == ReferenceCells::Wedge)
4444 {
4445 // Draw the wedge as a collection of three
4446 // lines. The first one wraps around the base,
4447 // goes up to the top, and wraps around that. The
4448 // second and third are just individual lines
4449 // going from base to top.
4450 for (const unsigned int v : {0, 1, 2, 0, 3, 4, 5, 3})
4451 {
4452 out << cell->vertex(v) << ' ' << cell->level() << ' '
4453 << cell->material_id() << '\n';
4454 }
4455 out << '\n'; // end of first line
4456
4457 for (const unsigned int v : {1, 4})
4458 {
4459 out << cell->vertex(v) << ' ' << cell->level() << ' '
4460 << cell->material_id() << '\n';
4461 }
4462 out << '\n'; // end of second line
4463
4464 for (const unsigned int v : {2, 5})
4465 {
4466 out << cell->vertex(v) << ' ' << cell->level() << ' '
4467 << cell->material_id() << '\n';
4468 }
4469 out << '\n'; // end of third line
4470 }
4471 else if (cell->reference_cell() == ReferenceCells::Pyramid)
4472 {
4473 // Draw the pyramid as a collections of two lines.
4474 for (const unsigned int v : {0, 1, 3, 2, 0, 4, 1})
4475 {
4476 out << cell->vertex(v) << ' ' << cell->level() << ' '
4477 << cell->material_id() << '\n';
4478 }
4479 out << '\n'; // end of first line
4480
4481 for (const unsigned int v : {2, 4, 3})
4482 {
4483 out << cell->vertex(v) << ' ' << cell->level() << ' '
4484 << cell->material_id() << '\n';
4485 }
4486 out << '\n'; // end of second line
4487 }
4488 else
4490 }
4491 else // need to handle curved boundaries
4492 {
4493 Assert(cell->reference_cell() == ReferenceCells::Hexahedron,
4495 for (const unsigned int face_no :
4496 GeometryInfo<dim>::face_indices())
4497 {
4498 const typename ::Triangulation<dim,
4499 spacedim>::face_iterator
4500 face = cell->face(face_no);
4501
4502 if (face->at_boundary() &&
4503 gnuplot_flags.write_additional_boundary_lines)
4504 {
4505 const auto offset =
4507 cell->reference_cell(),
4508 face_no,
4509 cell->combined_face_orientation(face_no),
4510 n_points * n_points);
4511 for (unsigned int i = 0; i < n_points - 1; ++i)
4512 for (unsigned int j = 0; j < n_points - 1; ++j)
4513 {
4514 const Point<spacedim> p0 =
4516 cell,
4517 q_projector->point(offset + i * n_points + j));
4518 out << p0 << ' ' << cell->level() << ' '
4519 << cell->material_id() << '\n';
4520 out << (mapping->transform_unit_to_real_cell(
4521 cell,
4522 q_projector->point(
4523 offset + (i + 1) * n_points + j)))
4524 << ' ' << cell->level() << ' '
4525 << cell->material_id() << '\n';
4526 out << (mapping->transform_unit_to_real_cell(
4527 cell,
4528 q_projector->point(
4529 offset + (i + 1) * n_points + j + 1)))
4530 << ' ' << cell->level() << ' '
4531 << cell->material_id() << '\n';
4532 out << (mapping->transform_unit_to_real_cell(
4533 cell,
4534 q_projector->point(offset + i * n_points +
4535 j + 1)))
4536 << ' ' << cell->level() << ' '
4537 << cell->material_id() << '\n';
4538 // and the first point again
4539 out << p0 << ' ' << cell->level() << ' '
4540 << cell->material_id() << '\n';
4541 out << '\n' << '\n';
4542 }
4543 }
4544 else
4545 {
4546 for (unsigned int l = 0;
4547 l < GeometryInfo<dim>::lines_per_face;
4548 ++l)
4549 {
4550 const typename ::Triangulation<dim, spacedim>::
4551 line_iterator line = face->line(l);
4552
4553 const Point<spacedim> &v0 = line->vertex(0),
4554 &v1 = line->vertex(1);
4555 if (line->at_boundary() ||
4556 gnuplot_flags.curved_inner_cells)
4557 {
4558 // Save the points on each face to a vector and
4559 // then try to remove colinear points that won't
4560 // show up in the generated plot.
