
Theory: Linear elastic active muscle model

Jean-Paul Pelteret

March 20, 2017

An introduction to the theory applied to the linear elastic active muscle
model of the biceps brachii.

1 Governing equations for quasi-static linear elasticity

The strong statement of the balance of linear momentum reads

∇ · σ + b = 0 on Ω , (1)

where ∇ = ∂
∂x is a differential operator, σ is the Cauchy stress tensor and b = ρg is the

body force density vector. This is expressed in index notation as

∂σij
∂xj

+ bi = 0 on Ω . (2)

Pre-multiplying the above by test function δv and integrating over the domain Ω renders

−
∫
Ω

δvi
∂σij
∂xj

dv =

∫
Ω

δvi bi dv (3)

that, by using the product rule for derivatives (i.e. integration by parts), becomes∫
Ω

∂δvi
∂xj

σij dv −
∫
Ω

∂

∂xj
[δvi σij ] dv =

∫
Ω

δvi bi dv . (4)

Finally, by applying divergence theorem to the second term in the above, we attain the
weak form of the balance of linear momentum∫

Ω

∂δvi
∂xj

σij dv =

∫
Ω

δvi bi dv +

∫
∂Ω

δvi σij nj︸ ︷︷ ︸
t̄i

da , (5)

wherein n represents the outward facing normal on ∂Ω, the boundary of the domain,
and t̄ the prescribed traction on the Neumann boundary.
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2 Constitutive law: A linearised Hill three-element active
muscle model with surrounding matrix [1]

The linear constitutive law used to model active muscle tissue is derived by [1] from the
nonlinear model developed by [2, 3]. In the representation given here, we deviate slightly
from the notation given in [1] to facilitate its implementation.

Embedding of one-dimensional fibre model into three-dimensional space

We begin by defining the decomposition of the Cauchy stress tensor into a matrix and
fibre contribution as

σ = σm + σf (6)

where m, f respectively denote contributions from the surrounding matrix and muscle
fibres. The isotropic linear constitutive law for the matrix surrounding the muscle fibres
is

σm = Cm : ε (7)

where Cm is the stiffness tensor for the matrix, and the small strain tensor

ε =
1

2

[
∇u + [∇u]T

]
. (8)

The fibre stress and strain are computed by

σf = Tfm⊗m , εf = [m⊗m] : ε (9)

Linearised version of Martin’s one-dimensional muscle model

Figure 1 shows an analogue for the sarcomere, the smallest building-block of active
muscle fibres. The distributions of strains and stresses within the various elements of the

Figure 1: Schematic of the Hill-type muscle fibre [1].
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representative model is determined by their arrangement with respect to one another. In
the linearised (small-strain) version of the Hill three-element model, the decomposition
of stress in the fibre as a whole and the one parallel branch are

Tf = Tp + Ts and Tc = Ts (10)

where T is a measure of nominal stress, and the subscripts f, p, s, c respectively denote
the fibre (as a whole), and the parallel, series and contractile element in the Hill model.
Similarly, the decomposition of the (small) strains in the Hill model are

εf = εp ≡ εs + εc . (11)

The constitutive laws governing the response of each element are as follows:

Tp = T0 fp , Ts = T0 fs and Tc = f lc (εc) f
v
c (ε̇c) α (u (t)) . (12)

where T0 is the nominal stress, a physiological constant which defines to the maximum
force of contraction under isometric conditions. Here the driver functions for the passive
parallel and series elements are

fp (εf ) =

{
mpεf if εf > 0

0 otherwise
(13)

fs (εs) =

{
msεs ≡ ms [εf − εc] if εs ≡ εf − εc > 0

0 otherwise
. (14)

Here the strain relationship between the elements is used to remove εs as an unknown.
For the active contractile element, the force-length and force-velocity relationships are
approximated as

f lc (εc) =

{
1 if − 0.5 ≤ εc ≤ 0.5

0 otherwise
(15)

fvc (ε̇c) =


0 if ε̇c < −5
1
5 ε̇c + 1 if − 5 ≤ ε̇c < 3

1.6 otherwise

, (16)

the latter of which we can write in general as

fvc (ε̇c) = mv
c ε̇c + cvc . (17)

Note that alternative linearisations for these terms are possible, and that the rate-
dependence of the contractile element makes this model “visco-elastic”. The differential
equation that defines the muscle activation model [4] is expressed a function of the neural
signal u (t) by

α̇ (u (t)) =
1

τr
[1− α]u+

1

τf
[αmin − α] [1− u] . (18)

The parameters τr and τf control the rise and fall of the activation function with respect
to the history of the neural signal, and αmin is the minimum activation level (real muscles
are never completely inactive; they always retain some degree of tetanisation).
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Time differentiation

For all time derivatives we employ a first-order backward Euler scheme. Therefore
the contractile strain rate and rate of change of muscle activation at timestep n are
approximated as

ε̇c ≈
εnc − εn−1

c

∆t
(19)

α̇ ≈ αn − αn−1

∆t
. (20)

Consequently the expression for the force-velocity relationship and activation level can be
explicitly stated in terms of the history variables εn−1

c , αn−1 and the remaining unknowns
εnc , α

n.