4561 std::vector<Point<spacedim>> line_points;
4562 // transform_real_to_unit_cell could be replaced
4563 // by using QProjector<dim>::project_to_line
4564 // which is not yet implemented
4565 const Point<spacedim>
4566 u0 = mapping->transform_real_to_unit_cell(cell,
4567 v0),
4568 u1 = mapping->transform_real_to_unit_cell(cell,
4569 v1);
4570 for (unsigned int i = 0; i < n_points; ++i)
4571 line_points.push_back(
4573 cell,
4574 (1 - boundary_points[i][0]) * u0 +
4575 boundary_points[i][0] * u1));
4576 internal::remove_colinear_points(line_points);
4577 for (const Point<spacedim> &point : line_points)
4578 out << point << ' ' << cell->level() << ' '
4579 << static_cast<unsigned int>(
4580 cell->material_id())
4581 << '\n';
4582 }
4583 else
4584 out << v0 << ' ' << cell->level() << ' '
4585 << cell->material_id() << '\n'
4586 << v1 << ' ' << cell->level() << ' '
4587 << cell->material_id() << '\n';
4588
4589 out << '\n' << '\n';
4590 }
4591 }
4592 }
4593 }
4594 }
4595
4596 // make sure everything now gets to disk
4597 out.flush();
4598
4599 AssertThrow(out.fail() == false, ExcIO());
4600 }
4601 } // namespace
4602} // namespace internal
4603
4604
4605
4606template <int dim, int spacedim>
4607void
4609 std::ostream &out,
4610 const Mapping<dim, spacedim> *mapping) const
4611{
4612 internal::write_gnuplot(tria, out, mapping, gnuplot_flags);
4613}
4614
4615
4616
4617namespace internal
4618{
4619 namespace
4620 {
4621 struct LineEntry
4622 {
4626 unsigned int level;
4627 LineEntry(const Point<2> &f,
4628 const Point<2> &s,
4629 const bool c,
4630 const unsigned int l)
4631 : first(f)
4632 , second(s)
4633 , colorize(c)
4634 , level(l)
4635 {}
4636 };
4637
4638
4639 void
4640 write_eps(const ::Triangulation<1> &,
4641 std::ostream &,
4642 const Mapping<1> *,
4643 const GridOutFlags::Eps<2> &,
4644 const GridOutFlags::Eps<3> &)
4645 {
4647 }
4648
4649 void
4650 write_eps(const ::Triangulation<1, 2> &,
4651 std::ostream &,
4652 const Mapping<1, 2> *,
4653 const GridOutFlags::Eps<2> &,
4654 const GridOutFlags::Eps<3> &)
4655 {
4657 }
4658
4659 void
4660 write_eps(const ::Triangulation<1, 3> &,
4661 std::ostream &,
4662 const Mapping<1, 3> *,
4663 const GridOutFlags::Eps<2> &,
4664 const GridOutFlags::Eps<3> &)
4665 {
4667 }
4668
4669 void
4670 write_eps(const ::Triangulation<2, 3> &,
4671 std::ostream &,
4672 const Mapping<2, 3> *,
4673 const GridOutFlags::Eps<2> &,
4674 const GridOutFlags::Eps<3> &)
4675 {
4677 }
4678
4679
4680
4681 template <int dim, int spacedim>
4682 void
4683 write_eps(const ::Triangulation<dim, spacedim> &tria,
4684 std::ostream &out,
4685 const Mapping<dim, spacedim> *mapping,
4686 const GridOutFlags::Eps<2> &eps_flags_2,
4687 const GridOutFlags::Eps<3> &eps_flags_3)
4688 {
4689 using LineList = std::list<LineEntry>;
4690
4691 // We should never get here in 1d since this function is overloaded for
4692 // all dim == 1 cases.
4693 Assert(dim == 2 || dim == 3, ExcInternalError());
4694
4695 // Copy, with an object slice, something containing the flags common to
4696 // all dimensions in order to avoid the recurring distinctions between
4697 // the different eps_flags present.
4698 const GridOutFlags::EpsFlagsBase eps_flags_base =
4699 dim == 2 ?
4700 static_cast<const GridOutFlags::EpsFlagsBase &>(eps_flags_2) :
4701 static_cast<const GridOutFlags::EpsFlagsBase &>(eps_flags_3);
4702
4703 AssertThrow(out.fail() == false, ExcIO());
4704 const unsigned int n_points = eps_flags_base.n_boundary_face_points;
4705
4706 // make up a list of lines by which
4707 // we will construct the triangulation
4708 //
4709 // this part unfortunately is a bit
4710 // dimension dependent, so we have to
4711 // treat every dimension different.
4712 // however, by directly producing
4713 // the lines to be printed, i.e. their
4714 // 2d images, we can later do the
4715 // actual output dimension independent
4716 // again
4717 LineList line_list;
4718
4719 switch (dim)
4720 {
4721 case 1:
4722 {
4724 break;
4725 }
4726
4727 case 2:
4728 {
4729 for (const auto &cell : tria.active_cell_iterators())
4730 for (const unsigned int line_no : cell->line_indices())
4731 {
4732 typename ::Triangulation<dim, spacedim>::line_iterator
4733 line = cell->line(line_no);
4734
4735 // first treat all
4736 // interior lines and
4737 // make up a list of
4738 // them. if curved
4739 // lines shall not be
4740 // supported (i.e. no
4741 // mapping is
4742 // provided), then also
4743 // treat all other
4744 // lines
4745 if (!line->has_children() &&
4746 (mapping == nullptr || !line->at_boundary()))
4747 // one would expect
4748 // make_pair(line->vertex(0),
4749 // line->vertex(1))
4750 // here, but that is
4751 // not dimension
4752 // independent, since
4753 // vertex(i) is
4754 // Point<dim>, but we
4755 // want a Point<2>.
4756 // in fact, whenever
4757 // we're here, the
4758 // vertex is a
4759 // Point<dim>, but
4760 // the compiler does
4761 // not know
4762 // this. hopefully,
4763 // the compiler will
4764 // optimize away this
4765 // little kludge
4766 line_list.emplace_back(
4767 Point<2>(line->vertex(0)[0], line->vertex(0)[1]),
4768 Point<2>(line->vertex(1)[0], line->vertex(1)[1]),
4769 line->user_flag_set(),
4770 cell->level());
4771 }
4772
4773 // next if we are to treat
4774 // curved boundaries
4775 // specially, then add lines
4776 // to the list consisting of
4777 // pieces of the boundary
4778 // lines
4779 if (mapping != nullptr)
4780 {
4781 // to do so, first
4782 // generate a sequence of
4783 // points on a face and
4784 // project them onto the
4785 // faces of a unit cell
4786 std::vector<Point<dim - 1>> boundary_points(n_points);
4787
4788 for (unsigned int i = 0; i < n_points; ++i)
4789 boundary_points[i][0] = 1. * (i + 1) / (n_points + 1);
4790
4791 const Quadrature<dim - 1> quadrature(boundary_points);
4792 const Quadrature<dim> q_projector(
4794 ReferenceCells::get_hypercube<dim>(), quadrature));
4795
4796 // next loop over all
4797 // boundary faces and
4798 // generate the info from
4799 // them
4800 for (const auto &cell : tria.active_cell_iterators())
4801 for (const unsigned int face_no :
4802 GeometryInfo<dim>::face_indices())
4803 {
4804 const typename ::Triangulation<dim, spacedim>::
4805 face_iterator face = cell->face(face_no);
4806
4807 if (face->at_boundary())
4808 {
4809 Point<dim> p0_dim(face->vertex(0));
4810 Point<2> p0(p0_dim[0], p0_dim[1]);
4811
4812 // loop over
4813 // all pieces
4814 // of the line
4815 // and generate
4816 // line-lets
4817 const auto offset =
4819 cell->reference_cell(),
4820 face_no,
4821 cell->combined_face_orientation(face_no),
4822 n_points);
4823 for (unsigned int i = 0; i < n_points; ++i)
4824 {
4825 const Point<dim> p1_dim(
4827 cell, q_projector.point(offset + i)));
4828 const Point<2> p1(p1_dim[0], p1_dim[1]);
4829
4830 line_list.emplace_back(p0,
4831 p1,
4832 face->user_flag_set(),
4833 cell->level());
4834 p0 = p1;
4835 }
4836
4837 // generate last piece
4838 const Point<dim> p1_dim(face->vertex(1));
4839 const Point<2> p1(p1_dim[0], p1_dim[1]);
4840 line_list.emplace_back(p0,
4841 p1,
4842 face->user_flag_set(),
4843 cell->level());
4844 }
4845 }
4846 }
4847
4848 break;
4849 }
4850
4851 case 3:
4852 {
4853 // curved boundary output
4854 // presently not supported
4855 Assert(mapping == nullptr, ExcNotImplemented());
4856
4857 // loop over all lines and compute their
4858 // projection on the plane perpendicular
4859 // to the direction of sight
4860
4861 // direction of view equals the unit
4862 // vector of the position of the
4863 // spectator to the origin.
4864 //
4865 // we chose here the viewpoint as in
4866 // gnuplot as default.
4867 //
4868 // TODO:[WB] Fix a potential problem with viewing angles in 3d Eps
4869 // GridOut
4870 // note: the following might be wrong
4871 // if one of the base vectors below
4872 // is in direction of the viewer, but
4873 // I am too tired at present to fix
4874 // this
4875 const double pi = numbers::PI;
4876 const double z_angle = eps_flags_3.azimut_angle;
4877 const double turn_angle = eps_flags_3.turn_angle;
4878 const Point<dim> view_direction(
4879 -std::sin(z_angle * 2. * pi / 360.) *
4880 std::sin(turn_angle * 2. * pi / 360.),
4881 +std::sin(z_angle * 2. * pi / 360.) *
4882 std::cos(turn_angle * 2. * pi / 360.),
4883 -std::cos(z_angle * 2. * pi / 360.));
4884
4885 // decide about the two unit vectors
4886 // in this plane. we chose the first one
4887 // to be the projection of the z-axis
4888 // to this plane
4889 const Tensor<1, dim> vector1 =
4890 Point<dim>(0, 0, 1) -
4891 ((Point<dim>(0, 0, 1) * view_direction) * view_direction);
4892 const Tensor<1, dim> unit_vector1 = vector1 / vector1.norm();
4893
4894 // now the third vector is fixed. we
4895 // chose the projection of a more or
4896 // less arbitrary vector to the plane
4897 // perpendicular to the first one
4898 const Tensor<1, dim> vector2 =
4899 (Point<dim>(1, 0, 0) -
4900 ((Point<dim>(1, 0, 0) * view_direction) * view_direction) -
4901 ((Point<dim>(1, 0, 0) * unit_vector1) * unit_vector1));
4902 const Tensor<1, dim> unit_vector2 = vector2 / vector2.norm();
4903
4904
4905 for (const auto &cell : tria.active_cell_iterators())
4906 for (const unsigned int line_no : cell->line_indices())
4907 {
4908 typename ::Triangulation<dim, spacedim>::line_iterator
4909 line = cell->line(line_no);
4910 line_list.emplace_back(
4911 Point<2>(line->vertex(0) * unit_vector2,
4912 line->vertex(0) * unit_vector1),
4913 Point<2>(line->vertex(1) * unit_vector2,
4914 line->vertex(1) * unit_vector1),
4915 line->user_flag_set(),
4916 cell->level());
4917 }
4918
4919 break;
4920 }
4921
4922 default:
4924 }
4925
4926
4927
4928 // find out minimum and maximum x and
4929 // y coordinates to compute offsets
4930 // and scaling factors
4931 double x_min = tria.begin_active()->vertex(0)[0];
4932 double x_max = x_min;
4933 double y_min = tria.begin_active()->vertex(0)[1];
4934 double y_max = y_min;
4935 unsigned int max_level = line_list.begin()->level;
4936
4937 for (LineList::const_iterator line = line_list.begin();
4938 line != line_list.end();
4939 ++line)
4940 {
4941 x_min = std::min(x_min, line->first[0]);
4942 x_min = std::min(x_min, line->second[0]);
4943
4944 x_max = std::max(x_max, line->first[0]);
4945 x_max = std::max(x_max, line->second[0]);
4946
4947 y_min = std::min(y_min, line->first[1]);
4948 y_min = std::min(y_min, line->second[1]);
4949
4950 y_max = std::max(y_max, line->first[1]);
4951 y_max = std::max(y_max, line->second[1]);
4952
4953 max_level = std::max(max_level, line->level);
4954 }
4955
4956 // scale in x-direction such that
4957 // in the output 0 <= x <= 300.