Substitution of fibre constitutive laws into one-dimensional stress relationship

From the equivalence of Tc and Ts, substituting in all of the salient previously derived
expressions and considering α > 0, we can extract the explicit expression for εc in terms
of εf by the following steps:

f lc f
v
c α = fs

⇒ f lc

[
mv
c

εc − εn−1
c

∆t
+ cvc

]
α = ms [εf − εc]

that, with some further rearrangement, becomes

εc =

[
f lcm

v
c

1

∆t
α+ms

]
︸ ︷︷ ︸

β

−1

msεf + f lcα

[
mv
cε
n−1
c

1

∆t
− cvc

]
︸ ︷︷ ︸

γ


=
ms

β
εf +

γ

β
(21)

Note that β > 0 under all conditions as ms > 0 during contraction.
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Substitution of constitutive laws into three-dimensional stress relationship

For the most general case, we can decompose the total Cauchy stress as

σ = Cm : ε+ σf

= Cm : ε+ Tfm⊗m

= Cm : ε+ T0 [mpεf +ms [εf − εc]]m⊗m

= Cm : ε+ T0

[
mpεf +ms

[
εf −

[
ms

β
εf +

γ

β

]]]
m⊗m

= Cm : ε+ T0

[
mp +ms −

m2
s

β

]
εfm⊗m−

[
T0ms

γ

β

]
m⊗m

=

Cm + T0

[
mp +ms −

m2
s

β

]
m⊗m⊗m⊗m︸ ︷︷ ︸

C∗
f

 : ε (u)−
[
T0ms

γ

β

]
m⊗m︸ ︷︷ ︸

σ∗
f

.

(22)

Note here that the first term on the right hand side (
[
Cm + C∗

f

]
: ε (u)) is dependent on

the solution, and the second term (σ∗
f ) depends only on local history variables.

3 Finite element discretisation

Combining eqs. (5) and (22) renders the complete expression of the balance of linear
momentum, with accommodation of the muscle fibre model, namely∫

Ω

∂δvi
∂xj

[
Cm + C∗

f

]
ijkl

εkl dv =

∫
Ω

δvi bi dv +

∫
∂Ω

δvi σij nj︸ ︷︷ ︸
t̄i

da−
∫
Ω

∂δvi
∂xj

[
σ∗
f

]
ij
dv ,

(23)

We discretise the trial solution and test function using finite element shape functions
(ansatz)

u (x) ≈
∑
I

ΦI (x)uI , v (x) ≈
∑
I

ΦI (x) vI (24)

where NI (x) is the (position-dependent) vector-valued finite element shape function
corresponding to the Ith degree-of-freedom, and uI , vI are coefficients of the solution
and trial function. In deal.II nomenclature, the shape function is computed from a
scalar base shape function and some expansion into higher-dimensional space by

ΦI (x) = N I (x) ecomp(I) (25)
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where N I is a scalar shape function and ecomp(I) is the basis direction associated with

the Ith degree-of-freedom. Therefore, the jth local component of shape function ΦI (x)
is given by [

ΦI (x)
]
j

= N I (x)
[
ecomp(I)

]
j

= N I (x) δcomp(I)j . (26)

where δij is the Kronecker delta. Note that in this instance we use the same ansatz for
the test and trial spaces, and the 0 ≤ comp(I), j < spacedim.

We now use these shape functions to discretise the weak expression for the balance
of linear momentum. Starting on the right-hand side of eq. (23), the body force and
traction contributions are computed by∫

Ω

δvi bi dv =

∫
Ω

[∑
I

ΦI (x) δvI

]
i

bi dv =
∑
I

δvI
∫
Ω

[
ΦI (x)

]
i
bi dv

=
∑
I

δvI
∫
Ω

N I (x) δcomp(I)i bi dv =
∑
I

δvI
∫
Ω

N I bcomp(I) dv (27)

∫
Ω

δvi ti dv =
∑
I

δvI
∫
Ω

N I tcomp(I) dv . (28)

while the contribution to the right-hand side that arise from the history variables is

−
∫
Ω

∂

∂xj
[δvi]

[
σ∗
f

]
ij
dv = −

∫
Ω

∂

∂xj

[∑
I

ΦI (x) δvI

]
i

[
σ∗
f

]
ij
dv

= −
∑
I

δvI
∫
Ω

∂

∂xj

[
ΦI (x)

]
i

[
σ∗
f

]
ij
dv

= −
∑
I

δvI
∫
Ω

∂

∂xj

[
N I (x) δcomp(I)i

] [
σ∗
f

]
ij
dv

= −
∑
I

δvI
∫
Ω

∂N I (x)

∂xj

[
σ∗
f

]
comp(I)j

dv . (29)

The last component of eq. (23) that we wish to express in discrete form is the left-hand
side of the equation. Before we do, we observe that using the minor symmetry of the
material stiffness tensor we can re-express the contraction of it and the small strain
tensor as

C : ε = C :
1

2

[
∇u + [∇u]T

]
≡ C : ∇u (30)
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Therefore, this contribution written in discrete form is∫
Ω

∂δvi
∂xj

[
Cm + C∗

f

]
ijkl

εkl dv ≡
∫
Ω

∂δvi
∂xj

Cijkl
∂δuk
∂xl

dv

≡
∫
Ω

∂

∂xj

[∑
I

ΦI (x) δvI

]
i

Cijkl
∂

∂xl

[∑
J

ΦJ (x) δuJ

]
k

dv

≡
∑
I,J

δvI

∫
Ω

∂

∂xj

[
ΦI (x)

]
i
Cijkl

∂

∂xl

[
ΦJ (x)

]
k
dv

 δuJ
≡
∑
I,J

δvI

∫
Ω

∂N I (x)

∂xj
δcomp(I)iCijkl

∂NJ (x)

∂xl
δcomp(J)k dv

 δuJ
≡
∑
I,J

δvI

∫
Ω

∂N I (x)

∂xj
Ccomp(I) j comp(J) l

∂NJ (x)

∂xl
dv

 δuJ . (31)

Equations (27) to (29) and (31) are collectively used to develop the system of linear
equations that are solved at each time step.
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