4958 // don't scale in y-direction to
4959 // preserve the shape of the
4960 // triangulation
4961 const double scale =
4962 (eps_flags_base.size /
4963 (eps_flags_base.size_type == GridOutFlags::EpsFlagsBase::width ?
4964 x_max - x_min :
4965 y_min - y_max));
4966
4967
4968 // now write preamble
4969 {
4970 // block this to have local
4971 // variables destroyed after
4972 // use
4973 std::time_t time1 = std::time(nullptr);
4974 std::tm *time = std::localtime(&time1);
4975 out << "%!PS-Adobe-2.0 EPSF-1.2" << '\n'
4976 << "%%Title: deal.II Output" << '\n'
4977 << "%%Creator: the deal.II library" << '\n'
4978 << "%%Creation Date: " << time->tm_year + 1900 << "/"
4979 << time->tm_mon + 1 << "/" << time->tm_mday << " - "
4980 << time->tm_hour << ":" << std::setw(2) << time->tm_min << ":"
4981 << std::setw(2) << time->tm_sec << '\n'
4982 << "%%BoundingBox: "
4983 // lower left corner
4984 << "0 0 "
4985 // upper right corner
4986 << static_cast<unsigned int>(
4987 std::floor(((x_max - x_min) * scale) + 1))
4988 << ' '
4989 << static_cast<unsigned int>(
4990 std::floor(((y_max - y_min) * scale) + 1))
4991 << '\n';
4992
4993 // define some abbreviations to keep
4994 // the output small:
4995 // m=move turtle to
4996 // x=execute line stroke
4997 // b=black pen
4998 // r=red pen
4999 out << "/m {moveto} bind def" << '\n'
5000 << "/x {lineto stroke} bind def" << '\n'
5001 << "/b {0 0 0 setrgbcolor} def" << '\n'
5002 << "/r {1 0 0 setrgbcolor} def" << '\n';
5003
5004 // calculate colors for level
5005 // coloring; level 0 is black,
5006 // other levels are blue
5007 // ... red
5008 if (eps_flags_base.color_lines_level)
5009 out << "/l { neg " << (max_level) << " add "
5010 << (0.66666 / std::max(1U, (max_level - 1)))
5011 << " mul 1 0.8 sethsbcolor} def" << '\n';
5012
5013 // in 2d, we can also plot cell
5014 // and vertex numbers, but this
5015 // requires a somewhat more
5016 // lengthy preamble. please
5017 // don't ask me what most of
5018 // this means, it is reverse
5019 // engineered from what GNUPLOT
5020 // uses in its output
5021 if ((dim == 2) && (eps_flags_2.write_cell_numbers ||
5022 eps_flags_2.write_vertex_numbers))
5023 {
5024 out
5025 << ("/R {rmoveto} bind def\n"
5026 "/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont\n"
5027 "dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall\n"
5028 "currentdict end definefont\n"
5029 "/MFshow {{dup dup 0 get findfont exch 1 get scalefont setfont\n"
5030 "[ currentpoint ] exch dup 2 get 0 exch rmoveto dup dup 5 get exch 4 get\n"
5031 "{show} {stringwidth pop 0 rmoveto}ifelse dup 3 get\n"
5032 "{2 get neg 0 exch rmoveto pop} {pop aload pop moveto}ifelse} forall} bind def\n"
5033 "/MFwidth {0 exch {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont\n"
5034 "5 get stringwidth pop add}\n"
5035 "{pop} ifelse} forall} bind def\n"
5036 "/MCshow { currentpoint stroke m\n"
5037 "exch dup MFwidth -2 div 3 -1 roll R MFshow } def\n")
5038 << '\n';
5039 }
5040
5041 out << "%%EndProlog" << '\n' << '\n';
5042
5043 // set fine lines
5044 out << eps_flags_base.line_width << " setlinewidth" << '\n';
5045 }
5046
5047 // now write the lines
5048 const Point<2> offset(x_min, y_min);
5049
5050 for (LineList::const_iterator line = line_list.begin();
5051 line != line_list.end();
5052 ++line)
5053 if (eps_flags_base.color_lines_level && (line->level > 0))
5054 out << line->level << " l " << (line->first - offset) * scale << " m "
5055 << (line->second - offset) * scale << " x" << '\n';
5056 else
5057 out << ((line->colorize && eps_flags_base.color_lines_on_user_flag) ?
5058 "r " :
5059 "b ")
5060 << (line->first - offset) * scale << " m "
5061 << (line->second - offset) * scale << " x" << '\n';
5062
5063 // finally write the cell numbers
5064 // in 2d, if that is desired
5065 if ((dim == 2) && (eps_flags_2.write_cell_numbers == true))
5066 {
5067 out << "(Helvetica) findfont 140 scalefont setfont" << '\n';
5068
5069 for (const auto &cell : tria.active_cell_iterators())
5070 {
5071 out << (cell->center()[0] - offset[0]) * scale << ' '
5072 << (cell->center()[1] - offset[1]) * scale << " m" << '\n'
5073 << "[ [(Helvetica) 12.0 0.0 true true (";
5074 if (eps_flags_2.write_cell_number_level)
5075 out << cell;
5076 else
5077 out << cell->index();
5078
5079 out << ")] "
5080 << "] -6 MCshow" << '\n';
5081 }
5082 }
5083
5084 // and the vertex numbers
5085 if ((dim == 2) && (eps_flags_2.write_vertex_numbers == true))
5086 {
5087 out << "(Helvetica) findfont 140 scalefont setfont" << '\n';
5088
5089 // have a list of those
5090 // vertices which we have
5091 // already tracked, to avoid
5092 // doing this multiply
5093 std::set<unsigned int> treated_vertices;
5094 for (const auto &cell : tria.active_cell_iterators())
5095 for (const unsigned int vertex_no : cell->vertex_indices())
5096 if (treated_vertices.find(cell->vertex_index(vertex_no)) ==
5097 treated_vertices.end())
5098 {
5099 treated_vertices.insert(cell->vertex_index(vertex_no));
5100
5101 out << (cell->vertex(vertex_no)[0] - offset[0]) * scale << ' '
5102 << (cell->vertex(vertex_no)[1] - offset[1]) * scale
5103 << " m" << '\n'
5104 << "[ [(Helvetica) 10.0 0.0 true true ("
5105 << cell->vertex_index(vertex_no) << ")] "
5106 << "] -6 MCshow" << '\n';
5107 }
5108 }
5109
5110 out << "showpage" << '\n';
5111
5112 // make sure everything now gets to
5113 // disk
5114 out.flush();
5115
5116 AssertThrow(out.fail() == false, ExcIO());
5117 }
5118 } // namespace
5119} // namespace internal
5120
5121
5122template <int dim, int spacedim>
5123void
5125 std::ostream &out,
5126 const Mapping<dim, spacedim> *mapping) const
5127{
5128 internal::write_eps(tria, out, mapping, eps_flags_2, eps_flags_3);
5129}
5130
5131
5132template <int dim, int spacedim>
5133void
5135 std::ostream &out,
5136 const OutputFormat output_format,
5137 const Mapping<dim, spacedim> *mapping) const
5138{
5139 switch (output_format)
5140 {
5141 case none:
5142 return;
5143
5144 case dx:
5145 write_dx(tria, out);
5146 return;
5147
5148 case ucd:
5149 write_ucd(tria, out);
5150 return;
5151
5152 case gnuplot:
5153 write_gnuplot(tria, out, mapping);
5154 return;
5155
5156 case eps:
5157 write_eps(tria, out, mapping);
5158 return;
5159
5160 case xfig:
5161 write_xfig(tria, out, mapping);
5162 return;
5163
5164 case msh:
5165 write_msh(tria, out);
5166 return;
5167
5168 case svg:
5169 write_svg(tria, out);
5170 return;
5171
5172 case mathgl:
5173 write_mathgl(tria, out);
5174 return;
5175
5176 case vtk:
5177 write_vtk(tria, out);
5178 return;
5179
5180 case vtu:
5181 write_vtu(tria, out);
5182 return;
5183 }
5184
5186}
5187
5188
5189template <int dim, int spacedim>
5190void
5192 std::ostream &out,
5193 const Mapping<dim, spacedim> *mapping) const
5194{
5195 write(tria, out, default_format, mapping);
5196}
5197
5198
5199// explicit instantiations
5200#include "grid_out.inst"
5201
5202
void write_pvtu_record(std::ostream &out, const std::vector< std::string > &piece_names) const
void attach_triangulation(const Triangulation< dim, spacedim > &)
void add_data_vector(const VectorType &data, const std::vector< std::string > &names, const DataVectorType type=type_automatic, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation={})
virtual void build_patches(const unsigned int n_subdivisions=0)
Definition data_out.cc:1062
unsigned int n_boundary_faces(const Triangulation< dim, spacedim > &tria) const
Definition grid_out.cc:3779
GridOutFlags::Vtu vtu_flags
Definition grid_out.h:1615
GridOutFlags::Eps< 2 > eps_flags_2
Definition grid_out.h:1584
unsigned int write_ucd_lines(const Triangulation< dim, spacedim > &tria, const unsigned int next_element_index, std::ostream &out) const
Definition grid_out.cc:4100
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:700
void write_svg(const Triangulation< 2, 2 > &tria, std::ostream &out) const
Definition grid_out.cc:1702
void set_flags(const GridOutFlags::DX &flags)
Definition grid_out.cc:471
GridOutFlags::Eps< 1 > eps_flags_1
Definition grid_out.h:1578
GridOutFlags::XFig xfig_flags
Definition grid_out.h:1595
unsigned int write_ucd_faces(const Triangulation< dim, spacedim > &tria, const unsigned int next_element_index, std::ostream &out) const
Definition grid_out.cc:4058
void write_mathgl(const Triangulation< dim, spacedim > &tria, std::ostream &out) const
Definition grid_out.cc:2982
std::string default_suffix() const
Definition grid_out.cc:593
static void declare_parameters(ParameterHandler &param)
Definition grid_out.cc:651
static OutputFormat parse_output_format(const std::string &format_name)
Definition grid_out.cc:601
void write_vtk(const Triangulation< dim, spacedim > &tria, std::ostream &out) const
Definition grid_out.cc:3305
GridOutFlags::Gnuplot gnuplot_flags
Definition grid_out.h:1572
void write_msh(const Triangulation< dim, spacedim > &tria, std::ostream &out) const
Definition grid_out.cc:1021
unsigned int write_msh_lines(const Triangulation< dim, spacedim > &tria, const unsigned int next_element_index, std::ostream &out) const
Definition grid_out.cc:3938
void write_eps(const Triangulation< dim, spacedim > &tria, std::ostream &out, const Mapping< dim, spacedim > *mapping=nullptr) const
Definition grid_out.cc:5124
static std::string get_output_format_names()
Definition grid_out.cc:644
GridOutFlags::Eps< 3 > eps_flags_3
Definition grid_out.h:1590
void write(const Triangulation< dim, spacedim > &tria, std::ostream &out, const OutputFormat output_format, const Mapping< dim, spacedim > *mapping=nullptr) const
Definition grid_out.cc:5134
void write_vtu(const Triangulation< dim, spacedim > &tria, std::ostream &out) const
Definition grid_out.cc:3544
GridOutFlags::Ucd ucd_flags
Definition grid_out.h:1566
void write_dx(const Triangulation< dim, spacedim > &tria, std::ostream &out) const
Definition grid_out.cc:781
std::size_t memory_consumption() const
Definition grid_out.cc:746
unsigned int n_boundary_lines(const Triangulation< dim, spacedim > &tria) const
Definition grid_out.cc:3795
GridOutFlags::DX dx_flags
Definition grid_out.h:1554
unsigned int write_msh_faces(const Triangulation< dim, spacedim > &tria, const unsigned int next_element_index, std::ostream &out) const
Definition grid_out.cc:3899
void write_ucd(const Triangulation< dim, spacedim > &tria, std::ostream &out) const
Definition grid_out.cc:1126
GridOutFlags::Svg svg_flags
Definition grid_out.h:1600
OutputFormat default_format
Definition grid_out.h:1549
void write_xfig(const Triangulation< dim, spacedim > &tria, std::ostream &out, const Mapping< dim, spacedim > *mapping=nullptr) const
Definition grid_out.cc:1243
void write_gnuplot(const Triangulation< dim, spacedim > &tria, std::ostream &out, const Mapping< dim, spacedim > *mapping=nullptr) const
Definition grid_out.cc:4608
GridOutFlags::Vtk vtk_flags
Definition grid_out.h:1610
GridOutFlags::Msh msh_flags
Definition grid_out.h:1560
void write_mesh_per_processor_as_vtu(const Triangulation< dim, spacedim > &tria, const std::string &filename_without_extension, const bool view_levels=false, const bool include_artificial=false) const
Definition grid_out.cc:3591
@ vtk
write() calls write_vtk()
Definition grid_out.h:1021
@ eps
write() calls write_eps()
Definition grid_out.h:1009
@ msh
write() calls write_msh()
Definition grid_out.h:1015
@ xfig
write() calls write_xfig()
Definition grid_out.h:1013
@ dx
write() calls write_dx()
Definition grid_out.h:1005
@ ucd
write() calls write_ucd()
Definition grid_out.h:1011
@ gnuplot
write() calls write_gnuplot()
Definition grid_out.h:1007
@ mathgl
write() calls write_mathgl()
Definition grid_out.h:1019
@ svg
write() calls write_svg()
Definition grid_out.h:1017
@ none
Do nothing in write()
Definition grid_out.h:1003
@ vtu
write() calls write_vtu()
Definition grid_out.h:1023
GridOutFlags::MathGL mathgl_flags
Definition grid_out.h:1605
Abstract base class for mapping classes.
Definition mapping.h:318
virtual Point< spacedim > transform_unit_to_real_cell(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const Point< dim > &p) const =0
virtual Point< dim > transform_real_to_unit_cell(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const Point< spacedim > &p) const =0
void enter_subsection(const std::string &subsection, const bool create_path_if_needed=true)
long int get_integer(const std::string &entry_string) const
bool get_bool(const std::string &entry_name) const
void declare_entry(const std::string &entry, const std::string &default_value, const Patterns::PatternBase &pattern=Patterns::Anything(), const std::string &documentation="", const bool has_to_be_set=false)
std::string get(const std::string &entry_string) const
double get_double(const std::string &entry_name) const
Definition point.h:111
static DataSetDescriptor face(const ReferenceCell &reference_cell, const unsigned int face_no, const bool face_orientation, const bool face_flip, const bool face_rotation, const unsigned int n_quadrature_points)
static Quadrature< dim > project_to_all_faces(const ReferenceCell &reference_cell, const hp::QCollection< dim - 1 > &quadrature)
const Point< dim > & point(const unsigned int i) const
unsigned int gmsh_element_type() const
numbers::NumberTraits< Number >::real_type norm() const
void save_user_flags_line(std::ostream &out) const
void save(Archive &ar, const unsigned int version) const
cell_iterator begin(const unsigned int level=0) const
virtual types::subdomain_id locally_owned_subdomain() const
unsigned int n_active_cells() const
const std::vector< Point< spacedim > > & get_vertices() const
unsigned int n_used_vertices() const
const std::vector< ReferenceCell > & get_reference_cells() const
cell_iterator end() const
const std::vector< bool > & get_used_vertices() const
active_cell_iterator begin_active(const unsigned int level=0) const
#define DEAL_II_NAMESPACE_OPEN
Definition config.h:503
#define DEAL_II_NAMESPACE_CLOSE
Definition config.h:504
Point< 3 > vertices[4]
Point< 2 > second
Definition grid_out.cc:4624
bool colorize
Definition grid_out.cc:4625
Point< 2 > first
Definition grid_out.cc:4623
unsigned int level
Definition grid_out.cc:4626
unsigned int vertex_indices[2]
const unsigned int v0
const unsigned int v1
IteratorRange< active_face_iterator > active_face_iterators() const
IteratorRange< active_cell_iterator > active_cell_iterators() const
IteratorRange< cell_iterator > cell_iterators_on_level(const unsigned int level) const
IteratorRange< cell_iterator > cell_iterators() const
static ::ExceptionBase & ExcIO()
static ::ExceptionBase & ExcNotImplemented()
static ::ExceptionBase & ExcInvalidState()
#define Assert(cond, exc)
#define AssertDimension(dim1, dim2)
static ::ExceptionBase & ExcInternalError()
static ::ExceptionBase & ExcMessage(std::string arg1)
#define AssertThrow(cond, exc)
#define DEAL_II_ASSERT_UNREACHABLE()
#define DEAL_II_NOT_IMPLEMENTED()
void write_eps(const std::vector< Patch< 2, spacedim > > &patches, const std::vector< std::string > &data_names, const std::vector< std::tuple< unsigned int, unsigned int, std::string, DataComponentInterpretation::DataComponentInterpretation > > &nonscalar_data_ranges, const EpsFlags &flags, std::ostream &out)
void write_vtu_header(std::ostream &out, const VtkFlags &flags)
void write_vtu(const std::vector< Patch< dim, spacedim > > &patches, const std::vector< std::string > &data_names, const std::vector< std::tuple< unsigned int, unsigned int, std::string, DataComponentInterpretation::DataComponentInterpretation > > &nonscalar_data_ranges, const VtkFlags &flags, std::ostream &out)
void write_vtu_main(const std::vector< Patch< dim, spacedim > > &patches, const std::vector< std::string > &data_names, const std::vector< std::tuple< unsigned int, unsigned int, std::string, DataComponentInterpretation::DataComponentInterpretation > > &nonscalar_data_ranges, const VtkFlags &flags, std::ostream &out)
void write_vtu_footer(std::ostream &out)
void write_gnuplot(const std::vector< Patch< dim, spacedim > > &patches, const std::vector< std::string > &data_names, const std::vector< std::tuple< unsigned int, unsigned int, std::string, DataComponentInterpretation::DataComponentInterpretation > > &nonscalar_data_ranges, const GnuplotFlags &flags, std::ostream &out)
void scale(const double scaling_factor, Triangulation< dim, spacedim > &triangulation)
Point< spacedim > point(const gp_Pnt &p, const double tolerance=1e-10)
Definition utilities.cc:191
Tensor< 2, dim, Number > l(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
constexpr const ReferenceCell Tetrahedron
constexpr const ReferenceCell Quadrilateral
constexpr const ReferenceCell Wedge
constexpr const ReferenceCell Pyramid
constexpr const ReferenceCell Triangle
constexpr const ReferenceCell Hexahedron
constexpr const ReferenceCell & get_hypercube()
constexpr const ReferenceCell Vertex
constexpr const ReferenceCell Line
constexpr const ReferenceCell & get_simplex()
VectorType::value_type * end(VectorType &V)
unsigned int n_mpi_processes(const MPI_Comm mpi_communicator)
Definition mpi.cc:92
std::string encode_base64(const std::vector< unsigned char > &binary_input)
Definition utilities.cc:433
std::string compress(const std::string &input)
Definition utilities.cc:389
std::string int_to_string(const unsigned int value, const unsigned int digits=numbers::invalid_unsigned_int)
Definition utilities.cc:470
const types::boundary_id invalid_boundary_id
Definition types.h:292
static constexpr double PI
Definition numbers.h:259
const types::boundary_id internal_face_boundary_id
Definition types.h:312
const types::subdomain_id artificial_subdomain_id
Definition types.h:362
static const unsigned int invalid_unsigned_int
Definition types.h:220
const types::manifold_id flat_manifold_id
Definition types.h:325
::VectorizedArray< Number, width > min(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > max(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > cos(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sin(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > pow(const ::VectorizedArray< Number, width > &, const Number p)
unsigned int material_id
Definition types.h:167
static void declare_parameters(ParameterHandler &prm)
void parse_parameters(const ParameterHandler &prm)
ReferenceCell reference_cell
Table< 2, float > data
unsigned int n_subdivisions
std::array< Point< spacedim >, GeometryInfo< dim >::vertices_per_cell > vertices
std::array< unsigned int, GeometryInfo< dim >::faces_per_cell > neighbors
static std_cxx20::ranges::iota_view< unsigned int, unsigned int > face_indices()
static std_cxx20::ranges::iota_view< unsigned int, unsigned int > vertex_indices()
static void declare_parameters(ParameterHandler &param)
Definition grid_out.cc:66
bool write_all_faces
Definition grid_out.h:82
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:94
bool write_diameter
Definition grid_out.h:71
DX(const bool write_cells=true, const bool write_faces=false, const bool write_diameter=false, const bool write_measure=false, const bool write_all_faces=true)
Definition grid_out.cc:53
static void declare_parameters(ParameterHandler &param)
Definition grid_out.cc:198
unsigned int n_boundary_face_points
Definition grid_out.h:362
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:231
EpsFlagsBase(const SizeType size_type=width, const unsigned int size=300, const double line_width=0.5, const bool color_lines_on_user_flag=false, const unsigned int n_boundary_face_points=2, const bool color_lines_level=false)
Definition grid_out.cc:182
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:265
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:314
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:357
unsigned int n_extra_curved_line_points
Definition grid_out.h:253
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:175
Gnuplot(const bool write_cell_number=false, const unsigned int n_extra_curved_line_points=2, const bool curved_inner_cells=false, const bool write_additional_boundary_lines=true)
Definition grid_out.cc:154
static void declare_parameters(ParameterHandler &param)
Definition grid_out.cc:167
bool write_additional_boundary_lines
Definition grid_out.h:272
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:457
static void declare_parameters(ParameterHandler &param)
Definition grid_out.cc:451
Msh(const bool write_faces=false, const bool write_lines=false)
Definition grid_out.cc:104
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:118
static void declare_parameters(ParameterHandler &param)
Definition grid_out.cc:110
bool label_level_number
Definition grid_out.h:759
unsigned int height
Definition grid_out.h:661
bool label_level_subdomain_id
Definition grid_out.h:779
bool label_subdomain_id
Definition grid_out.h:774
Background background
Definition grid_out.h:708
unsigned int line_thickness
Definition grid_out.h:672
bool convert_level_number_to_height
Definition grid_out.h:744
float cell_font_scaling
Definition grid_out.h:755
Coloring coloring
Definition grid_out.h:740
Svg(const unsigned int line_thickness=2, const unsigned int boundary_line_thickness=4, const bool margin=true, const Background background=white, const int azimuth_angle=0, const int polar_angle=0, const Coloring coloring=level_number, const bool convert_level_number_to_height=false, const bool label_level_number=false, const bool label_cell_index=false, const bool label_material_id=false, const bool label_subdomain_id=false, const bool draw_colorbar=false, const bool draw_legend=false, const bool label_boundary_id=false)
Definition grid_out.cc:409
@ level_subdomain_id
Convert the level subdomain id into the cell color.
Definition grid_out.h:737
@ subdomain_id
Convert the subdomain id into the cell color.
Definition grid_out.h:735
@ material_id
Convert the material id into the cell color (default)
Definition grid_out.h:731
@ level_number
Convert the level number into the cell color.
Definition grid_out.h:733
unsigned int width
Definition grid_out.h:667
unsigned int boundary_line_thickness
Definition grid_out.h:676
float level_height_factor
Definition grid_out.h:750
Ucd(const bool write_preamble=false, const bool write_faces=false, const bool write_lines=false)
Definition grid_out.cc:125
static void declare_parameters(ParameterHandler &param)
Definition grid_out.cc:136
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:145
bool output_only_relevant
Definition grid_out.h:893
bool serialize_triangulation
Definition grid_out.h:914
unsigned int n_boundary_face_points
Definition grid_out.h:582
Point< 2 > scaling
Definition grid_out.h:587
@ level_number
Convert the level into the cell color.
Definition grid_out.h:564
@ material_id
Convert the material id into the cell color.
Definition grid_out.h:562
@ level_subdomain_id
Convert the level subdomain id into the cell color.
Definition grid_out.h:568
@ subdomain_id
Convert the global subdomain id into the cell color.
Definition grid_out.h:566
void parse_parameters(ParameterHandler &param)
Definition grid_out.cc:397
static void declare_parameters(ParameterHandler &param)
Definition grid_out.cc:381
Point< 2 > offset
Definition grid_out.h:593
enum GridOutFlags::XFig::Coloring color_by